Computational Geometry

Fall 2005/6

Dan Halperin

Assignment no. 4

due: January 25th, 2006

Exercise 4.1 Let P be a set of n points in the plane. Give an $O(n \log n)$ time algorithm to find for each point p in P another point in P that is closest to p.

Exercise 4.2 Give an efficient algorithm to compute the *medial axis* of a convex polygon.

Exercise 4.3 Let *L* be a set of lines in the plane. Give an $O(n \log n)$ time algorithm to compute an axis-parallel rectangle that contains all the vertices of the arrangement $\mathcal{A}(L)$ in its interior.

Exercise 4.4 Let S be a set of n segments in the plane. A line ℓ that intersects all segments of S is called a *transversal* or *stabber* for S.

(a) Give an $O(n^2)$ algorithm to decide if a stabler exists for S.

(b) Now assume that all segments in S are vertical. Give a linear time algorithm to decide if a stabber for S exists.

(CGAA Ex. 8.16)