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Chapter 1: A Short Review on C

Basic Data Types

	Group
	Name
	Size (in bytes)

	Integer number types
	char
	1

	
	short
	2

	
	long
	4

	
	int
	usually 4 (2 on old machines)

	Real number types
	float
	4

	
	double
	8


Since there are 8 bits in a byte, there are 28 possible character values. The most significant bit is called the sign bit – if it is 0/1, the value is positive/negative respectively. The 2’s complement method is used to represent negative values: for example, the number -1 is represented as the character 11111111, since:

     11111111

    + 

     00000001

     ────────

    100000000 - which is 0 modulus 28.
If there are n bits in a number, it can store values ranging from 2n-1 up to 2n-1-1. If we declare it unsigned (e.g. unsigned short) it can hold values in the range of 0 to 2n-1-1.

	Integer Number Type
	Minimal Value
	Maximal Value

	char
	-128
	127

	unsigned char
	0
	255

	short
	–32,768
	32,767

	unsigned short
	0
	65,535

	long (or int)
	–2,147,483,648
	2,147,483,647

	unsigned long (or int)
	0
	4,294,967,295


The real-number types (float and double) are represented using a mantissa and an exponent:

	S – sign
	M – mantissa
	E – exponent


The value of the real number is (-1)S·1.M·2E-N, where N=2|E|-1, using the following values:

	Real Number Type
	|S|
	|M|
	|E|
	Total Bits

	float
	1
	23
	8
	32

	double
	1
	52
	11
	64


Operators

Assignment operator: =


Arithmetic operators: +, -, * (multiplication), / (division), % (modulo)

Arithmetic op. and assignment: +=, -=, *=, /=, %=, ++ (increment) , -- (decrement)

Equality operators: == (equal), != ( not equal)


Order operators: <, <=, >, >=

Logical operators: && (and), || (or), ! (not)


Bit-wise operators: & (and), | (or), ^ (xor), ˜ (not), << (shift left), >> (shift right)


Bit-wise op. and assignment: &=, |=, ^=, <<=, >>=
Notes:

· All operators are binary, except ! and  ˜ that are unary (- may also be unary).

· There is one ternary operator: ? : 
(<condition> ? <true value> : <false value>).

· The ++ and -- unary operators can be used in either postfix or prefix notation.

Controlling the Program Flow

Using conditions:

if (<condition #1>)

    <statement #1>

else if (<condition #2>)

    <statement #2>

else

    <statement #3>

Using the switch-case mechanism:

switch (<variable>)

{

    case <value #1>:

        <statement #1>

    case <value #2>:

        <statement #2>

    default:

        <statement #3>    

}

Usage of the while loop:

while (<condition>)

    <body>
Usage of the for loop:

for (<initial action>; <condition>; <end loop action>)

    <body>
Which is equivalent to:

<initial action>
while (<condition>)

{

    <body>
    <end loop action>
}

Usage of the do-while loop:

do <body> while (<condition>);
Which is equivalent to:

<body>
while (<condition>)

    <body>
A function is a piece of code that may be carried out several times during the program execution, so instead of duplicating it over and over again, we simply separate it and call it whenever needed:

/* Calculate x raised to n'th power. */

float power (float x, unsigned int n)

{

    int     k;

    float   fResult = 1;

    for (k = 0; k < n; k++)

        fResult *= x;

    return (fResult);

}

The variables x and n are called the function arguments.

Actually, the entire code of any C program is arranged in functions. Each program must contain a function called main that start the execution of the program.

The following reserved words can break the program flow:

· return – Terminates the current function.

· break   – Get out of the current block (not including if blocks). 

· continue – Go to the end of the block (not including if blocks).

· goto – Jump to a designated label (usually not in use).

The break keyword is especially important in switch blocks to prevent undesired fall-through between consecutive case statements.

Arrays and Pointers

It is possible to define static arrays of variables, and to access the array cells using the [] operator:

int    iFibArray[10];

int    k;

iFibArray [0] = 1;

iFibArray [1] = 1;

for (k = 2; k < 10; k++)

    iFibArray[k] = iFibArray[k - 1] + iFibArray[k - 2];

Notes:

· The size of the static array must be known on compilation time.

· The legal indices for accessing the array are 0, …, n-1 where n is the size of the array.

A pointer is a variable whose size is the same as the size of int (i.e. it is machine dependent) and can store the address of another variable.

float     fSum;

float     *fSumP;           /* Definition of a pointer. |*/

fSumP = NULL;

A NULL pointer means “no address” – i.e. the pointer is currently not pointing on any variable.

One can obtain the address of a variable by using the & operator, and de-reference a pointer (i.e. obtain the variable in that address) using the * operator:

fSumP = &fSum;

fSum = *fSumP;

Pointers play important role when passing parameters to functions. Let us take a look at the following function:

void swap (int a, int b)

{

    int    temp = a;

    a = b;

    b = temp;

}

When we try to apply it:

int     x = 3, y = 4;

swap (x, y);

We will see that the function didn’t really change the values of x and y. This is because in C function arguments are passed by value – i.e. a copy of each function argument is created on the stack. The swap function only swaps the values of the copies of its arguments.

The solution is to pass the addresses of the variables to the function:

void swap (int *aP, int *bP)

{

    int    temp = *aP;

    *aP = *bP;

    *bP = temp;

}

And to apply the function using:

int     x = 3, y = 4;

swap (&x, &y);

Compound Data Types

It is possible to expand the data type repository by defining structures. A structure is used to pack together several fields that are conceptually related:

struct Date

{

    int    iDay;

    int    iMonth;

    int    iYear;

};

The user can define structure objects and access their fields using the . (dot) operator:

struct Date    date;

date.iDay = 31;

date.iMonth = 12;

date.iYear = 1999;  

If we have a pointer to a structure, we will have to use parentheses, since the * operator has a lower precedence than the . operator:

struct Date    *dateP = &date;

(*dateP).iDay = 21;

Alternatively, it is possible (and easier) to use the arrow operator: 

dateP->iDay = 21;

It is very convenient to define enumeration types. An enumeration variable is actually an integer, which is expected to have a limited range of designated values:

enum ChessBoardColour

{

    Black,

    White

};

One can use enumerations in the following manner:

enum ChessBoardColour  col;

    :

if (col == Black)

{

    :

}

By default, the first enum value is 0, and each value is 1 more than its predecessor, but it is possible to explicitly assign enum values with integer values:

enum _ErrorCode

{

    AllOK = 1,

    FileNotFound = -1,

    IllegalFileFormat = -2

};

It is possible to use the typedef command in order to define more convenient name for our data types:

typedef enum _ErrorCode ErrorCode;

Dynamic Memory Allocation

Since static arrays are allocates on the stack, which has a limited size, we have to use dynamic memory allocation when large arrays are needed.

We use the standard library function malloc and free:

int     n;

int     *iArrayP;

n = 1000;

iArrayP = (int *) malloc (sizeof(int) * n);
if (iArrayP == NULL)

    abort();         /* In case the allocation has failed. */

iArrayP[n-1] = 1;

  :     :

free (iArrayP);
When allocating n bytes, malloc also allocates an additional header, which free can later on use in order to know what is the size of block that should be freed. Therefore, it is essential to call free with the same pointer returned by malloc.

Recursion

In C, a function can call itself. For example, the following function calculate recursively the value of n! :

int factorial (int n)

{

    if (n <= 0)
        return (1);

    else

            return (n * factorial(n-1));
}

Variable Scope

Local variables can be defined inside a function, and are created on the stack: therefore they will be destroyed when the function terminates.

Using dynamic allocation, we can allocate variables on the heap.

Global variables are created on the data segment; they are created before the first instruction in the main is executed, and are destroyed only after the program terminates.

The word static before a global variable: makes it available only within the file it is defined in. The same applies when it appears before a function.

The word static before a variable declaration inside a function: the variable is created the first time the function is called, and is not destroyed when it terminates.

int func ()

{

    static int iCount = 0;
    iCount++;
    return (iCount);

}

Usually we try to avoid global and static variables, which make our code multithread unsafe: threads are sub-processes that can be executed simultaneously and share the same address space in memory. When global variables are involved, one thread may attempt to modify a variable just before another thread may change it (or read it) – and that may cause a mess.

Chapter 2: Some Basics of C++

Variable Declaration

In C++, one doesn’t have to declare all local variables at the beginning of the function: Anywhere will do.

Furthermore, it is possible to declare variables within any scope (between ‘{‘ and ‘}’). The variable will be available just within that scope. 

int     n = 10;

int     iSum;

for (int i = 1; i <= n; i++)

{

    int     iSquared = i*i;
    sum += iSquared;

}

sum /= iSquared;          ( - iSquared is not defined in this scope.
Boolean Variables

A new basic data type called bool is introduced in C++, used for storing Boolean variables. Along with it, the two reserved words true and false have been added to the language:

bool    bFlag = false;

bool    bIsGreater = m > n;

if (bIsGreater)
    bFlag = true;
Comments

Use // for commenting the right portion of the line. The /* */ C-commenting method also works, but it is better to save it for commenting out a block (for debugging purposes, etc.):

/* - The whole section is commented out!

    // Calculate the factorial:
    iResult = factorial (n);

*/

Input/Output

We usually use cout with the << operator for output, and cin with the >> operator for input:

int     n, fact;

cin >> n;

fact = factorial(n);

cout << n << "! = " << fact << endl;
Notes:

· Both operators can be applied sequentially, and are left associative.

· One can send any type of basic data type to cout or obtain it from cin.

· It is possible to differentiate between normal program output, which is sent to cout, and error output, which is sent to cerr (similar to stdout and stderr in C).

· The endl is a global manipulator, and means end of line. 

We shall study the input/output mechanism of C++ in more details later on in this course.

In the next chapters, we shall study the three pillars of C++ (and of the whole concept of object oriented programming):

1. Encapsulation,

2. Polymorphism,

3. Inheritance.

Chapter 3: Introducing Classes

Structures versus Classes

If we wanted to manipulate complex numbers in C, we would define something like:

struct _Complex

{

    float     re;          /* The real part. */

    float     im;          /* The imaginary part. */

};

typedef struct _Complex Complex;

The users have direct access to the structure fields.

We should also provide some auxiliary function that can deal with a complex structure:

#include <math.h>

// Calculate the magnitude and argument of the Complex number.

double magnitude (Complex z)

{

    return (sqrt (z.re*z.re + z.im*z.im));

}

double argument (Complex z)

{

    return (atan2 (z.im, z.re));

}

In C++, we define a class. A class has fields, called data members, that are kept private (and out of the external users’ reach), and it also has member functions:

class Complex

{

private:

    float     re;          // The real part.

    float     im;          // The imaginary part.

public:

    // Get the real and imaginary parts.

    float real () {return (re);}

    float imag () {return (im);}

    // Set the complex number x+i*y.

    void set (float x, float y)

    {

        re = x;

        im = y;

    }

};

The users can access objects of the complex class solely via the public member functions:

Complex    z;

z.set (3, 4);

cout << "z = " << z.real() << " + i*" << z.imag() << endl;

z.re = 5;        ( - re is a private data member.
Note that member functions do not occupy any storage place within an object, that means the size of a Complex object is twice the size of a float variable.

The Advantages of Encapsulation

Now, suppose that for some reason (efficiency mainly) we want to change the representation of complex numbers from Cartesian to polar. In the C version, this means a massive re-write of the entire program (or programs ) that uses our structure. In C++, all we have to do is to re-write the class!

class Complex

{

private:

    float     r;             // The magnitude.

    float     theta;         // The argument.

public:

    // Get the real and imaginary parts.

    float real () {return (r * cos(theta));}

    float imag () {return (r * sin(theta));}

    // Set the complex number x+i*y.

    void set (float x, float y)

    {

        r = sqrt (x*x + y*y);

        theta = atan2 (y, x);

    }

};

Another advantage we gain from encapsulation is a more protected code. Take the following piece of code as an example:

struct _Rational

{

    double    num;          /* The numerator. */

    double    denom;        /* The denominator. */

};

typedef struct _ Rational Rational;

    :    :

Rational  q;

q.num = 1;

q.denom = 0;     /* This may cause division by zero! */

In C++, we will have a function that checks its input, and also makes sure that the representation of the rational number is minimal and unique:

class Rational

{

private:

    int       num;           // The numerator.

    int       denom;         // The denominator.

public:

    // Set the rational number a / b.

    void set (int a, unsigned int b)

    {

        if (b == 0)

            abort();

        int    g = gcd(a,b);   // The greatest common divisor of (a,b).

        num  = a/g;

        denom = b/g;

    }

};

It is important to realize that structures and classes are basically the same in C++, and it is possible to add member functions to structures as well. The only difference between the two is that is a class everything is private by default (until we explicitly insert a public label) and in a struct everything is public by default (but parts of it can be made private, if needed). Notice that this way any C code can still be compiled by a C++ compiler.

