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ABSTRACT

We present an efficient algorithm for maintaining the bound-
ary and surface area of protein molecules as they undergo
conformational changes. We also describe a robust imple-
mentation of the algorithm and report on experimental re-
sults with our implementation on proteins with hundreds
of residues. Our work extends and combines two previous
results: (i) controlled perturbation for static molecular sur-
faces [18], and (ii) data structures for self-collision testing
and energy maintenance of proteins that change conforma-
tion [26]. As our method keeps a highly accurate repre-
sentation of the boundary surface and of the voids in the
molecule, it can be useful in various applications such as
Monte Carlo Simulation or Molecular Dynamics Simulation.
In addition we propose and analyze an alternative method
for efficiently recalculating the surface area under conforma-
tional (and hence topological) changes based on techniques
for efficient dynamic maintenance of graph connectivity; ini-
tial results of the implementation of this method show great
promise.
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1. INTRODUCTION
1.1 Background

A common approach to modeling the three-dimensional
geometric structure of molecules is to represent each atom
as a sphere of fixed radius in a fixed placement relative to
the other atoms. The radius assigned to each atom depends
on the type of the atom. There are various sets of recom-
mended values for atom radii, depending on the specific ap-
plication. The spheres are allowed to penetrate one another.
This model, called the hard sphere model, has proven useful
in many practical applications, in spite of its approximate
nature.

Molecular surfaces have many uses, such as drug design,
studies of solvation and hydrophobicity, the protein folding
problem, and more. One type of molecular surfaces is simply
the outer boundary of the union of the spheres in the hard
sphere model. This type uses the van der Waals radii, and
is often referred to as the van der Waals surface. There are
two closely related types of surfaces: The solvent accessible
surface introduced by Lee and Richards [23] is defined by
the center of a solvent molecule, modeled as a hard probe
sphere, when it rolls over the van der Waals surface. The



smooth molecular (solvent excluded) surface introduced by
Richards [29] is defined by the part of the surface of the
solvent probe-sphere that faces the molecule. See also [8, 9,
11] and the survey by Mezey [27] for an extensive discussion
on molecular surfaces.

The study of the conformations adopted by proteins is
an important topic in structural molecular biology. Some
of the methodologies used for this study are Monte Carlo
Simulation (MCS) [5, 19] and Molecular Dynamics Simula-
tion (MDS) [2, 22]. In MCS we randomly generate a series of
trial steps in the conformation space of the studied molecule.
Each such step consists of changing some degrees of freedom
(DOFs) of the molecule, in general torsion (dihedral) an-
gles around bonds. Classically, a trial step is accepted with
a probability that depends on the difference in energy be-
tween the new and previous conformations, moving toward
the lower energy conformation. In MDS we compute the
forces on the atoms at each step, and use them to calculate
the atom positions at the next step. Most MDS techniques
update the Cartesian coordinates of the atoms at each step,
but recently there has been growing interest in directly up-
dating torsion angles [32].

In the context of molecular simulations, the surface area
of a molecule is required when calculating the energy of
the molecule. To avoid using explicit solvent (actual wa-
ter molecules) in such simulations, which considerably slows
down the computations, implicit solvent models were intro-
duced. In these models all solvent effects on a molecule can
be included in an effective potential, which includes a term
for non-polar contributions. This term is often modeled as
a weighted sum of the solvent exposed or accessible surface
area of each atom of the molecule (see [6] for a discussion
and more references). Therefore fast methods to maintain
the surface area of a molecule dynamically during confor-
mation changes are desired.

1.2 Reated Work

Several algorithms and their software implementation for
calculation of the various surfaces mentioned above have
been designed in the last two decades. The smooth molecu-
lar surface was first computed by Connolly [8] and later in
many other works [11, 31, 33, 34]. Simpler methods com-
puted approximations of the surfaces [24]. Halperin and
Shelton [18] used controlled perturbation to calculate the van
der Waals and the solvent accessible surfaces robustly.

Limited dynamic maintenance of molecular surfaces was
presented by Bajaj et al [3]. They use non-uniform rational
B-splines (NURBS) to represent molecular surfaces and dy-
namically maintain them as the radius of the solvent probe-
atom changes continuously.

Edelsbrunner et al [7] developed an algorithm for main-
taining an approximating triangulation of a deforming sur-
face in IR®, that adapts dynamically to changing shape, cur-
vature, and topology of the surface. Bryant et al [6] calculate
the area derivatives of molecular surfaces in motion, for a
molecular dynamics simulation. At each step of the sim-
ulation they re-compute the entire Delaunay triangulation
required for their calculations.

Sanner and Olson [30] presented surface reconstruction
for moving molecular fragments. In their work they achieve
a real-time reconstruction of the molecular surface when a
small number of atoms move in each step (for example, a
conformation change of a single side chain of the protein).

The complexity of their algorithm is O(tlogt), where ¢ is at
least as high as the number of moving atoms. This means
that a change in a single torsion angle located near the center
of a protein chain, which moves the location of about half the
atoms of the molecule, will take as much time asymptotically
as it takes to recompute the entire surface.

Lotan et al [26] introduced a fast implementation of MCS
of proteins where a large number of atoms move in each
step. They exploit the fact that proteins are long kinematic
chains.

