Tools, Generic Programming, CGAL, and 2D Arrangement of CGAL

Efi Fogel

efif@post.tau.ac.il

School of computer science, Tel Aviv University

Tools, Toolkits, and Libraries

- Computational Geometry
 - LEDA combinatorial and generic data types and algorithms
 - CGAL computational geometry generic data types and algorithms
 - GMP & CORE Numerical types
 - Other
- Visualization
 - OpenGI, Direct3d
 - GLUT
 - QT
 - Geomview

Generic Programming

- STL Standard Template Library
 - first example of generic programming, 1994
- A simple example

```
int main() {
  vector<string> V;
  string tmp;

  while (getline(cin, tmp))
    V.push_back(tmp);

  sort(V.begin(), V.end());
  copy(V.begin(), V.end(), ostream_iterator<string>(cout, "\n"));
}
```

CGAL - Computational Geometry Algorithm and Database

- A Computational Geometry Algorithms Library
- A collection of Data Structure and Operations
- Conists ot 3 major parts:

kernel constant-size non-modifiable geometric primitive objects and operations on these objects

basic library - a collection of basic geometric data structures and algorithms

other facilities - non-geometric support facilities, such as circulators, random sources, I/O support for debugging and for interfacing CGAL to various visualization tools

CGAL - Technical Information

- Written in C++
- Follows the Generic Programming paradigm
- Developed by a consortium consisting of
 - ETH Zürich (Switzerland)
 - Freie Universität Berlin (Germany)
 - Martin-Luther-Universität Halle-Wittenberg
 - Max-Planck Institut f
 ür Informatik, Saarbr
 ücken
 - INRIA Sophia-Antipolis (France)
 - Tel-Aviv University (Israel)
 - Utrecht University (The Netherlands)
- CGAL home page http://www.cgal.org
- CGAL at TAU http://www.cs.tau.ac.il/CGAL

CGAL - Kernel

- Contains objects of constant size
 - point, vector, direction, line, ray, segment, triangle, iso-oriented rectangle and tetrahedron.
 - Each type comes with a set of functions that can be applied to an object of this type.
- Access functions, tests of the position of a point relative to the object, a function returning the bounding box, the length, or the area of an object, etc..
 - More basic operations
- Affine transformations, detection and computation of intersections, and distance computations.

CGAL - Basic Library

- The collection of basic geometric algorithms and data structures
 - polygons, half-edge data structures, polyhedral surfaces, planar maps, triangulations, convex hulls, alpha shapes, optimisation algorithms, dynamic point sets for geometric queries, and multidimensional search trees.
- Tel-Aviv Planar Map Packages:
 - **Topological map** combinatorial information and no geometric information
 - Planar Map embedding of a topological map into the plane
 - Arrangement A structure that supports 2D arrangements. Maintains a planar map and curve hierarchy trees. Motion Planning workshop

7/23

Robustness

- Most geometric algorithms assume exact computation with real numbers
- Implementation of geometric algorithms becomes problematic
- Often the exact real arithmetic is replaced by inexact floating-point arithmetic in the implementation
- Rounding errors introduced by an inaccurate arithmetic may lead to inconsistent decisions, causing unexpected failures

CGAL Robustness handling

- In CGAL you can choose the underlying number types and arithmetic.
- You can use different types of arithmetic simultaneously
- The choice can be easily changed
- You can choose between implementations with fast but occasionally inexact arithmetic and exact computation

LEDA - Efficient Data types and Algorithms

A C++ class library

- Provides algorithmic in-depth knowledge in the field of graph and network problems, geometric computations, combinatorial opimization and other.
- Used in application areas such as GIS, VLSI design, telecommunication, scheduling, traffic planning, computational biology, and computer-aided design.
- Offers algorithm building blocks such as graphs, sequences, dictionaries, trees, points, flows, matchings, segments, shortest paths, and more.
- Follows object-oriented generic prog. paradigm
- CGAL & LEDA are independent, but work well together

LEDA - http://www.algorithmic-solutions.de/redirected.htm

GMP - GNU Multiple Precision

- GNU MP is a library for arbitrary precision arithmetic
- Operating on signed integers, rational numbers, and floating point numbers
- It has a rich set of functions, and the functions have a regular interface
- GNU MP is designed to be as fast as possible for small and huge operands
- Gmp home page http://www.gnu.org/software/gmp/gmp.html
- Online Manual http://www.gnu.org/manual/gmp/index.html