Usually, we do not write the entire class within the header file: we will use the *.h file for the declarations (prototypes), and the *.cpp file for function definitions (implementations).

// File: Rational.h

#ifndef __Rational__

#define __Rational__

class Rational

{

private:

    int       num;           // The numerator.

    int       denom;         // The denominator.

public:

    // Set the rational number a / b.

    void set (int a, unsigned int b);

};

#endif

____________________________________________________________________

// File: Rational.cpp

#include "Rational.h"

void Rational::set (int a, unsigned int b)

{

    if (b == 0)

        abort();

    int    g = gcd(a,b);   // The greatest common divisor of (a,b).

    num  = a/g;

    denom = b/g;

}

Notes:

· If we separate definition from declaration, we should use the full function name (e.g. Complex::set, not just set).

· It is illegal to declare a class twice in the same code unit. The pre-processor flags (see the bold lines in the example above) come to avoid such situation.

Inline Functions

It seems a waste to call a function every time we need to access an object from a class, especially if the operation is very simple. 

For this purpose, inline functions have been invented. An inline function should be defined in the header file in the following manner.

inline void Complex::set (float x, float y)

{

    re = x;

    im = y;

}

Another option is not separating the function definition from its declaration (implicit inline).

The inline keyword is just a recommendation for the compiler (usually long functions, functions that contain loops or recursive functions cannot be inlined) – but if it does accept this recommendation, the function is treated as a macro.

Speaking of macros: since we can inline any function (not just member functions), we can give a good substitute for the old pre-processor macros. Instead of:

#define ABS(a)    ((a) > 0 ? (a) : (-a))

We can define a non-member inline function:

inline int abs (int a)

{

    return (a > 0 ? a : -a);

}

Function Overloading

We can define another member function with the same name:

void Complex::set (float x)

{

    re = x;

    im = 0;

}

This is because the full name of the function is actually: <scope>::<name> (<params>), so the first function is called Complex::set(float,float), and the second one is Complex::set(float). This way the complier can differentiate between the two.

Notice the returned value is not a part of the function name:

class Complex

{

    :

public:

    float real();

    int real();     ( - a function with the same name has already been defined.
}

It is also possible to override a global function:

void f (int n);

void f (float x, char c);

( One must however be very careful not to overload too much: This may lead to ambiguity during the compliations, or – even worse – result in unpredictable function calls:

void f (char *cP);

    : 

f ("abc");            // f(char*) will be called.

f(NULL);              // f(int) will be called!

Constructors 

Consider the following two cases:

	Case #1:

    int      a = 3;
	Case #2:

    int      a;

    a = 3;


· In the first case, the variable a is created with an initial value of 3.

· In the second case, a is created with no initial value, than it is assigned the value of 3.

We have already discussed the difference initialization and assignment with static variables (see Variable Scope in Chapter 1).

In C++, variables can be initialized using the following syntax as well:

int    a (3);

In order to initialize an object from a class (and not just an “atomic” variable) we can define constructors. A constructor is a member function whose name is identical to the class name, and does not return a value. For example:

Complex::Complex (float x, float y)

{

    re = x;

    im = y;

}

Now we can define variables and initialize them:

    Complex    z (3, 4);

It is also possible to overload several constructors:

Complex::Complex (float x)

{

    re = x;

    im = 0;

}

In case the constructor has a single parameter, it can be called by either:

    Complex    z (3);

or:

    Complex    z = 3;

Such constructors can be used for automatic casting. We all know we can write:

float    x;

x = 3; 

Even though 3 is an integer constant, it is automatically casted to a float (i.e. a temporary floating-point variable is created), and its value is assigned to x.

The same thing happens if we write:

Complex    z;

z = 5.3;   

A temporary Complex variable is created, using the constructor from float and its value is then assigned to z.

If desired, it is possible to prevent automatic casting by declaring the constructor explicit:

class Complex

{

    explicit Complex (float x);

}

The reserved word explicit should only appear before the declaration of a constructor that receives a single argument.

If the constructor is defined as explicit, it should be used in the following manner:

Complex    z;

z = Complex(5.3);   

It is possible to specify an initialization list within a constructor:

Complex::Complex (float x, float y) :

    re(x),

    im (y)

{}           // The constructor body is empty.

This way, the data members are initialized upon creation (in the previous version, the constructor just assigns them with values after they are created).

Usually using the initialization list is a good idea; in the future we shall see cases where we must use it.

( One must keep in mind that the instructions in the initialization list are carried out according to the order of data members in the class. The following example will not work properly:

class A

{

private:

    int     iValSqaured;

    int     iVal;

public:

    A (int n) :

        iVal(n),

        iValSqaured(iVal*iVal) // This takes place before iVal has a value!

    {}

};

To mend this, either change the data members order – or better, avoid dependencies in the initialization list:

A::A (int n) :

    iVal(n),

    iValSqaured(n*n)

{}

This way we don’t have to worry that someone might change the member order in the future.

A constructor with no arguments is called a default constructor:

Complex::Complex () :

    re(0),

    im (0)

{}

This constructor is called when we define:

Complex    z;

Notice this syntax was legal before we were even thinking of defining a default constructor. The reason is that whenever we define a class, the compiler automatically defines a default constructor for it:  the automatic default constructor just goes over the data members and initializes each one with a default value (calling a default constructor in case of a compound object, or doing nothing in case of an atomic data type).

However, once we defined any other constructor, the automatic default constructor disappears and we have to define it explicitly if we need it.

Member Operators

It is very natural to manipulate integers and real numbers is C using the various operators. We want to have a similar functionality with our complex class; that is, we want to be able to write:

Complex    z1 (3, 4), z2 (5.2, -1.9), z3;

z3 = z1 + z2;

C++ lets us override operators. For example, to be able to compile the code above, we just have to define:

Complex Complex::operator+ (Complex z)

{

    return (Complex (re + z.re, im + z.im));

}

Notice that binary operators are treated as members of the left operand, with the right operand passed as the function argument:

bool Complex::operator== (Complex z)

{

    return (re == z.re && im == z.im);

}

void Complex::operator+= (Complex z)

{

    re += z.re;

    im += z.im;

}

An unary operator is a member function with no parameters:

Complex Complex::operator- ()

{

    return (Complex (-re, -im));

}

We can summarize the function calls to member operators by the following two rules:

· For binary operators: ( ( (  (  (.operator( (()  

· For unary operators: ((   (  (.operator( ()  

The ++ and -- operators have both a prefix notation (which agrees with the rule above) and a postfix notation. In order to define the prefix notation for these operators, we will have to add a fictitious argument:

void Rational::operator++ ()              // Prefix notation.

{

    num += denom;

}

void Rational::operator++ (int iDummy)    // Postfix notation.

{

    num += denom;

}

Notes:

· It is impossible to define operator that do not exist in C (operator# for instance) . 

· It is impossible to change operator precedence or associativity.

The Pointer  this
The compiler actually translates internally the application of a member function on an object to a function call with its first argument is a pointer to the object:

A    a;

a.f (x);          // Complier: ( A::f (&a, x);

We therefore have a pointer called this, available in each member function, that points to this relevant object. Sometimes it is convenient to use the  this pointer:

void Complex::operator*= (Complex z)

{

    *this = *this * z;    // Assuming we have implemented operator*

}

Default Argument Values

It is possible to give default value to function arguments. For example, if we declare:

class Complex

{

    void set (float x, float y = 0);

};

This function can be called in the following manners:

z.set (4.3, 3.2);

z.set (11.2);        // same as z.set (11.2, 0);

Notes:

· Default values should be supplied in the declaration and not in the definitions.

· It is possible to define default values to several parameters, providing these are the last parameters of the function.

· It is possible to define default parameter values to global functions as well.

Chapter 4: Dynamic Memory Allocation

Introducing new and delete
In C we need the standard library function malloc and free for dynamic memory management. In C++, we have special operators (reserved words) called new and delete, defined for this purpose.

To allocate a single variable on the heap, we simply write:

int     *iVarP = new int;

We know that each time a variable is created, a constructor is called. We can therefore send arguments to the constructor when using new:

int     *iVarP = new int (3);

Complex *zP = new Complex (3.4, -1.5);

Using new with no parenthesis will result in calling the default constructor:

Complex *zP = new Complex;

To free an object allocated by new, we use delete:

delete zP;

In order to allocate an array we use new[] and delete[]:

int     n = 10;

int     *iVecP = new int [n];

iVecP[n/2] = 3;

delete[] iVecP;

It is important to understand that new[] allocates memory for n objects, then initializes each object using the default constructor (or leaves it un-initialized in case of atomic data types).

( It is very important to free pointers allocated with new[] using delete[] (using delete will result in a memory leak - only one object will be freed), and pointers allocated with new using delete (using delete[] may cause a crash, because it looks for a header which is just not there…)

Destructors

Let us implement a stack of integers:

class StackInt

{

private:

    int     *iVecP;     // The vector of stack entries.

    int     iSize;      // Its size.

    int     iTop;       // The index of the first free entry.

public:

    StackInt (int n) :

        iVecP (new int [n]),

        iSize (n),

        iTop (0)

    {}

    bool isEmpty () {return (iTop == 0); }

    bool isFull ()  {return (iTop == iSize); }

    void push (int iValue)

    {

        if (isFull())

            abort();

        iVecP[iTop] = iValue;

        iTop++;

    }

    int pop ()

    {

        if (isEmpty())

            abort();

        iTop--;

        return (iVecP[iTop]);

    }

};

Here is a function that uses our class:

void printReversed (char *cStringP)

{

    // Print the string in reversed character order.

    int      iLen = strlen (cStringP);

    StackInt stack (iLen);

    for (int i = 0; i < iLen; i++)

        stack.push (cStringP[i]);

    while (! stack.isEmpty())

        cout << (char)(stack.pop());

    cout << endl;

}

Notice that each time reviser is called, a StackInt object is created and allocates memory on the heap upon its construction – memory that is never freed: once the function ends, its local variables are destroyed, and we are left with a memory leak .

The solution is to handle the StackInt object uniquely, before it is being destroyed and making sure it frees the memory allocated by it

For every class, we can define a destructor: a function whose name is the class name preceded by a ‘~’ character, and does not return a value.

The destructor is called each time an object of its class is destroyed. We therefore use it to perform all the necessary clean-ups:

StackInt::~StackInt ()

{

    delete[] iVecP;

    iVecP = NULL;

}

If not explicitly defined, the compiler automatically creates a destructor that goes over all data members in a reverse order (reverse to the order of construction) and calls the destructor for each member. Because of this behaviour, there is no need to override the default destructor for the following class:

class A

{

private:

    int      iValue;

    StackInt stack;

public:

    : 

};

The automatic destructor calls StackInt’s destructor that performs all the necessary clean-ups.

It is important to understand that while new and new[] call a constructor, the delete and delete[] operators call the destructor:

StackInt   *stackP = new StackInt (50);

stackP->push (4);

delete stackP;

Assignment Operators

Consider the following scenario:

void func ()

{

    StackInt   *stackP = new StackInt (10);

    StackInt   stack2 (100);

      :       :

    stack2 = *stackP;

      :       :

    delete stackP;

    stack2.push(2);

}

How could we use assignment? Well, there is an automatic assignment operator, supplied by the compiler that perform the assignment member by member.

