# Distance and Collision Detection 

Efi Fogel<br>efif@post.tau.ac.il

School of computer science, Tel Aviv University

## The Papers

- A Fast Procedure for Computing the Distance Between Complex Objects in Three-Dimensional Space
- Computing Minimum and Penetration Distances between Convex Polyhedra


## About the Algorithms

- First came Barr, Gilbert, and Wolfe. For example, "Finding the nearest point in a polytope" by Wolfe, 1976.
- In 1988 appeared "A Fast procedure for computing the distance between ..." known as GJK.
- S. Cameron enhanced GJK in "Computing Minimum and Penetration Distances between ...".
- and also described modifications to compute penetration distances
- Lin \& Canny, "A fast Algorithm for incremental distance calculation", 1991


## Introduction

In many fields (e.g., Robotics, CAD, Graphics, etc) it is important to know whether two objects in 3D intersect or are in close proximity.

## Minimum Translation Distance (Cameron)

When two simulated objects interpenetrate, we may need to know how to extricate the system from this condition.

$$
\begin{aligned}
\operatorname{MTD}^{+}(A, B) & =\inf _{t}\{|t|: A+t \text { is in contact with } B\} \\
\operatorname{MTD}(A, B) & = \begin{cases}-\operatorname{MTD}^{+}(A, B) & \text { objects overlap } \\
\operatorname{MTD}^{+}(A, B) & \text { objects do not overlap }\end{cases}
\end{aligned}
$$



## The Approach

- Compute the distance between convex sets in $d$-dimensional space
- Efficient when $d=3$
- Terminate after a finite number of iterations
- Linear in the total number of vertices $m=m_{1}+m_{2}$
- Practical


## Handled Object Shapes and Representations

- Objects that are the union of convex polytopes and their spherical extensions
- Spherical extensions are valuable
- May be used to cover an object with a safety shell
- Economical representations



## Preliminaries

- The affine hull of a set $X \subseteq \mathbb{R}^{d}$, denoted by aff $(X)$, is the intersection of all affine subspaces of $\mathbb{R}^{d}$ containing $X$.

$$
\operatorname{aff}(X)=\left\{\sum_{i=1}^{l} \lambda^{i} x_{i}: x_{i} \in X, \sum_{i=1}^{l} \lambda^{i}=1\right\}
$$

- The convex hull of a set $X \subseteq \mathbb{R}^{d}$, denoted by $\operatorname{con}(X)$, is the intersection of all convex sets in $\mathbb{R}^{d}$ containing $X$.

$$
\operatorname{con}(X)=\left\{\sum_{i=1}^{l} \lambda^{i} x_{i}: x_{i} \in X, \lambda^{i} \geq 0, \sum_{i=1}^{l} \lambda^{i}=1\right\}
$$

## Convex and Affine hulls in $\mathbb{R}^{3}$



## Caratheodory's theorem

Theorem 1 Let $X \subseteq \mathbb{R}^{d}$. Then each point of $\operatorname{conv}(X)$ is a convex combination of at most $d+1$ points of $X$.
For example, in the plane, $\operatorname{conv}(X)$ is the union of all triangles with vertices at points of $X$.


## The nearest point to the origin

$\nu(X) \in X$ - nearest point in $X$ to origin $O$,

$$
\begin{gathered}
|\nu(X)|=\min \{|x|: x \in X\} \\
\nu(\operatorname{con}(X))=\sum_{i=1}^{l} \lambda^{i} x_{i}, x_{i} \in X, \lambda^{i} \geq 0, \sum_{i=1}^{l} \lambda^{i}=1 \\
l \leq \begin{cases}d+1 & \nu(\operatorname{con}(X))=O,(O \in \operatorname{con}(X)) \\
d & \nu(\operatorname{con}(X)) \neq O\end{cases}
\end{gathered}
$$

