
Computational Geometry — Fall 2005/6 — Dan Halperin

Assignment no. 3
due: January 11th, 2006

Exercise 3.1 In some applications one is interested only in the number of points that lie in a range
rather than reporting all of them. Such queries are often referred to as range counting queries. In this
case one would like to avoid paying the O(k) additive term in the query time.
(a) Describe how a 1-dimensional range tree can be adapted such that a range counting query can be
performed in O(log n) time. Prove the query time bound.
(b) Describe how d-dimensional range counting queries can be answered in O(logd n) time. Prove the
query time bound.
(c) Describe how fractional cascading can be use to improve the query time by a factor O(log n) for 2-
and higher dimensional range counting queries.

Exercise 3.2 Give an example of a set of n points in the plane, and a query rectangle for which the
number of nodes of the kd-tree visited is Ω(

√
n).

Exercise 3.3 The algorithm we saw in class for searching in a kd-tree (where the search is guided
by comparing the region of a node with the query region) can also be used when querying with ranges
other than rectangles. For example, a query is answered correctly if the range is a triangle.
(a) Show that the query time for range queries with triangles is linear in the worst case, even if no
points are reported at all. Hint: Choose all the input points to lie on the line y = x.
(b) Suppose that a data structure is needed that can answer triangular range queries but only for
triangles whose edges are horizontal, vertical or have slope +1 or −1. Devise a linear size data structure
that answers such queries in O(n3/4 + k) time, where k is the number of points to be reported. Hint:
Choose 4 coordinate axes in the plane and use a “4-dimensional” kd-tree.
(c) Improve the query time to O(n2/3 + k).

Exercise 3.4 Given a star-shaped polygon P with n vertices, show that after O(n) preprocessing
time, one can determine whether a query point lies in P in O(log n) time.

Exercise 3.5 (optional!) Give a randomized algorithm to compute all pairs of intersecting segments
in a set of n line segments in expected time O(n log n+A), where A is the number of intersecting pairs.