Something like:

void StackInt::operator= (StackInt stack)

{

    iVecP = stack.iVecP;

    iSize = stack.iSize;

    iTop = stack.iTop;

}

So, the scenario above creates 3 problems:

1. We have lost the memory allocated by stack2 (memory leak).

2. We freed the memory pointed by *stackP, even though stack2 still points on it.

3. We try to free memory that has already been freed, when stack2 goes out of scope.

All these problems are due to the aliasing (i.e. there are two objects pointing to the same memory block).

The solution is overriding the assignment operator, so it really copies the entire stack:

void StackInt::operator= (StackInt stack)

{

    // Clean up existing memory.

    delete[] iVecP;

    // Copy the stack.

    iSize = stack.iSize;

    iTop = stack.iTop;

    iVecP = new int [iSize];

    for (int i = 0; i < iTop; i++)

        iVecP[i] = stack.iVecP[i];

}

Now we solved the aliasing problem.     
Copy Constructors

Our troubles are not over yet. Suppose that someone writes something like:

StackInt   stack1 (10);

StackInt   stack2 (stack1);

The consequences will be the same as with automatic assignment operator. This is because the compiler supplies an automatic copy constructor – i.e. a constructor that receives a single argument of the same class. By default, this constructor just initializes member by member, and in our case this will lead to liaising….

Sadly enough, when an object is passed to a function by value, it is being duplicated on the stack – and this is done using the copy constructor – so even our modified operator= is still buggy as it receives the copies stack object by value.

We shall have to override the copy constructor. Notice we pass its argument by reference (we shall discuss this issue further in the next chapter):

StackInt::StackInt (StackInt& stack) :

    iSize (stack.iSize),

    iTop (stack.iTop)

{

    iVecP = new int [iSize];

    for (int i = 0; i < iTop; i++)

        iVecP[i] = stack.iVecP[i];

}

( To summarize, we saw that the following member functions are created automatically by the compiler every time we define a new class: 

1. Default constructor.

2. Copy constructor.

3. Assignment operator.

4. Destructor

In case the class uses dynamic memory allocation, we must override the copy constructor, the assignment operator, and the destructor.

Chapter 5: References

Reference Variables

It is possible to pass argument to a function by reference - that is, passing the address of an object rather than copying the entire object. We have already seen that this is crucial when overriding the copy constructor, but passing by reference is also useful when we wish to avoid copying large objects:

void processHuge (Huge& hugeObject);

Or, when there is a need to change the function arguments (see also Arrays and Pointers in Chapter 1):

void swap (int& a, int& b)

{

    int    temp = a;

    a = b;

    b = temp;

}

What we are actually doing is defining local reference variables as the function arguments. It is therefore not surprising that we can also define reference variables explicitly:

int    a = 4;

int&   aR = a;

aR = 5;

cout << a;           // Prints out 5 !

A reference variable must be initialized (or else, we get a compilation error), so if one chooses to define a reference data member in a class, one must use the initialization list in order to initialize it:

class A

{

private:

    int&     iR;

public:

    A (int& a) :

        iR(a)

    {}

};

Reference variables are really no more than pointers, although syntactically they are treated as “normal” variables (i.e. there is no need to de-reference them using the unary * operator). That is, the code we saw before is equivalent to writing:

int    a = 4;

int*   aP = &a;

*aP = 5;

cout << a;           // Prints out 5 !

However, a reference variable always refers to a valid object (i.e. there is no such thing as a NULL reference), it must be initialized, and it cannot be directed to refer to some other object – unlike the flexibility we have with pointers.

Return by Reference

We know it is better to pass arguments by reference, for example: 

Complex Complex::operator+ (Complex& z)

{

    Complex  result (re + z.re, im + z.im);

    return (result);

}

Now, if we have something like:

Complex   z1, z2, z3;

z3 = z1 + z2;

The following functions will be called:

1. Calling: z1.operator+ (z2)
2. Creating the local variable result (inside the operator+).

3. Copy constructor of a temporary variable (returning result by value).

4. Destructor for the local variable result.

5. Assigning the temporary variable to z3.

6. Destruction of the temporary variable.

One might try to avoid the copying of the local variable result and the creation of a temporary variable simply by returning it by reference:

Complex& Complex::operator+ (Complex& z)

{

    Complex  result (re + z.re, im + z.im);

    return (result);

}

But it is wrong to return a reference to a local variable, which ceases to exist once the function ends (but the reference lives on ...)

If we use the following approach, we will return a reference to a valid object.

Complex& Complex::operator+ (Complex& z)

{

    Complex  *resultP = new Complex (re + z.re, im + z.im);

    return (*resultP);

}

However, in order to avoid memory leaks the users would have to write something like:

Complex   z1, z2, z3;

Complex   *zP;

zP = &(z1 + z2);

z3 = *zP;

delete zP;

Which is a totally impossible interface.

( To conclude, there are cases where we must return by value (thus creating a temporary object on the stack, using the copy constructor), especially when we need to return a newly calculated result.

There are cases where returning by reference is legal and also necessary. Look at the Array class, that wraps all the memory management of a C-array of integers:

class Array

{

private:

    int     iSize;

    int     *iVecP;

public:

    Array (int n) :

        iSize(n),

        iVecP (new int [n])

    {}

    Array (Array& array);      // Copy constructor.

    ~Array ()

    {

        delete[] iVecP;

        iVecP = NULL;

    }

    operator= (Array& array);  // Assignment operator.

    int size () {return (iSize); }

    int operator[] (int i)

    {

        if (i < 0 || i >= iSize)

            abort();

        return (iVecP[i]);

    }

};

We can use the operator[] to read from the array, but not to write to it - this is because we cannot change a temporary variable:

Array    array (10);

cout << array[0];

array[1] = 2;            ( - cannot assign a value to a temporary variable
The solution here is to return by reference:

int& Array::operator[] (int i)

{

    if (i < 0 || i >= iSize)

        abort();

    return (iVecP[i]);

}

In this case, there is no problem to return by reference, since we refer to an object that continues to exist even after the function ends.

( Remember not to return references to data members. For example, the following function does not contain a bug: 

int& Rational::denominator ()

{

    return (denom);

}

But it can lead to a bug, due to loss of encapsulation: 

Rational        half (1, 2);

half.denominator() = 0;      // Now we have the meaningless rational 1/0 !

Assignment Operators and Copy Constructors Revisited

With atomic data types, it is possible to write a chain of assignments:

int     a, b, c, d;

a = b = c = d = 1;

Notice the assignment operator is right-associative.  

We would like to be able to do this with our array:

Array   arr1, arr2, arr3(10);

arr1 = arr2 = arr3;

To do this, we should have our assignment operator returning a reference to *this:

Array& Array::operator= (Array& array)

{

    if (iVecP != NULL)

        delete[] iVecP;

    iSize = array.iSize;

    iVecP = new int [iSize];

    for (int i = 0; i < iSize; i++)

        iVecP[i] = array.iVecP[i];

    return (*this);

}

( It is also wise to guard against possible self-assignments:

Array   arr1 (10);

arr1 = arr1;

This is done simply by adding a check to the assignment operator:

Array& Array::operator= (Array& array)

{

    if (this == &array)

        return (*this);

    if (iVecP != NULL)

        delete[] iVecP;

    iSize = array.iSize;

    iVecP = new int [iSize];

    for (int i = 0; i < iSize; i++)

        iVecP[i] = array.iVecP[i];

    return (*this);

}

( It is possible to block the copying of objects from a certain class: we declare the copy constructor and assignment operator private, and do not implement them: 

class Huge

{

private:

    :             // Data members.

    Huge (Huge& huge);            // Not implemented.

    void operator= (Huge& huge);  // Not implemented.

public:

    :             // Member functions.

}

Now, anyone who tries to pass a Huge objects by value, or to assign one Huge object to another, will receive a compilation error (or a link error, if this attempt is made by one of the class members) – such object must be passed by reference.

Chapter 6: Constants and Constness

Constant References

Consider the + operator for the Complex class:

Complex Complex::operator+ (Complex& z)

{

    Complex  result (re + z.re, im + z.im);

    return (result);

}

Now let us suppose that it is written (by mistake) as follows:

Complex Complex::operator+ (Complex& z)

{

    Complex  result (re + z.re, im + z.im);

    z.re = 0;

    return (result);

}

The result of z1+z2 is still mathematically correct - however, z2 has been modified, in contrast of what any reasonable user would have expected.

The problem is of course, that because we wanted to avoid copying the right operand of the + operator we passed it by reference – thus exposing it to potential modifications. Using the const keyword (abbreviation for constant) will let us benefit from the reference without the danger of changing the object it refers to:

Complex Complex::operator+ (const Complex& z)

{

    Complex  result (re + z.re, im + z.im);

    return (result);

}

The argument is now protected and any attempt to modify it will result in a compilation error:

Complex Complex::operator+ (const Complex& z)

{

    Complex  result (re + z.re, im + z.im);

    z.re = 0;                              ( - cannot modify a constant object
    return (result);

}

Constant Member Functions

When one writes z1+z2, one usually assumes the operator does not modify z1, and not just z2. This can be expressed in the following way:

Complex Complex::operator+ (const Complex& z) const
{

    Complex  result (re + z.re, im + z.im);

    return (result);

}

It is important to understand that the const keywords are an integral part of the function prototype, so they must be added in the function declaration as well as in its definition:

class Complex

{

      :

    Complex operator+ (const Complex& z) const;

      :

};

A member function that does not modify its object (i.e. *this) is called a const member function (and otherwise it is a non-const member function):

float Complex::argument () const        // Const member function

{

    return (atan2 (im, re));

}

void Complex::set (float x, float y)    // Non-const member function

{

    re = x;

    im = y;

}

Any attempt of modifying the data member within a const member function will result in a compilation error:

float Complex::argument () const

{

    re = 1;                      ( - cannot modify a constant object
    return (atan2 (im, re));

}

The Advantages of Using const
We can (and should) use const reference when dealing with non-member (global) functions as well:

Complex exp (const Complex& z)

{

    float    rho = z.magnitude();

    float    theta = z.argument();

    Complex  result (exp(rho) * cos(theta), exp(rho) * sin(theta));

    return (result);

}

We do not have access to z’s private data members, so we cannot modify them directly – and since z is passed by const reference, we can call only its const member functions – non-const member functions are assumed to modify it, and applying them will result in a compilation error.

Until now, we managed to write classes and functions without using const, but once we start using it we must be consistent and keep using const wherever possible: 

1. It helps us avoid bugs (how many time have you written x=0 instead of x==0 ?).

2. It forms some sort of a contract with our users – when a function argument is passed by const reference, we guarantee it is the function input and won’t be modified; when calling a const member function the users can be sure it does change their object.

3. It makes it possible to use automatic casting. For example, if we write:
z2 = z1 + 5.3;
The computer sees it needs a Complex to pass to the operator, but instead we have a float. However, it is possible to cast a float to a Complex using the appropriate constructor to create a temporary Complex object.

Hadn’t we passed by const reference, we would have received a compilation error, since it is illegal to pass a temporary object by “ordinary” reference (since passing by reference means it may be modified, and it is impossible to modify a temporary object).

It is a good habit to always pass arguments by reference:

· Input parameters are passed by const reference.

· Output parameters are passed by “ordinary” reference.

Constant Variables

We know it is possible to define reference variables – so it is not surprising that const reference variables are also legal:

int        a = 4;

const int& aR = a;

a = 5;                      ( - cannot modify a constant object
Such variables are used mostly when returning an object by const reference (we shall see some examples later on).

A more useful option is to define constant variables:

const float   x = 5.3;

A constant variable can only be initialized, and cannot be modified later (by assignment, or by applying non-const member functions):

int            a = 4;

const int      b = 3;

const Complex  z (3, 4.5);

a = 5;

b = 5;                      ( - cannot modify a constant object
z.set (4, 3.5);             ( - cannot modify a constant object            

It is possible to define global and static variables, but only if they are constants – this way we guarantee that if we have a multi-threaded program, the threads can just read the variable, but certainly not change it:

static const float   _pi = 3.14159265;

static const Complex _i (0, 1); 

Using constants is better than defining them using the pre-processor with #define – this way we have a proper variable.