1.3 Our Results

In our work we maintain the boundary and surface area
of proteins as they undergo conformational changes. We ex-
ploit the fact that proteins are long kinematic chains (and
not an arbitrary collection of spheres). As the conforma-
tions change, we update the torsion angles of the protein
backbone, instead of updating the Cartesian coordinates of
the atoms. This allows us to modify the boundary of the
molecule quickly even when a large number of atoms move,
as is usually the case in conformation changes of proteins.
The update time of the boundary depends on the number of
intersecting pairs of atom spheres whose intersection circle
changed, which is relatively small when just a few torsion
angles are changed in each step of the simulation. Main-
taining a highly accurate! representation of the boundary
surface and of the voids of the molecule allows us to keep
track of the surface area of the molecule and the contribution
of each atom to the boundary and to the voids, which can be
useful in various applications such as MCS and MDS. Our
use of controlled perturbation ensures the robustness of our
implementation even while using floating-point arithmetic.

In our best experimental results we managed to update
a molecular surface under conformational changes in 3% of
the total time it would take to construct that surface from
scratch. Our results indicate that our algorithm gives better
gains for larger molecules.

We also suggest an alternative method to improve our im-
plementation, based on efficient maintenance of graph con-
nectivity, which yields an amortized update time of
O(plog®n) for each accepted conformational change where
n is the total number of atoms in the molecule and p is the
number of atom spheres whose intersection pattern with the
other atom spheres was affected by a conformational change.
The number p is typically much smaller than the number of
moving atoms. We are currently implementing this method.

1.4 Paper Outline

The rest of the paper is organized as follows. In the
next section we present the terminology that will be used
throughout the paper. In Section 3 we describe our method
of dynamic maintenance of molecular surfaces under con-
formation change. In Section 4 we describe our method
for avoiding degeneracies in the implementation, using con-
trolled perturbation. Section 5 deals with some implemen-
tation details. Section 6 gives highlights of our experimental
results. Suggestions for future work are given in Section 7.

"We use the description highly accurate rather than ezact to
avoid confusion with exact geometric computing, since we
are using floating point arithmetic.



Figure 1: A spherical arrangement (left), its full
trapezoidal decomposition (center) and its partial
trapezoidal decomposition (right).

2. TERMINOLOGY

An arrangement of spheres — the subdivision of R?
into vertices, arcs, faces and three-dimensional cells induced
by a given finite collection of spheres. (Arrangements of
curves and surfaces have been intensively studied and are
widely used in Computational Geometry [1, 14].)

Given a set of spheres S = {s1, $2, ..., $n }, the spherical ar-
rangement A(C') is the subdivision of a sphere s; induced
by the collection of circles C = {s;Ns; | s; € S, j # i} which
are formed by its intersections with the other spheres of S.
The left-hand side image in Figure 1 illustrates a spherical
arrangement.

A void — Let b; be the ball representing the atom whose
boundary is the sphere s;. A void of the molecule is a
bounded maximal connected component of R® \ |J7_1b;.
An exposed face of a spherical arrangement is a face that
appears on the boundary of the union of the spheres (outer
boundary or void).

Trapezoidal decomposition — Given a collection C of
little circles on s; (namely intersections of the sphere s;
with other spheres and hence not necessarily great circles),
the trapezoidal decomposition is a refinement of the spheri-
cal arrangement A(C') that makes each face of the arrange-
ment homeomorphic to a disc with at most four edges on its
boundary (see [14] for more details on trapezoidal decom-
positions). In this context, we fix a pair of antipodal points
as poles. We call the great circles through the poles polar
circles and the arcs of polar circles polar arcs. Any point on
a little circle that is tangent to a polar circle is called a polar
tangency. For every polar tangency of every circle (except
for circles that encompass a pole), we extend a polar arc in
either direction until it hits another little circle or reaches a
pole. We do the same from every intersection point of a pair
of little circles. This refinement is called the full trapezoidal
decomposition. Occasionally it is sufficient to use the sparser
partial trapezoidal decomposition, in which polar arcs are ex-
tended only from polar tangency points. Figure 1 illustrates
both the full and partial trapezoidal decompositions of a
spherical arrangement.

ET-tree — a dynamic balanced binary tree over some Fu-
ler tour around a tree T. An Euler tour around a tree is a
maximal closed walk over the graph obtained from the tree
by replacing each edge by a directed edge in each direction.
The walk uses each directed edge once, so if T has n vertices,
the cyclic Euler tour has length 2n—2. If we merge two trees
or split a tree, the new Euler tours can be constructed by
at most two splits and two concatenations of the original
Euler tours, which take O(log n) time while maintaining the
balance of the ET-tree. Each vertex of the tree may occur

several times in the Euler tour, and one of these occurrences
is chosen arbitrarily as a representative. Each ET-node rep-
resents the set of representative leaves below it, and may
hold data that represent these leaves. See [20, 21] for more
details.

3. DYNAMIC MAINTENANCE UNDER
CONFORMATIONAL CHANGES

We compute a highly accurate representation of the bound-
ary of a molecule (both the outer boundary and the voids),
and the surface area of each connected component of the
boundary. The contributions in terms of surface area of
each atom to the outer boundary of the molecule and to the
voids are also calculated. We initially compute this infor-
mation when the molecule is first loaded. For that purpose
we construct the spherical arrangement (Section 2) for each
atom sphere and connect these spherical arrangements of
intersecting atoms to form a subset of the 3D arrangement
of the spheres of the atoms, which is traversed in order to
find the two-dimensional faces of the arrangement that form
the boundary of the molecule.