## Translational C-space Obstacle (Cameron)

$$
\operatorname{TCSO}(P, Q)=\{p-q: p \in P, q \in Q\}=K
$$

Recognized as Minkowski Sum

$$
\begin{align*}
& \operatorname{TCSO}(P, Q)=P \oplus-Q=\{p+\bar{q}: p \in P, \bar{q} \in-Q\} \\
& \operatorname{MTD}(P, Q)=\operatorname{MTD}(O, K)=d \\
&=\min \{|x|: x \in K\}=|\nu(K)| \\
& \nu(K)=\sum_{i \in I_{K}} \lambda^{i} x_{i} \\
&=\sum_{i \in I_{P}} \lambda^{i} p_{i}-\sum_{i \in I_{Q}} \lambda^{i} q_{i} \\
& P \oplus-Q
\end{align*}
$$

## Witness Points

- $p$ and $q$ are the witness points - realize the minimum distance
- Each is a surface point on $P$ and $Q$ resp.
- Witness points are not necessary unique
- $p-q$ is the TC-witness point (Cameron)
- A surface point on $\operatorname{TCSO}(P, Q)$



## Tracking

- The distance algorithm is called many times in time steps
- Make sense to use the witness points found at the last step



## Algorithm Sketch

- Finding the nearest point to the origin

An example in $\mathbb{R}^{2}$


## Algorithm Sketch

- Finding the nearest point to the origin

An example in $\mathbb{R}^{2}$


## Algorithm Sketch

- Finding the nearest point to the origin

An example in $\mathbb{R}^{2}$


## Algorithm Sketch

- Finding the nearest point to the origin

An example in $\mathbb{R}^{2}$


## The algorithm (Cameron)

Require: $X$ is a compact convex set in $\mathbb{R}^{d}$
$S \leftarrow$ init_simplex $(X)$
while !best_simplex $(S)$ do $S \leftarrow$ refine_simplex $(S, X)$
end while

- init_simplex $(X)$ - computes the initial points
$x_{1}, \ldots, x_{v}, 1 \leq v \leq d+1$
- best_simplex $(X)$ - returns true if the simplex contains the witness point, and false otherwise.
- refine_simplex $(S, X)$ - computes a neighboring simplex


## Inner (dot) Product

The projection of $w$ onto the unit vector $v$, is the vector $u$, whose length is $\|w\|$ times the cosine of the angle between $v$ and $w$.

$$
\begin{aligned}
\|u\| & =\frac{v \cdot w}{\|v\|} \\
\|u\|^{2} & =u \cdot w
\end{aligned}
$$



## Notations

- $h_{X}(\eta)$ - the support function of $X, h_{X}: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
h_{X}(\eta)=\max \{x \cdot \eta: x \in X\}
$$

- $s_{X}(\eta)$ - the support vertex, any witness of $h_{X}(\eta)$,

$$
\begin{aligned}
h_{\operatorname{con}(X)}(\eta) & =h_{X}(\eta) \\
s_{\operatorname{con}(X)}(\eta) & =s_{X}(\eta)
\end{aligned}
$$

$$
h_{X}(\eta)=s_{X}(\eta) \cdot \eta
$$



$$
\text { Moinomeming sentai }_{X}\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}^{T}, x_{6}\right\}
$$

## Minkowski Sum

$$
\begin{aligned}
& K=P \oplus-Q=\{p-q: p \in P, q \in Q\} \\
& d=\min \{|x|: x \in K\}=|\nu(K)| \\
& \nu(K)=\sum_{i \in I_{K}} \lambda^{i} x_{i}=\sum_{i \in I_{P}} \lambda^{i} p_{i}-\sum_{i \in I_{Q}} \lambda^{i} q_{i} \\
& h_{K}(\eta)=h_{P}(\eta)+h_{Q}(-\eta) \\
& s_{K}(\eta)=s_{P}(\eta)-s_{Q}(-\eta)
\end{aligned}
$$

## Theorem

Theorem 1 Let $K \subseteq \mathbb{R}^{d}$ be compact and convex, and define $g_{K}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by:

$$
g_{K}(x)=|x|^{2}+h_{K}(-x)
$$

Suppose $x \in K$. Then:

- $g_{K}(x)>0 \Rightarrow \exists z \in \operatorname{con}\left\{x, s_{K}(-x)\right\},|z|<|x| x_{1}$
- $x=\nu(K) \Leftrightarrow g_{K}(x)=0$
- $|x-\nu(K)|^{2} \leq g_{K}(x)$