It is possible to define a constant member within a class – but in such cases we must initialize it using the initialization list:

class A

{

private:

    const int    iMaxSize;

       :            :

public:

    A () :

        iMaxSize(10),

          :

    {}

};

Notice that in such classes, an automatic assignment operator will not be created, since it is impossible to assign values to constant variables (it is possible of course to supply one explicitly in such cases).

Constness of Pointers

If there are reference variables whose contents are protected, it is natural to expect the same functionality from pointers. However, pointers are more complicated, since not just their content may be modified (i.e. the object they point to), but also their addresses can be changed (i.e. a pointer may be changed so it point to some other object).

A pointer whose contents are protected is called a const pointer:

int              a = 5, b = 4;

const int*       aP = &a;

Complex          z1 (2, 3), z2 (3, 4);

const Complex*   zP = &z1;

cout << *aP << endl;

*aP = 8;                           ( - cannot modify the content of the pointer
cout << zP->magnitude() << endl;

zP->set (3.5, 6.7);                ( - cannot modify the content of the pointer
aP = &b;

zP = &z2;

A pointer whose address is protected is called a pointer const (and must be initialized)

int              a = 5, b = 4;

int* const       aP = &a;

Complex          z1 (2, 3), z2 (3, 4);

Complex* const   zP = &z1;

cout << *aP << endl;

*aP = 8;

cout << zP->magnitude() << endl;

zP->set (3.5, 6.7);

aP = &b;                           ( - cannot modify the pointer
zP = &z2;                          ( - cannot modify the pointer
Of course, one may combine the two:

int                   a = 5, b = 4;

const int* const      aP = &a;

Complex               z1 (2, 3), z2 (3, 4);

const Complex* const  zP = &z1;

cout << *aP << endl;

*aP = 8;                           ( - cannot modify the content of the pointer
cout << zP->magnitude() << endl;

zP->set (3.5, 6.7);                ( - cannot modify the content of the pointer
aP = &b;                           ( - cannot modify the pointer
zP = &z2;                          ( - cannot modify the pointer
Notice that a pointer const is very similar to a reference: it must be initialized and it keeps pointing to the same object as long as it continues to exist. We therefore have the equivalence:

· A&  (  A* const
· const A&  (  const A* const
Const pointers are also legal in C, not just in C++. For example, look at the prototype of the standard library functions:

int strlen (const char* str);

int strcpy (char* dst, const char* src);

Casting Away Constness

It is possible to “cast away constness”, i.e. removing the const protection from a const reference or a const pointer.

Complex exp (const Complex& z)

{

    float    rho = z.magnitude();

    float    theta = z.argument();

    Complex  result (exp(rho) * cos(theta), exp(rho) * sin(theta));

    Complex& zR = (Complex&)z;

    zR.set (0, 0);                      // This will change z itself !!!

    return (result);

}

It is even possible to modify a data member inside a const member function, keeping in mind that in non-const member function this is a pointer const, and in const member functions this is a const pointer const. Hence we can write something like:

float Complex::argument () const        // Const member function

{

    Complex* const myThis = (Complex* const)this;

    float          theta = atan2 (im, re);

    myThis->re = 0;                      // *this will be modified !!!

    return (theta);

}

The main idea is that the const keyword can only protect us from unintentional errors. When one explicitly damages the code, one gets what one deserves.

It is possible, however, to define a data member that can be modifies even in const member function, using the reserved word mutable:

class Random

{

private:

    const int      A;

    const int      B;

    const int      M;

    mutable int    x;

public:

    Random () : A(69069), B(1), M (1 << 24), x(1)

    {}

    int getNumber () const
    {

        x = (A*x + B) % M;

        return (x);

    }

};

In such cases, there is no need to cast away the constness of this.

Constant Member Functions Revisited

Let us recall how we defined the operator[] of class Array:

int& Array::operator[] (int i)

{

    if (i < 0 || i >= iSize)

        abort();

    return (iVecP[i]);

}

Now consider the following function, which calculates the mean of all the Array’s elements:

int arraySum (const Array& arr)

{

    int    iSum = 0;

    for (k = 0; k < arr.size(); k++)

        iSum += arr[k];

    return (iSum);

}

We will get a compilation error, since operator[] is a non-const member function (it gives the user access to the array, and the ability to change it).

We can duplicate this operator in the following manner:

const int& Array::operator[] (int i) const
{

    if (i < 0 || i >= iSize)

        abort();

    return (iVecP[i]);

}

The full name of a function is:

<scope>::<name>(<Arguments>) [const]

So, we can have two member functions with the same name and the same argument list, when one is const and the other non-const: In our case, we have a const operator[] (for reading) and a non-const operator[] (for writing).

( It is recommended in cases like this that the body of the two functions will be the same and that they will only differ in their returned value: the compiler will apply the const member function only on const objects (or const references or pointers).

( If we choose to return a reference from the assignment operator (see Assignment Operators and Copy Constructors Revisited in the previous chapter), it is better to return a const reference:

const Array& Array::operator= (Array& array)

{

    if (this == &array)

        return (*this);

    if (iVecP != NULL)

        delete[] iVecP;

    iSize = array.iSize;

    iVecP = new int [iSize];

    for (int i = 0; i < iSize; i++)

        iVecP[i] = array.iVecP[i];

    return (*this);

}

Chapter 7: Templates

Class Templates

Let’s recall our implementation of a stack of integers.

class StackInt

{

private:

    int     *iVecP;     // The vector of stack entries.

    int     iSize;      // Its size.

    int     iTop;       // The index of the first free entry.

    // Copy constructor and assignment operator – not supported.

    StackInt (const StackInt& stack);

    void operator= (const StackInt& stack);

public:

    StackInt (int n) :

        iVecP (new int [n]),

        iSize (n),

        iTop (0)

    {}

    ~StackInt ()

    {

        delete[] iVecP;

    }

    bool isEmpty () const {return (iTop == 0); }

    bool isFull () const  {return (iTop == iSize); }

    void push (int iValue)

    {

        if (isFull())

            abort();

        iVecP[iTop] = iValue;

        iTop++;

    }

    int pop ()

    {

        if (isEmpty())

            abort();

        iTop--;

        return (iVecP[iTop]);

    }

};

Now, if we wish to create a class of floats; we need to create the following class:

class StackFloat
{

private:

    float   *fVecP;     // The vector of stack entries.

    int     iSize;      // Its size.

    int     iTop;       // The index of the first free entry.

    // Copy constructor and assignment operator – not supported.

    StackFloat (const StackFloat & stack);

    void operator= (const StackFloat & stack);

public:

    StackFloat (int n) :

        fVecP (new float [n]),

        iSize (n),

        iTop (0)

    {}

    ~StackFloat ()

    {

        delete[] iVecP;

    }

    bool isEmpty () const {return (iTop == 0); }

    bool isFull () const  {return (iTop == iSize); }

    void push (float fValue)

    {

        if (isFull())

            abort();

        fVecP[iTop] = fValue;

        iTop++;

    }

    float pop ()

    {

        if (isEmpty())

            abort();

        iTop--;

        return (fVecP[iTop]);

    }

};

For every other data type, there is a need to duplicate the code and apply some minor modifications to it (the parts that are marked with bold characters).

Templates let us create a general code structure in which we can plug any variable type we like. We shall write a stack template that looks like:

template <class TYPE> class Stack

{

private:

    TYPE    *vecP;      // The vector of stack entries.

    int     iSize;      // Its size.

    int     iTop;       // The index of the first free entry.

    // Copy constructor and assignment operator – not supported.

    Stack (const Stack<TYPE>& stack);

    void operator= (const Stack<TYPE>& stack);

public:

    Stack (int n) :

        vecP (new TYPE [n]),

        iSize (n),

        iTop (0)

    {}

    ~Stack ()

    {

        delete[] vecP;

    }

    bool isEmpty () const {return (iTop == 0); }

    bool isFull () const  {return (iTop == iSize); }

    void push (const TYPE& value)

    {

        if (isFull())

            abort();

        vecP[iTop] = value;

        iTop++;

    }

    TYPE pop ()

    {

        if (isEmpty())

            abort();

        iTop--;

        return (vecP[iTop]);

    }

};

Now we can instantiate the template to receive concrete data types:

Stack<Rational>    ratStack(10);

ratStack.push (Rational (1,2));

cout << (ratStack.isFull() ? "full stack" : "not full") << endl;

It is important to understand that a template is not a class, but just an empty infrastructure for other classes: There is no such thing as a Stack; we can however instantiate data types like Stack<int>, Stack<Complex>, etc.

A template is no more than a sophisticated macro – once we instantiate it, the compiler defines the appropriate class by duplicating the template code and properly replacing the template variable. The main advantage is that we do not have to duplicate code by ourselves: this is not only very annoying but also very difficult to maintain (if we find a bug in one class, we need to fix it in all classes…)

For this reason, the template code must mot be compiled independently  - it should just form a long header file (even though we usually break it to a header file and a dummy .cpp file):

// File: Stack.h

#ifndef __Stack__

#define __Stack__

template <class TYPE> class Stack

{

    :

};

#include "Stack.cpp"

#endif

____________________________________________________________________

// File: Stack.cpp

template <class TYPE>

bool Stack<TYPE>::isEmpty () const

{

    return (iTop == 0);

}

Notice that if we separate the function definition from its declaration, we must add the template header before its definition (and must do so for every member function).

The Requirements from the Contained Data Type

When writing a template, we must clarify what are our requirements from the contained data type (i.e. the instantiation of the template variable) if a data type does not fulfill these requirements, then trying to use it for instantiating the template will result in a compilation error.

To understand this better, let us see what are the requirements of the Stack template:

1. Default constructor (since we use new[] in the Stack constructor).

2. Assignment operator (in the push operation).

3. Copy constructor (since pop returns an object by value).

4. Destructor (by the Stack destructor).

These requirements, however modest, prevent us from defining Stack<Stack<int> > (since the Stack<int> data type has no default constructor) or Stack<Huge> (since Huge has no copy constructor or assignment operator).

If we add the following function to the template:

template <class TYPE>

TYPE Stack<TYPE>::sum () const

{

    TYPE    s = 0;

    for (int k = 0; k < iTop; k++)

        s += vecP[k];

    return (s);

}

Then we should add operator+= and a constructor from an integer to our list or requirements - thus limiting the range of classes that can be contained in our template. That is why it is highly recommended not to write templates overcrowded with unnecessary functions.

Other Kinds of Templates

It is possible to define templates with several variables:

template <class VERTEX, class EDGE> class Graph

{

private:

    int    iVertices;         // Number of vertices (n).

    VERTEX *verticesP;        // The vector of vertices.

    EDGE   **adjacencyMatP;   // The n*n adjacency matrix

                              // (a NULL entry means no edge).

public:

    Graph (const int& n) :

        iVertices (n),

        verticesP (new VERTEX [n]),

        adjacencyMatP (new EDGE* [n*n])

    {

        for (int k = 0; k < n*n; k++)

            adjacencyMatP[k] = NULL;

    }

        :

};

Such a template can be instantiated simply by:

Graph<String, float>  g(20);

Another usage of templates is for hiding constants:

template <int SIZE> class Array

{

private:

    int      iVec [SIZE];

public:

      :

};

Of course, it is possible to mix:

template <class TYPE, int SIZE> class Array

{

private:

    TYPE      iVec [SIZE];

public:

    TYPE& operator[] (const int& i);

    const TYPE& operator[] (const int& i) const;

      :

};

Now one can define: 

Array<float, 100> fArr;

fArr[50] = 13.5;

cout << fArr[3] << endl;

But since we’re using static memory allocation, the following code will not pass: 

int               n;

cin >> n;

Array<float, n>   fArr;       ( - n is not known on compilation time.
Furthermore, Array<int,100> and Array<int,10> are considered to be different classes, and  their code will be generated twice!

One may think however of a more natural usage of such templates:

template <class TYPE, int DIM> class Point

{

private:

    TYPE    coords [DIM];

public:

    // Access the coordinates.

    TYPE& operator[] (const int& i);

    const TYPE& operator[] (const int& i) const;

    // Arithmetic operations.