First we outline the static construction of the surface
(based on [18]), and then we explain the extensions for
the dynamic maintenance of the surface under conformation
changes.

3.1 Thelnitial Construction of the Surface

Halperin and Shelton [18] presented a software package
for computing the boundary surface of the union of spheres,
the surface area of that boundary and the intersection pat-
tern of any sphere with all the other spheres in a given set.
They introduced a perturbation scheme, controlled pertur-
bation, that overcomes degeneracies and precision problems
in computing spherical arrangements while using floating-
point arithmetic. We recently [15] modified this package to
improve the running time, mainly by generalizing the imple-
mentation of the trapezoidal decomposition, which signifi-
cantly reduced the perturbation time for large molecules.

Given a collection S = {s1, s2, ..., Sn} of n spheres, their
arrangement A(S) is built in an incremental fashion (that
is, adding one sphere at a time). The spherical arrangement
of each sphere is connected to the spherical arrangements
of the spheres that intersect it, to construct a subset of the
three-dimensional arrangement of spheres that includes all
the features of that arrangement except the 3-dimensional
cells. A subset of the 2-dimensional faces of this structure
forms the boundary surface of the molecule. We compute
both the outer boundary and the boundary of each of the
voids.

In order to build the arrangements, it is required to find all
pairs of intersecting atoms. The implementation described
in [18] uses a simple grid based solution [17]. This data
structure (called 3D-hash) exploits the fact that Van der
Waals potentials prevent atom centers from coming very
close to one another. It can be computed in ©(n) time,
and determining which spheres intersect any given sphere of
S takes O(1) time. Hence, finding all pairs of intersecting
spheres takes ©(n) time.

After the arrangement of the spheres is built, the bound-
ary of the molecule is found by traversing the regions (two-
dimensional faces) of the arrangement, starting from the
bottommost region. During this traversal, the areas of the



Figure 2: An illustration of a protein fragment with
its backbone DOFs (taken from [25]). The Cs atoms
are part of the side chains, and the rest of the atoms
belong to the backbone. The ¢ torsion angle is the
angle between the plane of AC'NC,, and the plane of
ANC,C’'. The 1 torsion angle is the angle between
the plane of ANC,C’ and the plane of AC,C’N.

traversed regions are calculated and summed, to find the
total surface area. This is repeated for each connected com-
ponent of the boundary.

3.2 TheChainTree

When we allow the atoms of the molecule to move, it is
practically expensive to update the 3D-hash and reconstruct
the arrangements and the surface. Even though the grid
algorithm is asymptotically optimal in the worst case, it
requires reconstruction from scratch of the entire structure,
which may be prohibitively slow for large molecules.

In [26] Lotan et al introduced a novel data structure called
the ChainTree (CT) aiming to speed up the energy compu-
tation during Monte Carlo Simulation of proteins. They
take advantage of the fact that proteins are long kinematic
chains (and not an arbitrary collection of spheres) and that
few degrees of freedom (DOFs) are changed at each step of
the simulation.

A protein is the concatenation of small molecules (the
amino acids) forming a long backbone chain with small side
chains (called residues). Since bond lengths and angles be-
tween any two successive bonds are almost constant across
all conformations at room temperature [13], it is common
practice to assume that the only DOFs of a protein are
its torsion angles. Each amino acid contributes two tor-
sion DOF's to the backbone — the so-called ¢ and v angles.
Thus, the backbone is commonly modeled as a long chain of
links separated by torsion joints. A link, which designates a
rigid part of a kinematic chain [10], is a group of atoms with
no DOFs between them. The side chains may also have
degrees of freedom (between 0 and 4), but in our current
implementation we assume there are no DOFs in the side
chains (see Section 7). Figure 2 illustrates a fragment of a
protein backbone with its DOF's.

The CT is motivated by the following properties of the
kinematic chain model of the protein: Local changes have
global effects, small angular changes may cause large mo-
tions and large sub-chains remain rigid at each step. It is
made of two hierarchies: A transform hierarchy that main-
tains the kinematics of the backbone and a bounding-volume
(BV) hierarchy that approximates the geometry of the pro-
tein. It is a balanced binary tree that combines those two
hierarchies. The leaves of that tree correspond to the links
of the protein’s backbone with their attached side chains.
Each leaf holds both the bounding box that bounds the cor-
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Figure 3: The ChainTree : A binary tree that
combines the transform and BV hierarchies (taken
from [25]).

responding link and side chain and the transform to the
reference frame of the next link. Each internal node has the
frame of the leftmost link in its sub-tree associated with it.
It holds both the bounding box of the boxes of its two chil-
dren, and the transform to the frame of the next node at
the same level (which is the product of the transforms of its
two children). Figure 3 illustrates the CT. Two algorithms
are described for the CT in [26]. The updating algorithm
updates a minimal set of transforms and BVs of the CT af-
ter a k-DOF's change. The testing algorithm uses the CT to
detect self-collisions after a k-DOFs change.

The performance of the CT is summarized in the following
theorem, which is proved in [26].

