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Computational geometry, 
standard assumptions
� computational model: the real RAM
� each basic operation on a small (constant-

size) set of simple objects takes unit time
� general position
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� general position
� these assumptions often do not hold in 

practice
� standard cs-theory asymptotic performance 

measures
� many times poor predictors of practical 

performance



Applied computational geometry

the goal:

(re)design and implement geometric 

6

(re)design and implement geometric 
algorithms and data structures that are at 
once certified and efficient in practice



What’s the problem? 

Q: Given two lines l1 and l2 in the plane, does 
the line l1 pass through the intersection point   
l1 ∩ l2?
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l1 ∩ l2?



What’s the problem? cont’d
 

negative zero positive

orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))

[Kettner et al]



What’s the problem? cont’d
CG algorithms strongly couple numerical and 

combinatorial/topological data
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[Kettner et al]
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Problem 1: Motion planning

11

decide whether a collision-free motion for the moving object from start 
to goal exists, and if so plan the motion



Problem 2:
Aspect graph of a terrain
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design a compact representation of all the different 2D images of a 
polyhedral terrain, so that the view in a given query direction can be 
efficiently retrieved



Problem 3:
Is the 3D object interlocked?
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decide whether an assembled object is interlocked, namely cannot be 
taken apart with two hands



Problem 4:
Minimum area triangle
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find the three of the given points that define the minimum area triangle



Q: What is the connection between Problems 
1,2,3 and 4?

A: The best solution known to each of them 
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A: The best solution known to each of them 
was obtained with arrangements



given a collection of curves on a surface, the 
arrangement is the partition of the surface into 
vertices, edges and faces induced by the curves

Topic I: Arrangements of curves and 
surfaces



What are arrangements?
� an arrangement of a set S of geometric objects is the 

subdivision of space where the objects reside induced by 
S

� possibly non-linear objects (circles), bounded objects 
(segments), higher dimensions (planes, simplices)
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(segments), higher dimensions (planes, simplices)
� numerous applications in robotics, molecular 

biology,vision, graphics, CAD/CAM, statistics, GIS
� have been studied for decades - Matoušek (2002) cites 

Steiner,1826; nowadays studied in combinatorial and 
computational geometry



Solving it with arrangements
� transforming to arrangements 
� combinatorial analysis
� design of data structures / algorithms

implementation
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� implementation



Arrangements of lines: combinatorics
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the complexity of an arrangement is the overall number of cells of all 
dimensions comprising the arrangement

for planar arrangements we count vertices, edges, and faces

Q: what is the complexity of an arrangement of n lines?



Basic theorem of 
arrangement complexity
� the maximum combinatorial complexity of an 

arrangement of n well-behaved curves in the plane 
is O(n^2); there are such arrangements whose 
complexity is Ω(n^2)
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� more generally
the maximum combinatorial complexity of an 
arrangement  of n well-behaved (hyper)surfaces in 
Rd is O(nd); there are such arrangements whose 
complexity is Ω(nd)



Arrangements in the course
� arrgs underlie each of the main topics and 

some of the `additional topics’

� the practice of 2D arrangements, progress 
and experience; CGAL’s arrgs package
envelopes of surfaces (~2.5D)
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� envelopes of surfaces (~2.5D)

� constructing 3D arrangements
� coping with higher-dimensional arrangements 

(with applications of 4D and 5D arrgs)
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[Berberich et al]



Topic II: Minkowski sums
� Given two sets P and Q, their Minkowski 

sum P  ⊕ Q = {p+q | p ∈ P, q ∈ Q}
� When P and Q are polygonal sets, their 

Minkowski sum is a polygonal planar map
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Minkowski sum is a polygonal planar map



Typical usage: collision detection
Q - a polygonal object that moves by translation
P - a set of polygonal obstacles
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reference

point

Claim: When translating, Q intersects P 
iff  ref(Q) is inside P ⊕ -Q



input sum

complexity

P is convex

Q is convex
Θ(m+n)

Fundamental complexity bounds
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P is convex

Q is general
Θ(m n)

[KLPS]

P is general

Q is general
Θ(m

2
 n

2
)

 

P with m vertices, Q with n vertices



Applications of Minkowski sums: 
Minimum distance separation

Translate the small 

polygon P such that it 

will not penetrate Q Separated polygons
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Find the closest 

point to the 

origin that is 

outside  Q ⊕ -P



Applications of Mink sums, cont’d: 
Polygon containment
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Can a polygon P be 

place inside another 

polygon Q?