    Point<TYPE, DIM> operator+ (const Point<TYPE, DIM>& p) const

    {

        Point<TYPE, DIM>  result;

        for (int k = 0; k < DIM; k ++)

            result.cords[k] = coords[k] + p.cords[k];

        return (result);

    }

    Point<TYPE, DIM> operator- (const Point<TYPE, DIM>& p) const;

      :

};

Now, since Point<float,2> and Point<float,3> are different classes:

Point<float, 2>    p1, p2, p3;

Point<float, 3>    q1, q2, q3;

p3 = p1 + p2;

q3 = q1 + q2;

p3 = p1 + q2;                  ( - no such operator is defined
Function Templates

It is also possible to define function templates:

template <class TYPE>

const TYPE& max (const TYPE& a, const TYPE& b)

{

    return ((a > b) ? a : b);

}

Once again, this function should not be placed in a header file and not in a .cpp file (For functions as max, that can be easily in-lined, we would have done it anyway, so our function can be freely used instead of a macro).

To use a function template, one has to instantiate it in a similar manner to what is done with class templates:

float    x, y;

cin >> x >> y;

cout << max<float> (x, y) << endl; 

Notice that we assume that the contained class supports the > operator, so it is impossible to instantiate max<Complex>. 

Default Values of Template Variables

Consider the RedBlackTree template, which implements a red-black tree data strucutre:

template <class TYPE> class RedBlackTree

{

     :

public:

    RedBlackTree ();

    ~RedBlackTree ();

    // Insert an object to the tree:

    void insert (const TYPE& object);

    // Remove an object from the tree:

    void remove (const TYPE& object);

    // Check whether an object is contained in the tree:

    bool contains (const TYPE& object) const;

    // Clear the tree:

    void reset ();

};

A natural requirement from the contained data type, derived from the definition of the red-back tree data structure, is to support order operators and equality operators (that is, operator>, operator<, operator==, operator!=). But what if this is not the case (e.g. class Complex, that has no order operators), or what if we wish to use this template for the same data type but with different order (e.g. comparing to strings alphabetically, or comparing them by their lengths).

An elegant solution is to write a template with two variables:

template <class TYPE, class COMP> class RedBlackTree

{

private:

    COMP      comp;       // Used for comparing two objects of class TYPE.

       :                  // Other data members...

public:

    RedBlackTree ();

    ~RedBlackTree ();

    // Insert an object to the tree:

    void insert (const TYPE& object);

    // Remove an object from the tree:

    void remove (const TYPE& object);

    // Check whether an object is contained in the tree:

    bool contains (const TYPE& object) const;

    // Clear the tree:

    void reset ();

};

We have two requirements from a class in order to instantiate COMP by it:

· It must have a default constructor.

· It must have the following operator():

int COMP::operator() (const TYPE& obj1, const TYPE& obj2) const;

This operator returns a negative number if obj1 > obj2, 0 if they are equal, and a positive number if obj1 < obj2.

For example, if we wish to order a vector of strings by their length, we will write the following comparing class:

class CompStringByLength

{

public:

    int operator() (const String& s1, const String& s2) const

    {

        return (s2.length() – s1.length());

    }

};

The users can define:

RedBlackTree<String, CompStringByLength>     tree;

But what if the contained class supports order operators (as class String does)? Why do we need to impose writing a comparing class in such cases?

A good solution is to define:

template <class TYPE> class Compare

{

public:

    int operator() (const TYPE& obj1, const TYPE& obj2) const

    {

        if (obj1 > obj2)

            return (-1);

        if (obj1 == obj2)

            return (0);

        else

            return (1);

    }

};

We shall also define a default value for the second template parameter:

template <class TYPE, class COMP = Compare<TYPE> > class RedBlackTree

{

    :

};

Now, if needed the users can override the default parameter. Alternatively, they can simply use the template function with its default instantiation:

RedBlackTree<String>     tree;

In this tree, the contained strings will be sorted alphabetically (since that’s the way the String::operator> and operator== work).

( According to the C++ standards, it is possible to define default values to variables of class templates only, and not to variable of function templates.

Chapter 8: Friends and Nested Classes

Friend Classes

Let us implement a generic data structure of a doubly linked list: A doubly-linked list is basically comprised from a chain of list elements, each element holds pointers to its predecessor and successor in the chain (or NULL if there is no predecessor or successor).

We will have to define a data type that represents a list element, and data type that represents a list and points to the first and last elements. Since we want to keep our data structure generic, we shall use templates:

template <class TYPE> class ListElement

{

public:

    ListElement<TYPE> *prevP;        // The previous element in the list.

    TYPE              object;        // The object stored in the element.

    ListElement<TYPE> *nextP;        // The next element in the list.

};

template <class TYPE> class List

{

private:

    ListElement<TYPE> *headP;        // The first element in the list.

    ListElement<TYPE> *tailP;        // The last element in the list.

    int               iCount;        // Total number of list elements.

public:

      :               // Class member functions...

};

Notice that ListElement is the basic building block of List – but in fact, it is an internal structure: the list users should not know anything about elements.

In the suggested implementation, the user can freely create and use List Element objects, but we already know how to block these options.

template <class TYPE> class ListElement

{

private:

    ListElement<TYPE> *prevP;        // The previous element in the list.

    TYPE              object;        // The object stored in the element.

    ListElement<TYPE> *nextP;        // The next element in the list.

    ListElement (const TYPE& _object) :

        prevP(NULL),

        object(_object),

        nextP(NULL)

    {}

    ~ListElement ()

    {}

    // Copy constructor and assignment operator – not supported.

    ListElement (const ListElement<TYPE>& elem);

    void operator= (const ListElement<TYPE>& elem);

};

Now external users cannot create ListElement objects (since the constructors and the destructor are declared private) – but neither can the List class!

We can give the List access to the ListElement private data members and member functions if we add the following declaration:

template <class TYPE> class List;   // A declaration of the class template.

template <class TYPE> class ListElement

{

    friend class List<TYPE>;

private:

      :

};

template <class TYPE> class List

{

      :

};

When class A declares that class B as its friend, all B’s member functions can freely access the private data members and member functions of class A. This generally spoils the encapsulation, so it is recommended to use friendship only when one class is a generic part of the implementation of another class.

Notes:

· Only class A can declare its friends (and not vice-versa, meaning class B cannot declare itself as A’s friend). 

· Friendship is not necessarily symmetric.

· Friendship is not necessarily transitive.

· Friends can be declared anywhere in the class, but it is best to place those declarations at the beginning of the class.

Friend Functions

A class can also declare a function as its friend. For example, if we wish to enable users to write something like:

Complex     z, w (-4, 5.6);

z = 3.5 + w;

We can overload the global + operator:

Complex operator+ (const float& x, const Complex& z)

{

    return (Complex (x + z.real(), z.imag()));

}

The main disadvantage of the overloaded global operator is that it has to use some of the Complex member functions, since it does not have a direct access to the class private data members.

We can give out overloaded operator this access simply by defining:

class Complex

{

    friend Complex operator+ (const float& x, const Complex& z);

      :

};

Now our operator can be made more efficient:

Complex operator+ (const float& x, const Complex& z)

{

    return (Complex (x + z.re, z.im));

}

It is possible to define any function as a friend, but usually this option is reserved for overloaded global operators, in order to maintain the encapsulation.

Nested Classes

Going back to our linked list, we may suggest an alternative implementation:

template <class TYPE> class List

{

private:

    // The auxiliary Element structure:

    struct Element

    {

        ListElement<TYPE> *prevP;    // The previous element in the list.

        TYPE              object;    // The object stored in the element.

        ListElement<TYPE> *nextP;    // The next element in the list.

        ListElement (const TYPE& _object) :

           prevP(NULL),

           object(_object),

           nextP(NULL)

        {}

    };

    // Class members:

    Element           *headP;        // The first element in the list.

    Element           *tailP;        // The last element in the list.

    int               iCount;        // Total number of list elements.

public:

      :               // Class member functions...

};

The Element class is called a nested class since it is defined within the List class template. Notice that the Element structure is defined private, so external users don’t know anything about it and cannot create Element objects. The Element itself is completely public, so those who do know about it (namely the List member functions) have free access to it.

Generally, inside every class A  (and not just in templates) we can define a nested classes, that can be either private or public:

class A

{

private:

    class B

    {

        void set (const int& n);

           :

    };

       :

public:

    class C

    {

           :

    };

       :

};

Notice that the nested class name is A::B; this is important when separating declaration from definition:

void A::B::set (const int& n)

{

    :

}

Or, when defining object of this class:

A::C        cObject;

One should prefer using nested classes to using friends for the following reasons: 

1. Nested classes provide a better way of encapsulating the inner implementation of a class.

2. They do not “infect” the global namespace (i.e. we can still have a class called Element in the global scope, which has nothing to do with List<TYPE>::Element).

3. They support inheritance (see the next chapter).

4. They are syntactically more convenient in templates: There is no need to add <TYPE> to everything inside the List<TYPE> scope; it is sufficient to define Element objects.

Iterators

Given a vector, we can scan all its objects in O(n) time, where n is the vector size:

void printVector (const Vector<int>& iVec)

{

    for (int k = 0; k < iVec.size(); k++)

        cout << iVec[k] << endl;

    return;

}

Suppose we have implemented the following operator[] of the List template: 

template <class TYPE>

const TYPE& List<TYPE>::operator[] (const int& i) const

{

    if (i < 0)

        abort();

    // Find the i'th element.

    const Element *currP = headP;

    for (int j = 0; j < i && currP != NULL; j++)

        currP = currP->nextP;

    // Return the desired object.

    if (currP == NULL)

        abort();

    return (currP->object);

}

Now we can scan all the objects stored in the list:

void printList (const List<int>& iList)

{

    for (int k = 0; k < iList.size(); k++)

        cout << iList [k] << endl;

    return;

}

The problem is that accessing the ith list element takes O(i) operations, so the total time complexity of our function is O(n2).

Let us introduce some sequential scan member functions:

template <class TYPE> class List

{

       :

    // Class members:

    Element           *headP;        // The first element in the list.

    Element           *tailP;        // The last element in the list.

    int               iCount;        // Total number of list elements.

    Element           *scanP;        // The currently scanned element.

       :

public:

       :

    // Start a sequential scan on the list elements.

    void start ()              {scanP = headP; }

    // Check if there are more elements to scan.

    bool moreToGet() const     {return (scanP != NULL); }

    // Return the current object.

    const TYPE& getCurrent () const

    {

        if (scanP == NULL)

            abort();

        return (scanP->object);

    }

    // Proceed to the next object (prefix and postfix notations).

    void next () const

    {

        if (scanP != NULL)

            scanP = scanP->nextP;

    }

};

Now it is possible to scan all list elements in O(n) time in the following fashion:

void printList (List<int>& iList)

{

    iList.start();

    while (iList.moreToGet())

    {

        cout << iList.getCurrent () << endl;

        iList.next();

    }

    return;

}

There are however two problems with the suggested scheme:

1. The member functions start and the next are non-const member functions, so if a function receive a const reference to a list, it cannot scan it. We can, of course, define scanP as a mutable data member, but we will still be left with the other problem: 

2. Two threads cannot scan a global list simultaneously.

A better solution is to separate the sequential scan functions to another object. Such an object is called an iterator. It is common to view iterators as generalization of pointers and to give them a similar look-and-feel, therefore we define the operators * (instead of getCurrent) and ++ (prefix and postfix notation, instead of next; it is also possible to define the -- operators):

template <class TYPE> class ListIterator

{

private:

    const List<TYPE>        *listP;

    const ListElement<TYPE> *scanP;

public:

    ListIterator (const List<TYPE> *_listP) :

        listP (_listP),

        scanP (NULL)

    {}

    void start ()              {scanP = listP->headP; }

    bool moreToGet() const     {return (scanP != NULL); }

    const TYPE& operator* () const

    {

        if (scanP == NULL)

            abort();

        return (scanP->object);

    }

    void operator++ ()           // Prefix notation.

    {

        if (scanP != NULL) 

            scanP = scanP->nextP;

    }

    void operator++ (int)       // Postfix notation.

    {

        if (scanP != NULL) 

            scanP = scanP->nextP;

    }

};

This code assumes that both ListElement and List have defined ListIterator as their friend.