THEOREM 1. [26] Updating the CT after a k-DOFs change
takes O(klog(%)) time and using the CT to test for self-

collisions after a k-DOF's change takes O(n%) time.
3.3 ThelntersectionsTree

In our application we use the CT to detect self-collisions
and to find the new pairs of intersecting atoms after per-
forming DOF changes. When a DOF change is accepted
(when it incurs no self-collisions), we have to modify some
of the spherical arrangements and portions of the arrange-
ment of the spheres in order to compute the new boundary
surface of the molecule and its area®. We need to find all
the intersecting pairs of atoms which changed due to the
last DOF change. These pairs include deleted pairs that in-
tersected before the change but no longer intersect, inserted
pairs that did not intersect before the change but intersect
after the change and updated pairs that intersected before
and intersect after the change, but have moved relative to
each other. Only pairs of atoms that belong to different
leaves of the CT can be among those pairs we seek (because
a pair of intersecting atoms from the same leaf can never
move relative to one another). To find these pairs we in-
troduce a data structure called the IntersectionsTree (IT),
similar to the EnergyTree in [26] which was used to store
partial energy sums in the Monte Carlo Simulation. In our
case we store pairs of intersecting atoms.

Let o and @ be any two nodes (not necessarily distinct)
from the same level of the CT. If they are not leaf nodes,

2In order to use the surface area in energy calculations for
the acceptance criteria, these calculations will have to be
done in each step of the simulation, and in rejected steps
will be reversed.



let a; and o, (B and () be the left and right children of «
(8), respectively. Let I(a, 3) denote a set that contains all
the pairs of intersecting atoms in which one atom belongs to
the sub-chain corresponding to « (the section of the protein
chain contained in the leaves of the sub-tree of o) and the
other atom belongs to the sub-chain corresponding to (.
If « # (3, we have:

I(a,8) = I(ou, B1) U I(ar, Br) UI(au, Br) UI(ar,B1). (1)

Similarly, the set I(«, «) of intersecting atom pairs inside the
sub-chain corresponding to « can be decomposed as follows:

I(o, ) = I(ay,aq) U I(ar, ar) U I(ay, ap). (2)

These two recursive equations yield the IT. The IT has as
many levels as the CT. Its nodes at any level are all the
pairs (a, 3), where a and 8 are nodes from the same level
of the CT. If o # 8 and they are not leaves of the CT, then
the node (a, ) of the IT has four children (o, 51), (e, Br),
(a1, 8r) and (ar,(3). A node (a,a) has three children
(az, 1), (ar, ) and (ag, ). The leaves of the IT are all
pairs of leaves of the CT (hence correspond to pairs of links
of the protein chain). Each node (a, ) of the IT holds
the intersecting atom pairs of I(«, 3) after the last accepted
simulation step. The root holds all the intersecting pairs.

To find the modified intersecting pairs (deleted, inserted
or updated pairs), we use the testing algorithm (the same
algorithm that finds self intersections). The difference be-
tween our definition of a pair of intersecting atoms and a pair
of atoms that cause a self clash is in the distance between
their centers. We determined the minimal distance allowed
between two atom centers by choosing a distance such that
the original conformation of our input molecules (taken from
the Protein Data Bank [4]) is free from self clashes. When-
ever the testing algorithm prunes a search path, it marks
the corresponding node in the IT to indicate that the inter-
secting pairs stored in this node are unaffected. The update
of the intersecting pairs at the nodes of the IT is done by
a recursive traversal of the tree. To update the intersecting
pairs at an unmarked node, we first update the intersecting
pairs of its unmarked children. Then we compute the inter-
secting pairs of that node using Equations (1) and (2). The
intersecting pairs of an unmarked leaf are found by checking
all the pairs of atoms from the two links that correspond to
that leaf. When we test a node that corresponds to a pair
of nodes from the CT whose BVs became too far apart after
the last change, we clear the intersecting pairs at this node
and at the sub-tree of that node.

We summarize the worst-case performance of the IT in
the following theorem.

THEOREM 2. The overall cost of updating the IT is® O(n%).

The proof for this Theorem is the same proof given for the
running time of the testing algorithm in [26]. Note that this
running time holds even if we allow DOFs in the side chains.
In such case, when a side chain DOF contained in some link
of the CT is changed, the coordinates of the atoms of this
link will be updated and these atoms will have to be tested
for intersections against each other. The bounding volume of

5The O(n%) bounds in Theorems 1 and 2 are worst-case
bounds, but the typical practical performance is much better
and constitutes a negligible fraction of the overall time of an
update step (see Figure 5).

this link will be updated as well. Since the number of atoms
in each link is bounded by a constant (up to 20 atoms), this
extra work will be done in constant time per leaf of the IT
and will not affect the asymptotic running time.

3.4 Updating the Arrangements

As we update the IT, we store in a separate list, called
the Modified Intersections List (MIL), all the modified inter-
secting pairs (deleted, inserted or updated) we found. This
list is then used to update the spherical arrangements: For
each pair of inserted intersecting atoms, we add their inter-
section circle to the spherical arrangements of both atoms.
For each pair of updated intersecting atoms, we remove their
old intersection circle from their spherical arrangements and
add their new intersection circle to both arrangements. For
each pair of deleted intersecting atoms, we remove their old
intersection circle from the spherical arrangements of both
atoms. (See Section 6 for an illustration.)