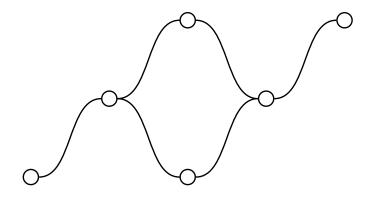
CORE - Robust Numerical and Geometric computation

- based on a novel number core, an API that defines four levels of numerical accuracies:
 - Machine Accuracy (IEEE standard)
 - Arbitrary Accuracy
 - Guaranteed Accuracy
 - Mixed Accuracy
- Core home page http://www.cs.nyu.edu/exact/core

GLUT & GLUI - Graphics Library Utility Toolkits

- GLUT
 - The OpenGL Utility Toolkit
 - An ANSI C implementation of GLUT for the X Window System -

http://www.xmission.com/ nate/glut.html


- GLUI
 - GLUT-based C++ user interface library
 - Window-system independent
 - provides controls (e.g., buttons, checkboxes, radio buttons, and spinners) to OpenGL applications.
 - Home page http://www.nigels.com/glt/glui

Qt - GUI software toolkit/widget-kit

- Multiplatform Windows, Linux/Unix, Mac OS X, and embedded Linux
- Object-oriented C++ application framework
- KDE is based on Qt

Planar Maps

Planar graphs that are embedded in the plane

Planar Arrangements

Given a collection Γ of planar curves, the arrangement A(Γ) is the partition of the plane into vertices, edges and faces induced by the curves of Γ

The Package in Brief

- Goal: construct, maintain, modify, traverse, query and present subdivisions of the plane
- Robust
- Generic
- Handles all degeneracies
- Efficient
- Easy to interface

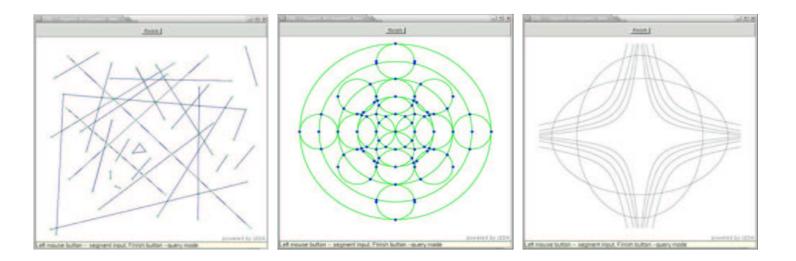
Hierarchy

- Topological_map
 - Maintains topological maps of finite edges
- Planar_map_2
 - Maintains planar maps of interior-disjoint x-monotone curves
- Planar_map_with_intersections_2
 - Maintains planar maps of general curves (may intersect, may be non-x-monotone)
- Arrangement_2
 - Maintains planar maps of intersecting curves along with curve history

Planar Map Functionality

- Creation and Destruction
- **_** I/O
 - Save, load, print (ASCII streams)
 - Draw (graphic streams)
- Modification
 - Insertion, removal, split, merge
- Traversal
- Queries
 - Number of vertices, halfedges, and faces
 - Is Point in Face
 - Point location various strategies
 - Vertical ray shoot

Planar Map Traits


- Geometric interface
- Parameter of package
 - Defines the family of curves in interest
 - Package can be used with any family of curves for which a traits class is supplied
- Aggregate
 - geometric types (points, curves)
 - Operations over types (accessors, predicates, constructors)

Planar Map Supplied Traits

- Segments
 - Standard
 - Cached contains the underline line and flags

Polylines

 Conic arcs (segments of circles, ellipses, parabolas, hyperbolas, and lines)

Planar Map Insertion Operations

- Incremental insert
- Aggregate insert
- Often information is known in advance
 - Containing face
 - Insert in face interior
 - Incident vertices
 - Insert from vertex, between vertices
 - Order around vertex
 - Insert from halfedge target, between halfedge targets

Planar Map Aggregate Insertion Operations

Inserts a container into the map

- Two versions
 - Simplified planar map no intersections
 - General planar map with intersections
- Sweep based