A better idea, is to define a nested iterator class inside the List template – this time it will be a public nested class (notice it is still necessary the List declares the Iterator as its friend):

template <class TYPE> class List

{

       :

public:

       :

    class Iterator

    {

    private:

        const List<TYPE> *listP;

        const Element    *scanP;

    public:

           :

    };

    friend class Iterator;

};

The iterator can be use in the following manner:

void printList (const List<int>& iList)

{

    List<int>::Iterator iter (&iList);

    for (iter.start(); iter.moreToGet(); iter++)

        cout << *iter << endl;

    return;

}

Nested Enumerations

It is also possible to define nested enumerations. The main advantage here is that we keep the global namespace clean:

class Player

{

public:

    enum Colour

    {

        Red,

        Yellow,

        Blue,

        Green

    };

    // Constructor.

    Player (const Colour& col);

};

template <class TYPE> class RedBlackTree

{

private:

    enum Colour

    {

        Red,

        Black

    };

};

Notice that when referring to a nested enumeration value from outside its scope, the scope name should be added:

Player    player1 (Player::Blue);

Chapter 9: Public Inheritance

Defining a Common Parent Class

Suppose we want to implement a collection of shape objects that can be use in a graphic program. We can have a rectangle, characterized by its upper-left corner, its width and its height (everything is represented in pixels, so we use integers):

class Rectangle

{

private:

    Point<int,2>      poLocation;

    int               iWidth;

    int               iHeight;

    bool              bVisible;

public:

    // Constructor.

    Rectangle (const Point<int,2>& loc, const int& w, const int& h) :

        poLocation (loc), iWidth (w), iHeight (h), bVisible (false)

    {}

    // Draw and erase the rectangle:

    void show ();

    void hide ();

    // Check whether the rectangle is currently drawn:

    bool isVisible () const

    {

        return (bVisible);

    }

    // Move the rectangle.

    void move (const int& iX, const int& iY)

    {

        poLocation[0] += iX;

        poLocation[1] += iY;

    }

};

A circle id characterized by its centre and its radius:

class Circle

{

private:

    Point<int,2>      poLocation;

    int               iRadius;

    bool              bVisible;

public:

    // Constructor.

    Rectangle (const Point<int,2>& loc, const int& r) :

        poLocation (loc), iRadius (r), bVisible (false)

    {}

    // Draw and erase the circle:

    void show ();

    void hide ();

    // Check whether the circle is currently drawn:

    bool isVisible () const

    {

        return (bVisible);

    }

    // Move the circle.

    void move (const int& iX, const int& iY)

    {

        poLocation[0] += iX;

        poLocation[1] += iY;

    }

};

We can continue and define a family of classes of a similar nature. Notice they will all have the poLocation and bVisible and members; in addition, the implementation of the member functions isVisible and move will be identical, while the implementation of show and hide are specific to each class.

We can define a class called Shape that includes all common data members and member functions of the family (notice the use of protected instead of private – an explanation is to come):

class Shape

{

protected:

    Point<int,2>      poLocation;

    bool              bVisible;

public:

    // Constructor.

    Shape (const Point<int,2>& loc) :

        poLocation (loc), bVisible (false)

    {}

    // Check whether the shape is currently drawn:

    bool isVisible () const

    {

        return (bVisible);

    }

    // Move the shape.

    void move (const int& iX, const int& iY)

    {

        poLocation[0] += iX;

        poLocation[1] += iY;

    }

};

Now Rectangle, Circle etc. can all inherit from shape: 

class Rectangle : public Shape
{

private:

    int               iWidth;

    int               iHeight;

public:

    // Constructor.

    Rectangle (const Point<int,2>& loc, const int& w, const int& h) :

        Shape (loc),

        iWidth (w), iHeight (h)

    {}

    // Draw and erase the rectangle:

    void show ();

    void hide ();

};

Notice that Rectangle doesn’t need to define the data members defined in the Shape class or to implement it member functions. Also notice how a Shape object is initialized by an explicit call to its constructor in the initialization list.

Each class that inherits from Shape gains access to all it protected data members and member functions, which are still inaccessible to outside users (e.g. Rectangle::show probably modifies bVisible, which is a protected member in the Shape class). It also inherits all its public member functions. For example:

Point<int,2>  loc;

loc[0] = 10;

loc[1] = 25;

Rectangle     rect (loc, 64, 36);

rect.show();

rect.move (10, -5);        // OK, since Shape implements this function.

rect.show();

Shape is called the parent class, and all classes that inherit from it are called its derived classes.

Pointers and References to Derived Classes

A Rectangle object looks like:

[image: image1.wmf]
So, we can think of a public member data of type shape that is contained inside the Rectangle. However, there’s more to it: we have already seen that we can treat Rectangle as a shape by applying all the public shape’s methods on it, but we can even do more.

If we have the following function:

void manipulateShape (Shape *shapeP);

We can actually write:

Rectangle     rect (loc, 64, 36);

manipulateShape (&rect)        // OK, since a pointer to Rectangle

                               // is also a pointer to Shape.

So – a pointer to a Rectangle is also a pointer to a Shape. This of course cannot be done with “regular” members (i.e. a pointer to Complex is not a pointer to a float).

Notice that if class B inherits from class A, then a pointer (or a reference) to an object of type B is also a pointer (or a reference) to A. The opposite is not true of course.

Virtual Functions

Consider the following scenario:

	class A

{

       :

public:

    void f () const

    {

        cout << "In A::f" << endl;

    }

    void g () const;

    void h () const;

};
	class B : public A

{

       :

public:

    void f () const

    {

        cout << "In B::f" << endl;

    }

};


With the following main:

void callF (const A* aP)

{

    aP->f();

}

void main ()

{

    A      a;

    B      b;

    a.f();

    b.f();

    callF (&a);

    callF (&b);

}

The output of this program will be:

In A::f

In B::f

In A::f

In A::f

Notice that applying the member function f on the object b resulted in calling B::f on one occasion and in calling A::f  on the other occasion – so, our object has a inconsistent behaviour!

To solve this problem, we can define f virtual (notice g is also defined virtual, but h does not):

	class A

{

       :

public:

    virtual void f () const

    {

        cout << "In A::f" << endl;

    }

    virtual void g () const;

    void h () const;

};
	class B : public A

{

       :

public:

    virtual void f () const

    {

        cout << "In B::f" << endl;

    }

};


Now we’ll see that b is behaving consistently ‘ and the output will be:

In A::f

In B::f

In A::f

In B::f

It is sufficient to declare the function virtual only in the base class – but it is recommended, for the sale of clarity, to do so also in the divvied class. At any case, the virtual keyword should appear just in the declaration and not in the definition.

The main idea behind the mechanism of virtual functions is that a pointer, called the virtual pointer, is added to each object from a class that owns virtual functions. This pointer stores the address of the class’s virtual table that maps function name to their addresses (remember that a function call is no more than jumping to a certain address).

The programmer has absolutely no access to the virtual pointer. Virtual pointers and virtual tables are managed solely by the compiler.

Notice that at compilation time there is no way to determine what function is called by applying aP->f(), because aP may point either to an A object or to a B object – this decision must be taken at runtime, according to the address taken from the table the virtual pointer points on.


( A derived class must not override a non-virtual function of its parent: While this is syntactically right, it is conceptually wrong, since it may lead to an inconsistent behavoiur of this class objects.

Consider the following function:

void destroyInvisibleShape (Shape *shapeP)

{

    if (shapeP->bVisible())

        delete shapeP;

}

Which is used as follows:

Rectangle     *rectP = new Rectangle (loc, 10, 20);

    :

rectP->hide();

destroyInvisibleShape (rectP);

When the function is, it tries to free a Shape object, which is actually a Rectangle. In this case just the Shape part of the Rectangle is freed while all the residual parts are not, leaving us with a memory leak.

The remedy to this situation is simple – make the destructor of the base class virtual:

class Shape

{

       :

public:

    virtual ~Shape() 

    {}

       :

};

( When defining a base class, its destructor must be declared virtual. The automatic destructor is not virtual, so we may need to override it even for classes that do not allocate memory dynamically and leave the destructor body empty.

Pure Virtual Functions

Returning to the Shape example: We saw that each one of the Shape’s successors should support the show and hide member functions. But what if someone defined a class that does not support these functions? Well, there’s a way to enforce their existence:

class Shape

{

protected:

    Point<int,2>      poLocation;

    bool              bVisible;

public:

    Shape (const Point<int,2>& loc);

    virtual ~Shape ();

    bool isVisible () const;

    void move (const int& iX, const int& iY);

    virtual show () = 0;

    virtual hide () = 0;

};

We actually declare that all the classes derived from shape must implement show and hide, while Shape itself is too abstract a class to implement them itself. show and hide are called pure virtual functions.

A class that owns at least one pure virtual function is called a pure virtual class, an abstract base class, or an interface class. The important thing is that one cannot create objects from an abstract base class and that the class successors must implement its pure virtual functions – otherwise they will be abstract themselves: 

Shape     shape (loc);                      ( - cannot create Shape objects
Rectangle rect (loc, 2, 4);

Shape     *shape1P = new Shape (loc);       ( - cannot create Shape objects
Shape     *shape2P = new Rectangle (loc, 2, 4);

The power of pure virtual functions is demonstrated in the following example:

// Return a random number between iMin and iMax.

int getRandom (const int& iMin, const int& iMax)

{

    float    fVal = (float)rand() / (float)RAND_MAX;

    return (iMin + fVal*(iMax + 1 - iMin));

}

// Create n randomal shapes and draw them on the screen.

void drawShapes (const int& n)

{

    Vector<Shape*>    shapesPVec (n);

    Point<int, 2>     loc;

    int               iType;

    int               k;

    // Create the random shapes.

    for (k = 0; k < n; k++)

    {

        loc[0] = getRandom (100, 200);

        loc[1] = getRandom (50, 150);

        iType = getRandom (1, 3);

        switch (iType)

        {

        case 1:             // Create a rectangle.

            shapesPVec[k] = new Rectangle (loc, 10, 10);

        case 2:             // Create a Circle.

            shapesPVec[k] = new Circle (loc, 15);

        case 3:             // Create Triangle.

            :

        }

    }

    // Draw the shapes.

    for (k = 0; k < n; k++)

        shapesPVec[k]->show();

    // Free memory.

    for (k = 0; k < n; k++)

        delete (shapesPVec[k]);

    return;

}

To summarize, we saw that a base class can have three types of member function: 

1. Regular – A member function that is implemented, and every derived class must keep this implementation. 

2. Virtual – A member function that is implemented. A derived class may either use it as default implementation, or override it.

3. Pure Virtual  – A member function which cannot be implemented, and each concrete derived class must implement it.

( At any case, if a class B is derived from a class A, it must keep the full functionality of its parent – that is, B must support every member function that A supports.

Chapter 10: Other Inheritance Types

Hierarchies of Inheritance

It is possible of course to define a hierarchy of inheritance 

	class A

{

    :

};
	class B : public A

{

    :

};


	class C : public B

{

    :

};


Notice that: 

· The class C  “knows” it has A as its ancestor, and can access all A’s protected members.

· A pointer to C is also a pointer to A.

Private and Protected Inheritance

So far we used public inheritance (i.e. class B: public A), and said that the fact that B inherits from A is public. Now, let us define:

class B : private A

{

    :

};

Now the fact that B inherits from A is kept private: The class B itself  “knows” that A is its parent and has access to its protected members. However, the outside world (everything accept the class B and its friends) is not aware of the inheritance:

void funcA (const A& a);

    :

A    a;

B    b;

funcA (a);

funcA (b);             ( - a reference to B in not a reference to A !
Furthermore, if C inherits from B, it has no knowledge that it has A as its ancestor and cannot access its protected members. This would have changed had we defined:

class B : protected A

{

    :

};

In this case, the inheritance is kept secret from the outside world but not form B’s derived classes.

Let us implement a queue data structure using a linked list (see Nested Classes in Chapter 8)  - so its size is not limited:

template <class TYPE> class Queue : private List<TYPE>

{

public:

    // Insert an object to the queue.

    void enqueue (const TYPE& onject)

    {

        // Add the object to the linked list’s tail.

        append (object);

    }

    // Get the first object from the queue.