LEMMA 3. The overall cost of updating the spherical ar-
rangements is O(p), where p is the number of atoms whose
spherical arrangement is involved in a change.

PROOF. Since the complexity of each spherical arrange-
ment is constant [17], the cost of adding (removing) an in-
tersection circle to (from) a spherical arrangement is O(1).
Since the number of intersection circles on each atom is
bounded by a constant, the number of modified intersection
circles on each atom is also bounded by a constant. There-
fore the number of modified intersection circles is O(p), and
the overall cost of updating the spherical arrangements is

O(p). O

The relation between p and the number of simultaneous
DOF changes in experiments is shown in Figure 4.

3.5 Updating the Connectivity of the Surface

After the modification of the spherical arrangements, we
have to reconstruct the outer boundary and void boundaries
of the molecule and to calculate their areas, as well as the
contribution of each atom to the outer boundary and to
the voids. This update takes ©(n) time, since we traverse
the entire boundary, which has an overall ©(n) complexity
in the worst case. However, a great deal of the required
calculations depend on the number p of modified atoms in
the current step.

Avoiding the traversal of the spherical arrangements that
have not changed requires some more care in terms of iden-
tifying connected components of the boundary. Consider
a degenerate scenario where in two consecutive steps the
boundary consists of a single connected component — the
outer boundary; in such case it would have been trivial to
recalculate these attributes in time proportional to the num-
ber p of modified atoms. However, in general there can
be topological changes and connected components of the
boundary may merge, split, newly appear or disappear. We
now present an efficient approach that despite the topologi-
cal changes can accurately recompute the attributes of every
boundary component in total time O(plog® n).

For that purpose we adapt tools from dynamic mainte-
nance of graph connectivity. We define the following graph:
Each exposed region of the spherical arrangements becomes
a vertex of the graph; two vertices of the graph are con-
nected by an edge if their respective regions are adjacent on



the boundary of the union of all spheres. As the molecule un-
dergoes DOF changes, some regions are modified or deleted
and new regions are created. These changes are reflected
in the graph by deleting the vertices of deleted and mod-
ified regions and adding the vertices of new and modified
regions. For each deleted region, all the edges incident to
its vertex in the graph are deleted. In order to maintain the
connected components of the boundary of the molecule, we
simply need to maintain the connected components of this
graph as the molecule undergoes DOF changes. One con-
nected component of the graph represents the outer bound-
ary of the molecule and the rest of the components represent
the voids.

In [21] Holm et al present a poly-logarithmic determin-
istic fully-dynamic algorithm for graph connectivity. Their
algorithm maintains a spanning forest of a graph, answers
connectivity queries in O(logn) time in the worst case* and
uses O(log® n) amortized time per insertion or deletion of an
edge. Here n, the number of vertices of the graph, is assumed
to be fixed as edges are added and removed. In our case the
vertices are not fixed, since we create and delete regions
during the DOF changes. However, the number of vertices
throughout the simulation remains O(n) [17, 26], and there-
fore the algorithm still works with the same amortized time
bound. We next describe our extension of this algorithm to
efficiently maintain the surface area of the boundary of the
molecule without traversal of the entire boundary.

The connectivity algorithm in [21] maintains a spanning
forest I’ of the input graph G, and uses for this purpose
a data structure called ET-tree (see Section 2). The edges
are split into fmax = |log, n| levels, and a hierarchy F =
Fo O F1 O ... D Fy,.. of spanning forests is maintained,
where F; is the subforest of F' induced by the edges of level
> i. The amortization argument of the algorithm is based
on increasing the levels of the edges (the level of each edge
can be increased at most fmax times).

In [21] each representative vertex of an ET-tree in the
forest F; holds a key for each incident level i edge and each
internal node of the ET-tree holds the number of represen-
tative leaves and one of the incident edges in its sub-tree.
This information is maintained in O(logn) time per split
or merge of the ET-trees. In a similar fashion, we add to
each representative vertex the area of its respective region.
Each internal node of the ET-tree will hold the sum of the
areas of the representative leaves in its sub-tree. The root
of each tree of F' will hold the total surface area of that
connected component. Maintaining the area information in
the ET-trees takes O(logn) time per each split or merge of
the ET-trees. Maintaining this information in the spanning
forest F takes O(log®n) amortized time when an edge is
inserted or deleted. To summarize:

THEOREM 4. (i) The amortized cost of recalculating the
surface area of the outer boundary and voids of the molecule
is O(plog®n), where p is the number of atoms whose spher-
ical arrangement is involved in a change. (i) The cost of
computing the contribution of an atom to the boundary and
all the voids is O(logn).

PROOF. (i) The number of inserted and deleted regions
involved in a change is O(p), as the complexity of each spher-

4This time bound can be further improved to
O(logn/loglogn) if we use ©(logn)-ary trees instead
of binary trees to store the ET-trees of the spanning forest.

ical arrangement is bounded by a constant. Since each in-
sertion or deletion of an edge of G takes O(log® n) amortized
time, the overall amortized cost is O(plog?n). (ii) The num-
ber of regions in an atom is bounded by a constant. Given
any region of the atom, we can find the connected compo-
nent it belongs to in O(log n) time by finding the root of its
tree in the spanning forest F'. Therefore we can compute
the contribution of the atom to the surface area of all the
components in O(logn) time. [

We are currently implementing the graph connectivity algo-
rithm suggested in this section. Early results show that this
implementation improves the running time of our applica-
tion by up to 60% when changing a small number of DOF's
simultaneously. We intend to report on more detailed results
of this implementation in the near future.