## Theoretical Algorithm

Require: $X \subset \mathbb{R}^{d}$ is compact and convex,

$$
x_{1}, x_{2}, \ldots, x_{v} \in X, 1 \leq v \leq d+1
$$

1: $k \leftarrow 0, S_{0} \leftarrow x_{1}, x_{2}, \ldots, x_{v}$
2: $\nu_{k}=\nu\left(\operatorname{con}\left(S_{k}\right)\right)$
3: if $g_{K}\left(\nu_{k}\right)==0$ then
4: $\quad \nu(K) \leftarrow \nu_{k}$
5: stop
6: end if
7: $S_{k+1} \leftarrow \hat{S_{k}} \cup\left\{s_{K}\left(-\nu_{k}\right)\right\}$, where $\hat{S_{k}} \subset S_{k}$ has d elements or less and satisfies $\nu_{k} \in \operatorname{con}\left(\hat{S_{k}}\right), k \leftarrow k+1$ 8: goto step 2.

## Distance Subalgorithm

- Consider the $k$-th iteration, $S_{k}=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$
- We need to compute:



## Distance Subalgorithm, d.w. Johnson

- The number of all possible subsets of $S_{k}$ is:

$$
\sigma=\sum_{j=1}^{v} \frac{v!}{j!(v-j)!}
$$

- For example, In $\mathbb{R}^{3}, v=4, \sigma=15$
- 4 vertices, 6 open edges, 4 open faces, 1 open simplex.



## Distance subalgorithm

- $S=\left\{x_{1}, x_{2}, \ldots, x_{v=d+1}\right\}$ simplex $\mathbb{R}^{d} . I=\{1,2, \ldots, v\}$
- $S_{s}, s=1,2, \ldots, \sigma$ an ordering of the subsets of $S$.
- Define $I_{s}, s=1,2, \ldots, \sigma, S_{s}=\cup_{i \in I_{s}}\left\{x_{i}\right\}$
- Let $I_{s}^{\prime}$ be the complement of $I_{s}$ in $I, I^{\prime} s=I \backslash I_{s}$
- Define real numbers $\Delta_{i}\left(S_{s}\right), i \in I_{s}$, and $\Delta\left(S_{s}\right)$ :

$$
\begin{aligned}
\Delta_{i}\left(\left\{x_{i}\right\}\right) & =1, i \in I \\
\Delta_{j}\left(S_{s} \cup\left\{x_{j}\right\}\right) & =\sum_{i \in I_{s}} \Delta_{i}\left(S_{s}\right)\left(x_{i} \cdot x_{k}-x_{i} \cdot x_{j}\right), k \in I_{s}, j \in I_{s}^{\prime} \\
\Delta\left(S_{s}\right) & =\sum_{i \in I_{s}} \Delta_{i}\left(S_{s}\right)
\end{aligned}
$$

## Distance Subalgorithm

$$
\begin{aligned}
\Delta_{1}\left(\left\{x_{1}\right\}\right) & =1 \\
\Delta_{2}\left(\left\{x_{2}\right\}\right) & =1 \\
\Delta_{3}\left(\left\{x_{3}\right\}\right) & =1 \\
\Delta_{2}\left(\left\{x_{1}, x_{2}\right\}\right) & =x_{1} \cdot x_{1}-x_{1} \cdot x_{2} \\
\Delta_{1}\left(\left\{x_{1}, x_{2}\right\}\right) & =x_{2} \cdot x_{2}-x_{1} \cdot x_{2} \\
\Delta_{3}\left(\left\{x_{2}, x_{3}\right\}\right) & =x_{2} \cdot x_{2}-x_{2} \cdot x_{3} \\
\Delta_{2}\left(\left\{x_{2}, x_{3}\right\}\right) & =x_{3} \cdot x_{3}-x_{2} \cdot x_{3} \\
\Delta_{1}\left(\left\{x_{3}, x_{1}\right\}\right) & =x_{3} \cdot x_{3}-x_{3} \cdot x_{1} \\
\Delta_{3}\left(\left\{x_{3}, x_{1}\right\}\right) & =x_{1} \cdot x_{1}-x_{3} \cdot x_{1} \\
\Delta_{1}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) & =\ldots \\
\Delta_{2}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) & =\ldots \\
\Delta_{3}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) & =\ldots
\end{aligned}
$$