    TYPE dequeue ()

    {

        // Make sure the queue is not empty.

        if (headP == NULL)

            abort();

        // Cut the first element from the list.

        Element *prevHeadP = headP;

        TYPE    obj = headP->object;

        headP = headP->nextP;

        if (headP != NULL)

            headP->prevP = NULL;

        delete prevHeadP;

        iCount--;

        return (obj);

    }

    // Get the number of objects currently in the queue.

    int size () const

    {

        return (List<TYPE>::size());

    }

};

Notice we could have used a data member which is a List<TYPE>, but this way we can supply a more efficient data structure by directly manipulating the list elements (supposing we define the relevant parts in the list template as protected instead of private).

We used private inheritance to prevent users from applying illegal operations on the queue:

Queue<int>    iQueue;

iQueue.enqueue (4);

iQueue.enqueue (5);

iQueue.enqueue (3);

iQueue.remove (5);         ( - cannot access the List’s member functions
Notice that we see here an excellent example of the advantages of a nested class: Element is a protected nested class within the List template, so the Queue template has access to it (and so does any other class derived from the List). Had we used friends (see Friend Classes in Chapter 8), we would have to modify the ListElement template and add Queue<TYPE> to its list of friends.

Also notice that when private or protected inheritance is use, it is fine to override a non-virtual member function. The problem of inconsistency is not an issue, since a pointer to the derived class is not a pointer to the parent class, from the outside world’s point of view. 

To summarize:

· Public inheritance means B is kind of A: B should support the full functionality of A.

· Private (and protected) inheritance means B is implemented using A.

Multiple Inheritance

It is possible to derive a class from several parents:

class D : public B, public C

{

    :

};

In this section, we shall not deal with anything but public inheritance.

This raises a few problems. First of all consider the following example.

	class B

{

       :

public:

    void f () const;

};
	class C

{

       :

public:

    void f () const;

};


D          d;

d.f();            ( - ambiguity between B::f and C::f

The ambiguity problem can be easily solved if we write:

d.B::f();

d.C::f();

Now, suppose we have the following functions:

void funcB (const B *bP);

void funcC (const C *cP);

and we write:

funcB (&d);

funcC (&d);

Both function calls work, as we can logically expect. Namely, a pointer to D is also a pointer to B and also a pointer to C. This is a little surprising, however, if we take a look of the memory representation of D:


It is clear why D’s address is also B’s address – but what about C?

The compiler actually saves some offset information, so when it needs to cast D* to C*, this offset (which is, in our case, sizeof(B)) is added to the pointer.

Virtual Inheritance

The most difficult problems rise when we have a diamond – shape hierarchy of inheritance: 


Now a D object looks like:


We know that D is kind of B which is a kind of A, and also a kind of C which is also a kind of A. So – D is a kind of A, but it should not contain two A objects! Practically speaking, if we apply one of A’s method on a D object, with which one of the A objects are we going to work?

The solution for this problem is virtual inheritance. We need to define:

	class B : virtual public A

{

       :

public:

    void f () const;

};
	class C : virtual public A

{

       :

public:

    void f () const;

};


When a class B inherits virtually from A, the A instance is placed at the object’s tail, with a pointer directing to its position from the object head:


Now a D object looks like:


So the problem is solved, since there is only one A object in a D object. Notice however that now we should take care of A in D’s initialization list, since neither B nor C really create it:

D::D () :

    B(),

    C(),

    A()

{}

( The important thing is when we define a class that has a sibling, such that one may inherit from these two-sibling class, both classer should be virtually derived from their parent.

( To conclude, multiple inheritances cause a lot of conceptual and computational complications. It is therefore advisable not to use it, and use tree-shaped class hierarchies instead.

The C++ Input/Output Classes

Each C++ compiler should support the following hierarchy of classes for dealing with input and output:


The following global variables are always available (see Input/Output on chapter 2):

istream    cin;

ostream    cout, cerr;

One cannot define more objects from the istream or ostream classes.

We have already seen how to use the ostream::operator<< and istream::operator>>, but we can do the same with ifstream/ofstream objects that inherit these operators (similar to fprintf/fscanf) or with istrstream/ostrgtream (similar to sprintf/sscanf).

In addition, it is necessary to know the following functions (see the C++ Manual for more details):

// To open an existing input file:

ifstream::ifstream (const char *cFileNameP, int iMode, int iProt);

void ifstream::open (const char *cFileNameP, int iMode, int iProt);

// To open an output file:

ofstream::ofstream (const char *cFileNameP, int iMode, int iProt);

void ofstream::open (const char *cFileNameP, int iMode, int iProt);

// Check whether the file was opened successfully:

int ios::is_open ();

// Check whether end of file has been reached:

int ios::eof ();

// Close a file.

void ifstream::close ();

void ofstream::close ();

// Read a line from an input file.

void istream::getline (char *cLineP, int iMaxSize, char cDelim = '\n');

As an example of using input files in C++, consider the following function that reads a list of all the lines in the input file:

int fileLines (const String& stFileName, List<String>& stLinesList)

{

    ifstream   inFile (stFileName.charP());

    char       cLine[100];

    if (! inFile.is_open())

        return (-1);       // File not found.

    stLinesList.reset();

    while (! inFile.eof())

    {

        inFile.getline (cLine, sizeof(cLine));

        stLinesList.append (cLine);

    }

    return (stLinesList.size());

}

It is possible to override the global  << and >> operators in order to supply our classes with natural methods of input/output:

ostream& operator<< (ostream& os, const Complex& z)

{

    os << z.real() << " + i*" << z.imag();

    return (os);

}

Notice the operator returns a reference to ostream because it is usually applied sequentially:

Complex    z1, z2, z3;

z3 = z1 * z2;

cout << z1 << " * " << z2 << " = " << z3 << endl;

This would have failed had the operator<< returned void.

Chapter 11: Function Pointers

Void Pointers

Consider the standard C library function, that copied n bytes from one memory address to another:

void memcpy (void *dest, const void *src, int n);

The void pointer means “just a memory address”, when in doesn’t matter what is actually stored in this address.

Function Pointers

Now consider the implementation of function performing a generic quick-sort algorithm in C. We need a generic vector, so we shall use a vector of void pointers (notice we don’t have to assume that the sorted objects consume a continuous memory block):


But, in order to sort a vector, we need a basic comparison function that given two objects determines whether the first object is greater than, less than or equals the second. Now let us look at the standard qsort function:

void qsort (void *base,       // The address of the vector.

            size_t num,       // Number of objects in the vector.

            size_t width,     // Size (in bytes) of each object.

            int (*compare )(const void *elem1, const void *elem2));
The last argument is a pointer to a function that receives two void pointers (addresses of two objects) and returns an integer; which is negative/zero/positive if the first object is greater than equal/less than the second object respectively.

To sort an array of integers, we need to define the following auxiliary function:

int compIntP (const void **p1, const void **p2)

{

    const int* iP1 = *((const int**)p1);

    const int* iP2 = *((const int**)p2);

    return (*iP2 - *iP1);

}

And use qsort in the following manner:

#include <stdlib.h>

    :

int    n;

cin >> n;

int    *iVecP = new int [n];       

int    **iVecPP = new int* [n];

int    k;

for (k = 0; k < n; k++)

{

    iVecP[k] = rand();

    iVecPP[k] = iVecP + k;

}

qsort (iVecPP, n, sizeof (int*), compInt);

for (k = 0; k < n; k++)

    cout << *(iVecPP[k]) << endl;

delete[] iVecP;

delete[] iVecPP;

Notice that a global (non-member) function can be represented uniquely by it address in the code segment. The name of the function is a pointer to the function, while using this name (or any function pointer) with the () operator means calling the appropriate function.

Also notice that the pointer type depends on the function’s argument list and its returned value: e.g. a pointer to a function that receives an integer and returns void is not a pointer to a function that receives a float and returns an integer.

It is impossible to use the name of a member function as a function pointer – because member functions are useless unless applied on an object (in C++ there are also pointers to data members and member functions, but we shall not discuss them).

In C++ it is possible to write generic code using templates (see chapter 7), but function pointers are still important.

Static Data Members

It is possible to define static data members in a class:

class A

{

private:

    static int          iCount;

       :           // Other data members...

public:

       :

};

Static data members are not actually contained inside each object: they are created only once on the data segment. The class members may access the static members; in our example, we shall update iCount each time an object is created or destroyed:

A::A () :

    iCount(0)      // Since only one copy of iCount exists on the data

                   // segment, this initialization takes place only when

                   // the first A object is created.

{

    iCount++;      // This of course takes place each time the constructor

                   // is called (i.e. when a new A object is created).

}

A::~A ()

{

    iCount--;

}

Static Member Functions

It is also possible to define static member functions:

class A

{

private:

    static int          iCount;

       :           // Other data members...

public:

    static int getCount ()

    {

        return (iCount);

    };

       :           // Other member functions...

};

Static member functions can only access the static data members of the class: this is because they are not associated with an object and do not have a this pointer.

Notice the correct syntax for calling a static member function:

A    a;

int  n;

n = a.getCount();      ( - a static member function shouldn’t be applied on an object.
n = A::getCount();

Since a static member function is not associated with an object, its name can be used as a function pointer.

( Avoid using static data members in order to keep the class multi-thread safe.

Chapter 12: Exception Handling

Dealing with Runtime Errors

Consider the implementation of the remove function in our List template (see Chapter 8) and notice how do we take care of situations of a non-existing object:

template <class TYPE>

void List<TYPE>::remove (const TYPE& object)

{

    // Find an element which contains an equal object.

    Element   *elemP = _find (object);

    // Check if such element does exist.

    if (elemP == NULL)

        abort();

    // Remove it from the list.

       :

}

The problem is that if a run-time error occurs, our program just crashes, due to the abort operation. To avoid such untimely events, we can in this case add a Boolean return value that indicates whether the function ended successfully:

template <class TYPE>

bool List<TYPE>::remove (const TYPE& object)

{

    // Find an element which contains an equal object.

    Element   *elemP = _find (object);

    // Check if such element does exist.

    if (elemP == NULL)

        return (false);

    // Remove it from the list.

       :

    return (true);
}

Now consider the implementation of the dequeue function (see the Queue template in Chapter 10):

template <class TYPE>

TYPE Queue<TYPE>::dequeue ()

{

    // Make sure the queue is not empty.

    if (headP == NULL)

        abort();

    // Cut the first element from the list.

       :

}

In this case, we shall have to alter the function prototype so it returns a flag indicating success or failure (the syntax however becomes a little less natural): 

template <class TYPE>

bool Queue<TYPE>::dequeue (TYPE& object)

{

    // Make sure the queue is not empty.

    if (headP == NULL)

        return (false);

    // Cut the first element from the list.

    object = headP->object;

       :

    return (true);
}

Introducing the Exceptions Mechanism

Now let us try to deal with the run-time error that may occur in the operator[] of the Vector template:

template <class TYPE>

TYPE& Vector<TYPE>::operator[] (const int& i)

{

    if (i < 0 || i >= iSize)

        abort();

    return (vecP[i]);

}

Notice that we cannot change the return value, nor can we introduce a new argument (since the operator is binary). Luckily, there is a mechanism in C++ that enables throwing exceptions when something goes wrong. We shall re-write our operator as follows:

template <class TYPE>

TYPE& Vector<TYPE>::operator[] (const int& i)

{

    if (i < 0 || i >= iSize)

        throw ("Index out of bounds.");

    return (vecP[i]);

}

When an exception is thrown, the stack is unwound – so we go back to the calling functions, until reaching a code that can handle the exception. Such blocks have the following structure:

Vector<int>   iVec (100);

try

{

    iVec[3] = 5;        // This is OK.

    iVec[300] = 500;    // This will cause an exception.

    iVec[30] = 50;      // We will never each here !

}

catch (const char *cMessageP)

{

    cout << cMessageP << endl;

}

iVec[40] = 78;         // This is OK.

The code inside the catch block is called an exception handler.

In case an exception is raised outside a try-catch block, the stack will be un-winded until reaching such a block that can handle the exception, or alternatively until reaching the main – at this stage the exception will be caught by the operating system, causing the program to crash.