4. CONTROLLED PERTURBATION

As mentioned earlier, the original static construction [18]
uses controlled perturbation to overcome degeneracies and
precision problems in the computation of the molecular sur-
faces with floating-point arithmetic. We extended the static
scheme to work in the dynamic setting. We first describe
the original scheme, and then the modifications required for
the dynamic case.

4.1 Static Controlled Perturbation

A possible way to compute robustly without resorting to
exact computation during the evaluation of predicates, is to
(slightly) perturb the geometric objects such that consistent
results of the predicates can be certified even when using fi-
nite precision arithmetic. A degeneracy occurs when a pred-
icate evaluates to zero. The goal of the perturbation scheme
is to cause all predicates used during the algorithm to eval-
uate sufficiently far away from zero so that finite precision
arithmetic could enable us to safely determine whether they
are positive or negative. Hence, while certifying the con-
sistency of the predicates, all degeneracies are eliminated.
Controlled perturbation has been successfully used with ar-
rangements of polyhedral surfaces [28], with arrangements of
circles [16], and recently with Delaunay triangulations [12].
The magnitude of the perturbation is utterly negligible in
the context of molecular surfaces.

In the case of arrangements of spheres, the general po-
sition (non-degeneracy) assumption means that there is no
outer or inner tangency between two spheres, that no three
spheres intersect in a single point, and that no four spheres
intersect in a common point. The controlled perturbation
scheme ensures that all the features of the spherical arrange-
ments (vertices and arcs) are at least some given € apart.

As mentioned earlier, the arrangement .A(S) is built incre-
mentally. Each time we check if there is a potential degen-
eracy induced by the newly added sphere. If so, we perturb
that sphere, so no degeneracies will occur. The main idea
is to carefully relocate the sphere — move the sphere suffi-
ciently to avoid all degeneracies, but not too much. We use
a resolution parameter £ that depends on the floating-point
precision and the type of operations (but is assumed to be
given here). For any given resolution value ¢ > 0, a pa-
rameter ¢ that depends on € and m (the maximum number
of spheres intersecting any single sphere, which is a con-
stant for the hard sphere model [17]) is determined. Each
sphere center is perturbed by at most § to resolve all the



degeneracies. See Section 6 for the values of § and ¢ in our
experiments.

Another kind of degeneracies taken care of is degeneracies
that result from the trapezoidal decomposition (Section 2).
Since in the trapezoidal decomposition we are free to choose
a direction for the poles, the poles are chosen so that the
angular separation of the additional arcs (of the trapezoidal
decomposition) will be above a certain threshold w.

4.2 Dynamic Controlled Perturbation

When we extend the controlled perturbation scheme to
the dynamic case, we have two goals in mind: (1) perturb as
few atoms as possible, for efficiency reasons, and (2) avoid
cascading errors as we perturb an atom several times or
change a torsion angle several times.

As described in Section 3, after each set of simultaneous
DOF changes we build a list of atom pairs (the MIL) whose
intersection circles should be removed or added (or both)
to their respective spherical arrangements. Removing the
old intersection circles cannot induce new degeneracies, but
adding the new circles can. We must therefore test, after
each DOF change, for new degeneracies, and perturb the
atoms if needed. As mentioned, we wish to test as few atoms
as possible for degeneracies after each DOF change.

As in the static perturbation, we want to keep all the
features of the spherical arrangements at least € apart, for
the given resolution parameter €. For that goal it is not
enough to know the new intersecting atom pairs, because
a degeneracy occurs also when atoms almost intersect each
other. Therefore we modify the MIL to include pairs of
atoms which almost intersect each other. These pairs are
identified while finding the intersecting pairs of unmarked
leaves of the I'T. When the two checked atoms do not inter-
sect, we check if their centers are less than r1 +r2 +¢ + 20
apart (where 71 and ro are the radii of the atoms, ¢ is the
resolution parameter of the perturbation and § is the per-
turbation parameter). If so, we add them to the MIL (but
not to the IT itself). By adding these pairs, we ensure that
all pairs of atoms that intersect, or are less than ¢ apart,
will be available to the dynamic perturbation routine. The
added 20 term is required to ensure that a pair of atoms
that were more than ¢ apart will remain more than € apart
after the (possible) perturbation of both of them.

Now that we have a list of all the modified intersections
and near intersections, we construct a list of all the atoms
that might induce degeneracies. These are the atoms that
belong to inserted and updated pairs and the atoms that
belong to near intersecting pairs. For each of these atoms
we perform the same tests that were performed in the static
perturbation to assure that all the features are € apart. In
the static perturbation we used the 3D-hash (the structure
mentioned in Section 3.1) to find all the atoms that intersect
or nearly intersect the tested atom. Now we do not have the
3D-hash. However, when we built the spherical arrangement
of each atom, we kept for each spherical arrangement a list
of the atoms that intersect that atom. Taking this list and
modifying it with the information stored in the MIL (re-
moving atoms of deleted pairs and adding atoms of inserted
and almost intersecting pairs), we can get the list of atoms
intersecting or almost intersecting the tested atom after the
current DOF change. Each atom tested for degeneracies is
checked against this list.

