Distance and Collision Detection

Efi Fogel

efi f @ost.tau. ac. il

School of computer science, Tel Aviv University

Fall 2003/4 Motion Planning seminar 1/33



The Papers

®» A Fast Procedure for Computing the Distance Between
Complex Objects in Three-Dimensional Space

» Computing Minimum and Penetration Distances between
Convex Polyhedra
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About the Algorithms
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First came Barr, Gilbert, and Wolfe. For example,
“Finding the nearest point in a polytope” by Wolfe,
1976.

In 1988 appeared “A Fast procedure for computing
the distance between ...” known as GJK.

S. Cameron enhanced GJK in “Computing Minimum
and Penetration Distances between ...".

» and also described modifications to compute
penetration distances

Lin & Canny, “A fast Algorithm for incremental distance
calculation”, 1991
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Introduction

In many fields (e.g., Robotics, CAD, Graphics,
etc) it I1s important to know whether two ob-

jects In 3D intersect or are In close proximity.
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Minimum Translation Distance (Cameron)

When two simulated objects interpenetrate, we may need
to know how to extricate the system from this condition.

MTD™ (A, B) = inf{|¢[ : A+ ¢ is in contact with B}

—MTD™" (A, B) objects overlap

MTD(A, B) =
( ) { MT[fF(A7 B) objects do not overlap
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The Approach

# Compute the distance between convex sets in
d-dimensional space

o Efficientwhen d = 3

® Terminate after a finite number of iterations
o Linear in the total number of vertices m = m1 + ms

o Practical
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Handled Object Shapes and
Representations

# ObDjects that are the union of convex polytopes and
their spherical extensions

#® Spherical extensions are valuable
s May be used to cover an object with a safety shell
s Economical representations
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Preliminaries

# The affine hull of a set X C R¢, denoted by aff(X), is

the intersection of all affine subspaces of R?
containing X.

[ [
aff (X) ={> Naj:z € X, ) MN=1}
1=1 1=1

® The convex hull of a set X C R?, denoted by con(X),

is the intersection of all convex sets in R? containing
X.

[ [
con(X) = {Z Na; cxi€ X, N >0, Z)\i =1}
i=1 i=1
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Convex and Affine hulls in IR?
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Caratheodory’s theorem

Theorem 1 Let X C R%. Then each point of conv(X) is a
convex combination of at most d + 1 points of X.

For example, in the plane, conv(X) is the union of all
triangles with vertices at points of X.
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The nearest point to the origin

v(X) € X —nearest point in X to origin O,

lv(X)| = min{|z| : x € X}

! !
v(con(X)) = MNaj, z € X, X' >0, > AN =1
1=1 1=1 I

L2

| < { d+1 v(con(X))

O, (O € con(X))
v(con(X)) # O

RN

3 T4
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Translational C-space Obstacle (Cameron)

TCSO(P,Q)={p—q:pEP, q€Q} =K
Recognized as Minkowski Sum

TCSO(P,Q)=Po-Q={p+q:peP, € -Q}

MTD(P, Q) = MTD(O,K) =d )
=min{|z|: 2z € K} = |v(K)| SR
i X
v(K)= ) N Po_0
1€1K

\!
1€lp 1€1g ‘/
0,
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Withess Points

#® p and ¢ are the witness points - realize the minimum
distance

s Each is a surface point on P and () resp.
s Witness points are not necessary unique

® p— qIsthe TC-witness point (Cameron)
s A surface point on TCSO(P, Q) P
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Tracking

# The distance algorithm is called many times in time
steps

# Make sense to use the witness points found at the
last step

VR
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Algorithm Sketch

# Finding the nearest point to the origin

An example in R?
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The algorithm (Cameron)

Require: X is a compact convex set in R?
S < init_simplex(X)
while !best_simplex(S) do
S + refine_simplex(S, X)
end while

® init_simplex(X) — computes the initial points
X1, ..., Ty, 1 <v<d+1

® best_simplex(X) — returns true if the simplex contains
the witness point, and false otherwise.

® refine_simplex(S, X)) — computes a neighboring
simplex
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Inner (dot) Product

The projection of w onto the unit vector v, Is the vector u,
whose length is ||w|| times the cosine of the angle
between v and w.