( When an exception is raised, the stack is just unwound – its content is not destroyed. For this reason it is possible to throw local variables as exception objects. After the exception is handled, the redundant portion of the stack will be destroyed.

Exception Hierarchies

Since it is possible to throw any type of object, a wise strategy is to define a hierarchy of error classes; each class corresponds to a specific kind of error. Such a hierarchy might look like:


For example, we shall define the class:

class IllegalIndex : public LogicalError

{

private:

    int    iValue;       // The value of the problematic index.

    int    iLowBound;    // Minimal value allowed for the index.

    int    iHighBound;   // Maximal value allowed for the index.

public:

    IllegalIndex (const int& i, const int& min, const int& max) :

        iValue(i), iLowBound(min), iHighBound(max)

    {}

       :

};

Now, we shall write the operator[] as follows:

template <class TYPE>

TYPE& Vector<TYPE>::operator[] (const int& i)

{

    if (i < 0 || i >= iSize)

        throw (IllegalIndex (i, 0, iSize - 1));

    return (vecP[i]);

}

We can exploit the fact that a try block may have several catch blocks, and write something like:

try

{

    :

}

catch (const IllegalIndex& err)

{

    abort();    // We want the program to crash in such cases!

}

catch (const MathError& err)

{

    // Proceed as usual...

}

catch (...)     // This catches everything.

{

    cout << "Unknown type of error, proceeding anyway" << endl;

}

( The important thing is that a catch block for B objects should come before a catch block for A objects if B inherits from A (or else A’s block will catch also B objects).

Casting in C

Let us look at some casting operations we have come across:

1. Casting between atomic variables:

int      iSum, iCount;

float    fAvarage;

    :

fAvarage = (float)iSum / (float)iCount;

2. Casting pointers (changing the data type the pointer refers to):

void f (const void *p)

{

    const int    *iP = (const int*)p;

       :

}

3. Casting away constness:

void g (const String& str)

{

    String&    myStr = (String&)str;

       :

}

4. Down-casting the inheritance tree:

void h (const Shape* shapeP)

{

    const Rectangle    *rectP = (const Rectangle*)shapeP;

       :

}

The C-style cast operations suffer from several drawbacks:

· They are very difficult to locate (and we wish to be able to locate them, since they are usually involved in dubious programming).

· The same syntax is used for four conceptually different operations.

· We can cast basically everything to anything, leading to horrible bugs:

void func (Complex& z)

{

    String& str = (String&)z;

    str = "Yes, this will pass compilation...";

}

Casting Operators in C++

To solve all the above problems, C++ introduces four casting operators, that should be used in the following manner:

1. Cast between atomic variables using static-cast:

fAvarage = static_cast<float>(iSum) / static_cast<float>(iCount);

2. Cast between pointers using reinterpret_cast:

Const int    *iP = reinterpret_cast<const int*>(p);

3. Cast away constness using const_cast:

String&    myStr = const_cast<String&>(str);

Notice that the casting operator protects the code from illegal casting operations:

Complex&   z = const_cast<Complex&>(str);     ( - cannot perform this cast

It also does not allow combinations of two legal operations in one step:

const void *p;

int        *iP = const_cast<int*>(p);   ( - cannot combine two casting steps

One should write instead:

int        *iP = const_cast<int*>(reinterpret_cast<const int*>(p));

4. Use static_cast or dynamic_cast to cast down the inheritance hierarchy:

const Rectangle  *rect1P = static_cast<const Rectangle*>(shapeP);

const Rectangle  *rect2P = dynamic_cast<const Rectangle*>(shapeP);

The difference between the two methods of down casting is that static_cast only checks at compilation time that Rectangle indeed inherits from Shape (which is indeed the case), while dynamic_cast provides an additional run-time check that the Shape pointer really points to a Rectangle object (see Chapter 9, and recall a Shape pointer can also be a Circle pointer).

The dynamic_cast operator can be applied on a pointer – and returns NULL in case of failure. The return value may be used for performing run-time type checks:

void printType (const Shape* shapeP)

{

    if (dynamic_cast<const Rectangle*>(shapeP) != NULL)

        cout << "Rectangle" << endl;

    else if (dynamic_cast<const Circle*>(shapeP) != NULL)

        cout << "Circle" << endl;

    else

        :

}

In case the dynamic_cast operator is applied on a reference variable and fails, an exception is thrown (remember there is no such thing as a NULL reference).

One should keep in mind that dynamic casting can be very inefficient, and should be avoided in a code that is optimized for efficiency. This is due to the fact that the type checking might become very complicated, especially when multiple inheritance is involved (see the hierarchy described when discussing Virtual Inheritance in Chapter 10):

void func (B *bP)

{

    C   *cP = dynamic_cast<C*>(bP);  // This may be correct, since bP may

                                     // actually point to a D object, whose

                                     // address is also a pointer to C.

}

( Try to avoid using dynamic_cast: usually there is no need for it if the class hierarchy is properly designed (using virtual functions and pure virtual functions is usually a better solution).

Dynamic Memory Allocation Revisited

In C it is common to see the following:

int*    iVecP = (int*) malloc (sizeof(int) * n);

if (iVecP == NULL)

{

    printf ("Out of memory. ");

    abort();

}

The malloc function returns NULL in case of failure, usually when there is no available memory left.

According to the C++ standards, there is no need to check the value returned from new: If not enough memory is available, an exception is raised.

Exercises

1) Class Date

Define a class named Date, with data members specifying the day, month and year. The class should support the following functions:

// Set the date to 1.1.1900:

void
reset();

void
set (int iDay, int iMonth, int iYear);

int
day ();

int
month ();

int
year ();

// Return the number of days elapsed since 1.1.1900 :

int
elapsedDays ();

// Display the date in the format dd.mm.yyyy :

void
display ();

Note: You can assume that there are 30 days in each month, and 30*12=360 days in each year.

2) Enhanced Class Date

Add the following functions for class Date:

// Set the date, according to number of days since 1.1.1900:

void
set (int iDays);

// Constructors:

Date ();

Date (int iDay, int iMonth, int iYear);

Date (int iDays);

operator==, operator!=

operator>, operator>=, operator<, operator<=

// Return the previous/next day:

Date
nextDay ();

Date
previousDay ();

// Return the date in (n) days time:

Date
operator+ (int iDays);

// Calculate the difference between two dates:

int
operator- (Date comparedDate);

Note: Try not to duplicate code. Utilize the class member functions as much as you can.

3) Class String

Define class String, which should support string manipulations, and will take care of safe memory allocations. The class should include the following member functions:

// Define an empty string:

String ();


// Copy a C-style string:

String (char *cStringP);

// Concatenation operators:

String operator+ (String& s);

void operator+= (String& s);

// Comparison operators:

operator==, operator!=

operator>, operator>=, operator<, operator<=

// Get a character in the string:

operator[]

// Return the string’s length:

int length ();

// Return a proper index if the string contains the search

// string, or (-1) if it does not:

int contains (String& stSearchString);

// Return a sub-string:

String subString (int iStartIndex, int iLength);

// Return the string in upper/lower case:

String upperCase ();

String lowerCase ();

Note: You can use the standard C library functions defined in <string.h>, such as strlen, strcmp, strcpy etc. Be sure, however, to manage the memory safely.

4) The Wonderful World of Const

Revise the two classes you wrote (class Date and class String), and add const wherever possible: make the relevant functions const member functions, pass parameters by const reference, etc.

· Take special care of the String::operator[], and consider duplicating it.

· Add the member function String::charP() which returns the C representation of the string. Think how to implement it efficiently and safely.

Note: From now on, you should write all your classes using const wherever possible.

5) The Vector Template

Write a template called Vector which support the following operations:

· Default constructor.

· Constructor with the vector’s size.

· Assignment (operator=).

· operator[], which returns an object according to its index.

· Return the size of the vector.

· Resize the vector (re-allocate it, but keep its current contents). 

Note: You should specify the functions and operators the contained class in the Vector template should support.

Note: Keep in mind you should manage the memory safely.

6) The List Template

Write a template called List, which implements a doubly linked-list data structure. The template should support the following operations (in addition to the copy constructor, destructor, etc.):

· Insert an object to the list.

· Remove an object from the list (do nothing if it doesn’t exist).

· Check whether an object is contained in the list.

· operator[], which returns an object according to its index (consider a duplicate operator).

· Reset the list (clear all its contents).

Note: You may want to define an auxiliary data structure that declared List<TYPE> as its friend.

Note: You should specify the functions and operators the contained class in the List template should support.

Write a template called ListIterator, which support sequential scan on the list. The iterator should support the functions:

// Constructor.

ListIterator (const List<TYPE>* listP);

// Start sequential scan on the list’s items from the list head:

void
start ();

// Start sequential scan on the list’s items from the list tail:

void
end ();

// Check whether there are more items to get:

bool
moreToGet () const;

// Get the current object.

const TYPE& operator* () const;

// Go to the next item:

void operator++ ();

or: void operator++ (int );

// Go to the previous item:

void operator-- ();

or: void operator-- (int );

Note: The iterator must not modify the list.

7) The Tree Template

Write a template called Tree, which implements a simple binary tree structure, for objects that can support order operators (operator<, operator>=, etc.). The template should support the following operations:

· Insert an object to the tree.

· Check whether an object is contained in the tree.

· Reset the tree.

· Optional: Remove an object from the tree.

Note: Since the tree is a rather complicated structure, you should not support copying it or passing it by value.

Write an iterator, which support sequential scan on the tree. The iterator should support the functions (which, needless to say, must not modify the tree itself):

· Constructor, with a pointer to the tree.

· Start sequential scan on the tree items starting from the minimal object.

· Start sequential scan on the tree items starting from the maximal object.

· Check whether there are more items to get.

· Get the current item.

· Go to the next item.

· Go to the previous item.

Note: Define all the auxiliary classes and enumerations as nested structures in the Tree template. The iterator must also be defined as a nested class. Remember to differentiate between private, protected and public nested definitions.

8) The MathVector Template

Derive a template called MathVector from the Vector template, that can contain objects that support simple arithmetic operations (operator+, operator-, operator* and a constructor from an integer). The MathVector should add the following operations to the Vector (remember that you should add the const keywords wherever possible):

// Add/subtract vectors:

MathVector<TYPE>
operator+ (MathVector<TYPE>& vec);

MathVector<TYPE>
operator- (MathVector<TYPE>& vec);

void
operator+= (MathVector<TYPE>& vec);

void
operator-= (MathVector<TYPE>& vec);

// Multiply all the items with a scalar:

MathVector<TYPE>
operator* (TYPE& scalar);

void
operator*= (TYPE& scalar);

// Scalar multiplication:

TYPE
operator* (MathVector<TYPE>& vec);

9) Class CIString

Write a class (at last, not a template…) called CIString (Case-Insensitive String), which should support the same functions as class String, only it should ignore the case of the letters.

Note: Use virtual functions cleverly, and try not to duplicate code more than is necessary.

10) The Stack Template

Write a template called Stack, which implement a Last-In-First-Out data structure. The stack should not be of a limited size, and should support the following operations:

bool isEmpty () const;

void voPush (const TYPE& object);

TYPE pop ();

Note: You must not write the template from a scratch. Use one of the classes you wrote to implement the new data structure.

11) The Hash Template

Write a template called Hash which implements an closed-addressing hash: Objects that have the same hash-function value should be stored in a linked list. The template must support the following functions:

// Constructor, with the number of cells and a hashing function.

Hash (int iCells,

      int (*hashFunc) (const TYPE& object));

// Inserting/deleting objects.

void insert (const TYPE& object);

void remove (const TYPE& object);

// Check whether an object exists in the hash.

bool bExists (const TYPE& object) const;

// Return an object from the hash.

const TYPE&
get (const TYPE& object) const;

TYPE&
get (const TYPE& object);

// (*) Optional: Resize the hash (possibly with a new hash-func).

void
voResize (int iCells,

                int (*hashFunc) (const TYPE& object) = NULL);

Note: In this class, you should use exceptions to notify the user about illegal operations, such as inserting an existing object, deleting a non-existing object, etc.

Optional: Write an iterator for the hash, which allows sequential scan on all the objects in the hash (according to their hash function values). Think how you can use the ListIterator efficiently.
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