When we find a degeneracy, we perturb the atom center

within a sphere of radius § around the original center of the
atom within its reference frame. This ensures that the cen-
ter of the perturbed atom will be at most ¢ apart from its
accurate place within the frame, which prevents cascading
of errors caused when perturbing the same atom many times
(in different steps). This, however, is not the case when we
compute the global coordinates of the atom center. We have
taken measures to avoid cascading of errors in transforma-
tions; we omit details for lack of space. The perturbation
process is repeated until the atom no longer induces a de-
generacy. For each perturbed atom we must re-compute its
entire spherical arrangement including the circles of inter-
sections of this atom with other atoms.

Next we need to take care of the degeneracies that result
from the trapezoidal decomposition. The atoms that need
to be tested are atoms on which we add new polar arcs (due
to changes in the relative position of some of the atoms
that intersect with them). These are the same atoms whose
centers were tested earlier for degeneracies. Again we have
to re-compute the entire spherical arrangement of any atom
whose poles direction is changed (as well as the intersection
circles of this atom with other atoms).

THEOREM 5. Using the same perturbation parameters o
and w of the static perturbation, the expected update time of
the spherical arrangements including the perturbation time

is O(p).

PROOF. The perturbation parameters § and w calculated
in [18] ensure the finding of a non degenerate atom center
or pole direction for a given atom in expected O(1) time.
Since the perturbation tests (and possibly the perturbations
themselves) are done only for modified atoms, the dynamic
perturbation takes expected O(p) time (recall that p is the
number of atoms whose spherical arrangement is involved in
a change). For each perturbed atom we have to reconstruct
its entire spherical arrangement, which takes constant time,
since the size of each spherical arrangement is bounded by
a constant. [

5. IMPLEMENTATION DETAILS

Our software is written in C4++ with an Open GL graphics
interface.

5.1 Improvements to the Static Construction
of the Surface

As mentioned earlier, we modified the static construction
of the surface as originally described in [18]. The main im-
provement is in the implementation of the trapezoidal de-
composition. The original implementation finds a single pole
direction (for all the spherical arrangements at once) that
induces no degeneracies in all the atoms; this uniform direc-
tion indeed considerably simplifies the implementation (for
example, assuming a north pole at (0,0,1) simplifies the
calculation of the polar tangency points). However, using a
single pole direction for all the atoms incurs a huge perfor-
mance burden in some cases. When running the application
with large molecules (thousands of atoms), finding a single
pole direction that eliminates all degeneracies may take a
long time (a large number of constraints must be met for
each pole direction, which takes a long time to determine
for large molecules, and in addition to that a large num-
ber of pole directions are sampled and checked before we
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Figure 4: The average number of modified atoms
(left) and average number of modified intersection
circles (right) as a function of the number of simul-
taneous DOF changes. The average is only over the
accepted simulation steps out of a total of a 1,000
steps in each simulation.

find a valid direction), or even be impossible. Therefore
we modified the application to choose a (possibly) differ-
ent pole direction for each atom. This modification later
became essential for our dynamic maintenance under con-
formation changes, since it allows us to change the pole di-
rection of a single atom without affecting the pole directions
of the rest of the atoms. For more details regarding this and
other improvements, see [15]. Table 1 in Section 6 shows
the construction times of the surface before and after our
modifications.

5.2 Building the Protein Chain

Our software reads PDB files [4]. We identify the back-
bone and side-chain atoms, and divide them to maximal
rigid groups (or links) without DOFs. We construct the
backbone chain, and for each link of the chain compute its
reference frame, and the transformation to the next link in
the chain. For this purpose we use Atomgroup Local Frames
as described in [35]: The origin of each frame (except for
the first frame whose origin is the center of the backbone
N atom) is the center of the backbone C’ or C, atom that
belongs to the relevant link. The z-axis of each frame (ex-
cept for the first frame whose axes are the global axes) is the
vector from the frame origin along the rotatable bond that
connects this link to the previous link. The x-axis is perpen-
dicular to the z-axis, and the y-axis completes the frame to
form a right-hand system. Once we have a coordinate frame
for each rigid link we can compute the transformation from
each frame to its following frame. Next we use these trans-
formations to compute the local frame coordinates of each
atom center. From that point on we use only local frame
coordinates in our computations. When we need to work
with coordinates that belong to different frames, we use the
transformation between them to convert the coordinates to
the same frame. We only have to compute the global coor-
dinates of the atoms for displaying the molecule.

6. EXPERIMENTAL RESULTS

The experiments described in this section were all ex-
ecuted on a 1 GHz Pentium III machine with 2 GB of
RAM. The perturbation parameters that were used are 6 =
10776 =107% and 1 — cos(w) = 107°.

Table 1 shows the total time it takes to build the static
spherical arrangements (including the perturbation time)
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Figure 5: The average relative times of the main
components of our application in a single accepted
simulation step.

with the original implementation as well as with the im-
proved implementation, where m is the number of atoms
that intersect a single atom. The new implementation has
other technical improvements in addition to the improve-
ment described in Section 5.1 [15]. As can be seen, the
improvements to the original implementation have been a
crucial prerequisite to the effectiveness of the dynamic solu-
tion.