(RET)
0] w

ul|* = u-w

Jull =
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Notations

hx (n) — the support function of X, hx : R — R,
hx(n) =max{z-n:z € X}
sx(n) — the support vertex, any witness of hx (n),

hx(n) =sx(n)-n

Y
X :em{aipla L2, L3, T4, s, xG}
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Minkowskl Sum

K=P®-Q={p—q:peP qeQ}
d=min{|z| 1z € K} = |v(K)|

p(K) =Y Nap= Y Npi— Y N

1€1K 1€1p 1€1g p
Q
hi(n) = hp(n) + ho(—n) o O
_ X
si(n) = sp(n) — sQ(=n) Pe—0Q
S o
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Theorem

Theorem 1 Let K C R? be compact and convex, and
define gx : RY — R by:

g (2) = |a|* + h(~2)

Suppose =z € K. Then:
o g(x) > 0= dz € con{x,sg(—x)}, |2| <|z|=z1
o r=v(K)& gi(z)=0

o |z — v(K)* < gk (z)
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Theoretical Algorithm

Require: X c R?is compact and convex,
T1,T9,..., T, € X, 1 <v<d+1
]C(—O, So — T1,T2,...,Ty
v = v(con(S}))
If gK(Vk) == (0 then
V(K) + v
stop
end If
Spi1 < Sk U {sx(—v)}, where S, c S;, has d

elements or less and satisfies v, € con(S;), k < k+ 1
8: goto step 2.
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Distance Subalgorithm

# Consider the k-th iteration, S, = {x1,z2,..., 2y}
# We need to compute:

v, = v(con(Sg)) Z X’xz S =1, A >0

— g )\Zilfz', 1€1,C{1,2,....0}, D it =1, \i>0

1€15
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Distance Subalgorithm, p.w. johnson

# The number of all possible subsets of S;. Is:

(%

v!
"= 2 -7

=17

® For example, INR?, v =4, 0 =15

s 4 vertices, 6 open edges, 4 open faces, 1 open
simplex.
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Distance subalgorithm

S ={x1,29,...,Ty—q+1} SIMplex R, T = {1,2,...,v}
Ss, s=1,2,...,0 an ordering of the subsets of S.
Define I5, s=1,2,...,0, Ss = Ujer.{x;}

Let I, be the complementof I;in I, I's=1)\ I
Define real numbers A;(Ss), @ € I, and A(Ss):

© o o o o

Aj( su{xj} ZA vi-x;), k€ls, jel
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Distance Subalgorithm

Ai({z1}) =1
Ag({r2}) =1
As(frs}) =1
AQ({iIZl, 332}) - T1:-T1 — I
Ai({r1,m2}) =x2-72 — 11
Asz({w2,73}) =212 — T2
AQ({ZUQ, 5133}) — T3 -T3 — T2
Al({iljg, 331}) — I3 °T3 — I3
Ag({xg,ajl}) - 11 —x3 "
Al({xl,l‘g,:l?g}) —
AQ({$1,5L‘2,IIZ3}) —
As({r1, T2, 3}) =
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Theorem

Theorem 1
v(con(S)) = v(con(S Z N, i€ I
1615
If and only If

1. A(Ss) > 0, and
2. A;(Ss) >0,Vi € I, and
3. Aj(SsU{z;}) <0, Vj e I, and

7 A;(Ss
4. N = —A(gs))
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Distance Subalgorithm

Require: S ={x1,x2,...,1z,}, and an ordering
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N OAREW

Se,s=1,2,...,0
s+ 1
If A(Ss) >0, and A;(Ss) > 0,7 € I, and
A]‘(SS U {.CE]}) <0,7 € ]é then
Stop
end If
If s < othen
Increment s and proceed to step 2
end if
Stop and report failure
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Robustness Issues

How reliable is it in the presence of roundoff errors

# Errors do not accumulate!
s Each iteration v, Is recomputed based on S,

v = v(con(Sg))
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Making the Main Algorithm Robust

# Translate the origin to a point on the line segment
joining the centroids of P and @)

_ 1
p=30+7)  P= 152 pepPis 0= 10 2gieq

s Helps when d is small and the p is large
#® Replace the convergence criterion to:

gk (k) < e(D(K))?
s ¢ > 0 related to the number-type accuracy

D(K) =max{|z|:x € K}
< D(con(P — {p}) + D(con(Q — {g}) + |p — q
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Making the Sub-Algorithm Robust

# The condition in the distance subalgorithm is not
satisfled forany s =1,2,....0
s May happen when S is affinely dependent or
nearly so
s inR3 all 4 points are nearly coplanar

#® Resort to a backup procedure:

Require: S = {s1,s2,...,8,} asimplex
Compute the distance to all candidates S, C S
{Compute v(aff(Ss)) for A(Ss) > 0, A;(Ss) > 0}
Return the best
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Hill Climbing (Cameron)

Expediting the computing of the support vertex
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Given new support direction z, and previous support
vertex v
compare z - v with z - v; for every vertex v; connected
to v
If = - v IS not the smallest then
v < vj, such that x - v; Is the smallest
else
return v
end if
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Solving each Simplex
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Estimating Penetration Distance

Objects overlap «<— TC-space origin € TCSO
MTD™ (O, con(S)) < MTD' (O, TCSO) < min |z;]

MTD™ (O, con(S)) = min{|v(aff (Ss))| : Ss C S, |Ss| = d}

s

P& —-Q
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