Compute (B \ Q) ⊕⊕⊕⊕ -P:

(B is a bounding box of Q)  

P can be placed inside Q

when the reference point is 

placed in one of the holes



Applications of Mink sums, cont’d: 
Robot motion planing
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Minkowski sum of the 

robot with obstacles

computed planar 

map

robot, obstacles and 

computed path



Minkowski sums of convex polygons

� properties
� complexity
� algorithm (overlaying 1D arrangements)
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Minkowski sums in the course
� the general polygonal case: theory and 

practice
� offset polygons
� summing 3-polytopes
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� summing 3-polytopes

� the general polyhedral case: current state 
and challenges 
Minkowski  sums under rotation, video [Jyh Ming Lien]



Topic III: Geometric rounding
� EGC: the exact geometric computing 

paradigm
� EGC vs. fixed-precision approximation
� number types in geometric computing
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� number types in geometric computing
� who needs rounding
� what is difficult about rounding
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Snap rounding
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while using limited bit-size coordinates, 
snap rounding has nice preservation properties: 
geometric and topological



(Snap) Rounding in the course
� snap rounding arrangements of segments: 

properties and basic algorithm
� improved algorithms
� improved rounding
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� improved rounding

� rounding in 3D: current state and challenges



Topic IV:
Movable separability and 
assembly planning
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mechanical assembly planning, video
assembly planning guidance



A variety of movable separability 
problems 
� interlocked polygons
� example of a hard separability problem for 

polygons
� casting
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� casting
� partitioning in 3-space,

video

[Snoeyink-Stolfi 93]

[O’Rourke, based on Chazelle et al ‘84]



Movable separability in the course
� separation sequences for convex objects in 2D,3D
� 2-handed assembly planning, non-directional 

blocking graphs, and motion-space; infinite 
translations in the plane

� improved algorithm: infinitesimal motions
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� improved algorithm: infinitesimal motions
� practice: infinit. motions, infinite translations in 3D

� tolerancing, sensitivity analysis
� assembly planning with more complex motions
� optimization
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Administrivia
� grade:

20% multiple-choice exam
80% assignments (one large-scale)

� helpdesk: Monday 1500 – 1600, ACG lab: 
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� helpdesk: Monday 1500 – 1600, ACG lab: 
Efi Fogel (~efif) and Eric Berberich (~ericb)

� office hours: Monday 1900 – 2000,  
Schreiber 219
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Computational Geometry Algorithms LibraryComputational Geometry Algorithms LibraryComputational Geometry Algorithms LibraryComputational Geometry Algorithms Library
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Computational Geometry Algorithms LibraryComputational Geometry Algorithms LibraryComputational Geometry Algorithms LibraryComputational Geometry Algorithms Library

project goal (1996): "make the large body of 
geometric algorithms developed in the field of 
Computational Geometry available for use in 
academia and industry“



The CGAL project and library
� technical criteria: robustness, efficiency,

ease of use, homogeneity

� strong connection to ongoing research:
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� strong connection to ongoing research:
engineering geometric algorithms =
algorithm engineering + 
robust geometric computing



The CGAL project in numbers
500,000 lines of C++ code
10,000 downloads/year (+ Linux distributions) 
3,500 manual pages
3,000 subscribers to cgal-announce
1,000 subscribers to cgal-discuss
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1,000 subscribers to cgal-discuss
120 packages
60 commercial users
20 active developers
12 months release cycle
2 licenses: Open Source and commercial



Delaunay triangulations and their 
relatives as modeling tools
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J. Feringa

N. Amenta



Algorithmic motion planning
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THE END
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