Table 2 describes the proteins used in our experiments
reported here. In PDB files that contain more than one
backbone chain, we handle only the first chain.

Since the update time of the spherical arrangements de-
pends on the number of modified intersecting circles in each
step of the simulation, and the update time of the surface
area depends on the number of modified atoms, we tested
the relation between the number of simultaneous DOF
changes, and the number of modified intersection circles and
modified atoms. Each simulation consisted of a 1,000 steps.
At each step the changed DOFs were picked uniformly at
random and the magnitude of the change was chosen uni-
formly at random between —1° and 1° (we chose small angle
changes in order to increase the number of accepted steps).
The results, reported in Figures 4 & 5 and in Table 3, refer
only to accepted simulation steps whose number was usu-
ally several hundreds (the time taken by rejected simulation
steps is negligible compared to accepted steps). The results
show a strong connection between the number of simulta-
neous DOF changes and the number of modified atoms and
intersection circles. They also show that for small values of
the number of simultaneous changes, the number of modi-
fied atoms and intersection circles is less affected by the size
of the protein.

In Table 3 we compare the time it takes to update the
surface after a k-DOF change to the time it takes to recon-
struct the surface from scratch. The reconstruction time is
the time it takes to construct the static surface (not includ-
ing the time spent on the construction of the CT and IT).
The update time is the average time (for accepted steps) it



Table 1: Total time (in seconds) of computing the surface (including the perturbation).

| Input File | # of Atoms | Max m | Mean m | Single Pole Direction

| Multi Pole Directions |

1BZM.pdb 2034 10 5.74 14.92 8.31
1JKY . pdb 5734 13 6.24 163.68 26.94
TAT1.pdb 7106 12 5.70 63.80 28.40
1L7X.pdb 12882 12 5.85 > 24 hours 54.50

Table 2: Proteins used in experiments; m is the number of spheres intersecting any single sphere.
| Input File | # of Atoms | # of Amino Acids | # of Links | Max m | Mean m |

4PTI.pdb 454 58 117 10 5.79
2GLS.pdb 3636 468 937 13 6.33
1JKY.pdb 5614° 748 1497 13 6.24
1EA0. pdb® 11180 1452 2905 13 6.14

takes to update the CT, the IT, the spherical arrangements
and the surface. We made this comparison for several val-
ues of simultaneous DOF changes. For each update time,
we give the percentage of that time from the reconstruc-
tion time. We can see that as the proteins grow larger, our
method becomes more effective. As expected, the update
is faster for small numbers of simultaneous DOF changes.
It is interesting to notice that the percentages in this table
are very similar to the percentages of the modified atoms
in each simulation, which means that in practice our imple-
mentation runs in time proportional to p.

Figure 5 shows the fractions of the average running time
taken by the main components of our application. It is im-
portant to notice that the update of the IT, while being
the component with the highest asymptotic worst-case time
complexity, takes a small percentage of the total running
time.

In Figure 6 we see the effect of a single DOF change on the
structure of the backbone. On the top we see the backbone
atoms of 4PTT in their original conformation. On the bot-
tom we see the backbone after a 180° change in the 1 angle
of the 13th residue. We can see that all the atoms located
after that residue in the chain moved. However, our applica-
tion detected only 13 modified intersection circles and that
only 14 atoms out of 454 were affected by this change.

In Figure 7 we see the spherical arrangement of the N
atom of the 14th residue that was affected by the single
DOF change in 4PTI. The image on the left shows the ar-
rangement before the change, and the image on the right
shows it after the change.

7. FUTURE DIRECTIONS

In our implementation we dynamically maintain the van
der Waals and solvent accessible surfaces. A natural ex-
tension is to dynamically maintain the smooth molecular
surface. In [17] a simple transformation is described for
computing the smooth surface from the solvent accessible
surface. Another possible (and fairly straightforward) ex-
tension is to allow DOFs in the side chains of the protein.
We also plan to measure how the graph connectivity algo-

5The number of atoms here is smaller than the number given
for the same molecule in Table 1, because here we only count
the atoms of the first chain of the molecule, whereas in Ta-
ble 1 we count all the atoms of the molecule.

5This molecule appears on the first page.

Figure 6: The Backbone of 4PTI before (top) and
after (bottom) a 1-DOF change. The changed DOF
is marked.

The spherical arrangement of one of
the atoms of 4PTI that were affected by the DOF
change, before (left) and after (right) the change.

Figure 7:



Table 3: Time (in seconds) of static reconstruction vs. dynamic modification of the surface.

| Input File | # of Atoms | static | 1-DOF | 5-DOFs | 20-DOF's | 50-DOF's |
4PTI.pdb 454 1.99 0.12 (6%) | 0.49 (24.6%) | 0.85 (42.7%) | 1.33 (66.8%)
2GLS . pdb 3636 | 18.75 | 0.73 (3.9%) | 1.62 (8.6%) | 2.81 (15%) | 4.45 (23.1%)
1JKY .pdb 5614 | 27.97 | 0.86 (3.1%) 1.68 (6%) | 3.07 (11%) | 4.37 (15.6%)
1EAO.pdb 11180 | 54.72 | 1.78 (3.2%) | 3.46 (6.3%) | 5.37 (9.8%) | 6.86 (12.5%)

rithm suggested in Section 3.5 would improve the running
time of our implementation.
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