Computational Geometry - Fall 2005/6 - Dan Halperin

Assignment no. 4

due: January 25th, 2006

Exercise 4.1 Let P be a set of n points in the plane. Give an $O(n \log n)$ time algorithm to find for each point p in P another point in P that is closest to p.

Exercise 4.2 Give an efficient algorithm to compute the medial axis of a convex polygon.

Exercise 4.3 Let L be a set of lines in the plane. Give an $O(n \log n)$ time algorithm to compute an axis-parallel rectangle that contains all the vertices of the arrangement $\mathcal{A}(L)$ in its interior.

Exercise 4.4 Let S be a set of n segments in the plane. A line ℓ that intersects all segments of S is called a transversal or stabber for S.
(a) Give an $O\left(n^{2}\right)$ algorithm to decide if a stabber exists for S.
(b) Now assume that all segments in S are vertical. Give a linear time algorithm to decide if a stabber for S exists.
(CGAA Ex. 8.16)