## Theorem

## Theorem 1

$$
\nu(\operatorname{con}(S))=\nu\left(\operatorname{con}\left(S_{s}\right)\right)=\sum_{i \in I_{s}} \lambda^{i} x_{i}, i \in I_{s}
$$

if and only if

1. $\Delta\left(S_{s}\right)>0$, and
2. $\Delta_{i}\left(S_{s}\right)>0, \forall i \in I_{s}$, and
3. $\Delta_{j}\left(S_{s} \cup\left\{x_{j}\right\}\right)<0, \forall j \in I_{s}^{\prime}$, and
4. $\lambda^{i}=\frac{\Delta_{i}\left(S_{s}\right)}{\Delta\left(S_{s}\right)}$

## Distance Subalgorithm

Require: $S=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$, and an ordering
$S_{s}, s=1,2, \ldots, \sigma$
1: $s \leftarrow 1$
2: if $\Delta\left(S_{s}\right)>0$, and $\Delta_{i}\left(S_{s}\right)>0, i \in I_{s}$, and $\Delta_{j}\left(S_{s} \cup\left\{x_{j}\right\}\right) \leq 0, j \in I_{s}^{\prime}$ then
3: Stop
4: end if
5: if $s<\sigma$ then
6: Increment $s$ and proceed to step 2
7: end if
8: Stop and report failure

## Robustness Issues

How reliable is it in the presence of roundoff errors

- Errors do not accumulate!
- Each iteration $\nu_{k}$ is recomputed based on $S_{k}$

$$
\nu_{k}=\nu\left(\operatorname{con}\left(S_{k}\right)\right)
$$

## Making the Main Algorithm Robust

- Translate the origin to a point on the line segment joining the centroids of $P$ and $Q$

$$
\rho=\frac{1}{2}(\bar{p}+\bar{q}) \quad \bar{p}=\frac{1}{|P|} \sum_{p_{i} \in P} p_{i}, \bar{q}=\frac{1}{|Q|} \sum_{q_{i} \in Q} q_{i}
$$

- Helps when $d$ is small and the $\rho$ is large
- Replace the convergence criterion to:

$$
g_{K}\left(\nu_{k}\right) \leq \epsilon(D(K))^{2}
$$

- $\epsilon>0$ related to the number-type accuracy

$$
\begin{aligned}
D(K) & =\max \{|x|: x \in K\} \\
& \leq D(\operatorname{con}(P-\{\bar{p}\})+D(\operatorname{con}(Q-\{\bar{q}\})+|\bar{p}-\bar{q}|
\end{aligned}
$$

## Making the Sub-Algorithm Robust

- The condition in the distance subalgorithm is not satisfied for any $s=1,2, \ldots, \sigma$
- May happen when $S_{k}$ is affinely dependent or nearly so
- in $\mathbb{R}^{3}$ all 4 points are nearly coplanar
- Resort to a backup procedure:

Require: $S=\left\{s_{1}, s_{2}, \ldots, s_{v}\right\}$ a simplex Compute the distance to all candidates $S_{s} \subset S$ \{Compute $\nu\left(\operatorname{aff}\left(S_{s}\right)\right)$ for $\Delta\left(S_{s}\right)>0, \Delta_{i}\left(S_{s}\right)>0$ \} Return the best

## Hill Climbing (Cameron)

## Expediting the computing of the support vertex

Given new support direction $x$, and previous support vertex $v$ compare $x \cdot v$ with $x \cdot v_{j}$ for every vertex $v_{j}$ connected to $v$
if $x \cdot v$ is not the smallest then
$v \leftarrow v_{j}$, such that $x \cdot v_{j}$ is the smallest else
return $v$
end if


## Solving each Simplex

## Estimating Penetration Distance

Objects overlap $\Longleftrightarrow$ TC-space origin $\in$ TCSO
$\operatorname{MTD}^{+}(O, \operatorname{con}(S)) \leq \operatorname{MTD}^{+}(O, T C S O) \leq \min _{i}\left|x_{i}\right|$
$\operatorname{MTD}^{+}(O, \operatorname{con}(S))=\min \left\{\left|\nu\left(\operatorname{aff}\left(S_{s}\right)\right)\right|: S_{s} \subset S,\left|S_{s}\right|=d\right\}$


