APPLIED aspects of COMPUTATIONAL GEOMETRY

Introduction

Dan Halperin
School of Computer Science
Tel Aviv University

Lesson overview

- Background
- The main topics
- Course mechanics
- Additional topics

- Background
- The main topics
- Course mechanics
- Additional topics

Bookmarks Tools Help

W http://en.wikipedia.org/wikij/Computational_geometry

(- - G- omputational geometry definition

```
Chair L... ק Computation.
    article discussion edlit this page history
```


Computational geometry

From Wikipedia, the free encyclopedia
Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry.
The main impetus for the development of computational geometry as a discipline was progress in computer graphics, computer-aided design and manufacturing (CAD/CAM), but many problems in computational geometry are classical in nature.

Other important applications of computational geometry include robotics (motion planning and visibility problems), geographic information systems (GIS) (geometrical location and search, route planning), integrated circuit design (IC geometry design and verification), computer-aided engineering (CAE) (programming of numerically controlled (NC) machines)

The main branches of computational geometry are

- Combinatoriai compuiationai geometry, aiso cailed aigorithmic geometry, which deais with geometric objects as discrete entities. A groundlaying book in the subject by Preparata and Shamos dates the first use of the term "computational geometry" in this sense by 1975. [1]
- Numerical computational geometry, also called machine geometry, computer-aided geometric design (CAGD), or geometric modeling, which deals primarily with representing real-world objects in forms suitable for computer computations in CAD/CAM systems. This branch may be seen as a further development of descriptive geometry and is often considered a branch of computer graphics or CAD. The term "computational geometry" in this meaning has been in use since 1971. [2]

Contents [hide]

1 Combinatorial computational geometry 1.1 Problem classes
1.1.1 Static problems
1.1.2 Geometric query problems
1.1.3 Dynamic problems
1.1.4 Variations

2 Numerical computational geometry

utational geo...	(3) Downloads	E AcG09	(-) Microsoft PowerPoi...		100\%	rack 12:01

Computational geometry, standard assumptions

- computational model: the real RAM
- each basic operation on a small (constantsize) set of simple objects takes unit time
- general position
- these assumptions often do not hold in practice
- standard cs-theory asymptotic performance measures
- many times poor predictors of practical __performance

Applied computational geometry

the goal:
(re)design and implement geometric algorithms and data structures that are at once certified and efficient in practice

What's the problem?

Q: Given two lines I1 and I2 in the plane, does the line 11 pass through the intersection point I 1 ก I ?

What's the problem? cont'd

orientation $(p, q, r)=\operatorname{sign}((p x-r x)(q y-r y)-(p y-r y)(q x-r x))$
negative zero positive

What's the problem? cont'd

CG algorithms strongly couple numerical and combinatorial/topological data

[Kettner et al]

- Background
- The main topics
- Course mechanics
- Additional topics

Problem 1: Motion planning

decide whether a collision-free motion for the moving object from start to goal exists, and if so plan the motion

Problem 2:

Aspect graph of a terrain

design a compact representation of all the different 2D images of a polyhedral terrain, so that the view in a given query direction can be efficiently retrieved

Problem 3:

Is the 3D object interlocked?

decide whether an assembled object is interlocked, namely cannot be taken apart with two hands

Problem 4:

Minimum area triangle

find the three of the given points that define the minimum area triangle

Q: What is the connection between Problems 1,2,3 and 4 ?

A: The best solution known to each of them was obtained with arrangements

Topic l: Arrangements of curves and surfaces

given a collection of curves on a surface, the arrangement is the partition of the surface into vertices, edges and faces induced by the curves

What are arrangements?

- an arrangement of a set S of geometric objects is the subdivision of space where the objects reside induced by S
- possibly non-linear objects (circles), bounded objects (segments), higher dimensions (planes, simplices)
- numerous applications in robotics, molecular biology,vision, graphics, CAD/CAM, statistics, GIS
- have been studied for decades - Matoušek (2002) cites Steiner,1826; nowadays studied in combinatorial and computational geometry

Solving it with arrangements

- transforming to arrangements
- combinatorial analysis
- design of data structures / algorithms
- implementation

Arrangements of lines: combinatorics

the complexity of an arrangement is the overall number of cells of all dimensions comprising the arrangement
for planar arrangements we count vertices, edges, and faces

Q: what is the complexity of an arrangement of n lines?

Basic theorem of arrangement complexity

- the maximum combinatorial complexity of an arrangement of n well-behaved curves in the plane is $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$; there are such arrangements whose complexity is $\Omega\left(\mathrm{n}^{\wedge} 2\right)$
- more generally
the maximum combinatorial complexity of an arrangement of n well-behaved (hyper)surfaces in R^{d} is $O\left(n^{d}\right)$; there are such arrangements whose complexity is $\Omega\left(\mathrm{n}^{d}\right)$

Arrangements in the course

- arrgs underlie each of the main topics and some of the `additional topics'
- the practice of 2D arrangements, progress and experience; CGAL's arrgs package
- envelopes of surfaces (~2.5D)
- constructing 3D arrangements
- coping with higher-dimensional arrangements (with applications of 4D and 5D arrgs)

Swept Volumes and Their Use in Viewpoint Computation in Robot Work-Cells

Steven Abrams Peter K. Allen*
Center for Research in Intelligent Systems
Computer Science Department
Columbia University
New York, NY 10027

Abstract
This paper discusses the automatic computation of viewpoints for monitoring objects and features in an active robot
1.1 Previous Research: MVP

Our previous research in this field has resulted in the development of the Machine Vision Planning (MVP) systam 517 18 1615151 Rriaflv MVP takec an ontimization

Polynomial/Rational Approximation of Minkowski Sum Boundary Curves ${ }^{1}$

In-Kwon Lee and Myung-Soo Kim
Department of Computer Science, POSTECH, Pohang 790-784, South Korea
and

Gershon Elber

Department of Computer Science, Technion, IIT, Haifa 32000, Israel
Received June 20, 1997; accepted December 30, 1997
their Minkowski sum $O_{1} \oplus O_{2}$ is defined as the set of all vector Given two planar curves, their convolution curve is defined as the sums generated by all pairs of points in O_{1} and O_{2}, respectively: set of all vector sums generated by all pairs of curve points which
have the same ct the planar graph of convolution curves. For the elimination of planar objects boundary redundant parts in untrimmed convolution curves, we demonset of the Minke strate a method based on a plane sweep algorithm [34] and apply parts in the cor
sumdary. the algorithm to piecewise linear approximations of the conportant geomet portant geomet among planar c of two rational ، tice, one needs nomia//rational convolution cu volution curves. (There is no known implemented algorithm which can determine the arrangement of planar curve segments robustly; therefore, we use a robust algorithm that can determine iferation. In tr results of this new trimming algorithm are promising.
$\left.\in O_{2}\right\}$. sents the object in bjects considers all utational efficienc ore concerned with sum.
which are bounded ly. The problem of lenoted as $\partial\left(O_{1} \oplus\right.$ omputing the curve 2 [3]. In the convo thniques of offset lution operation, the vector sums are apphed only to the pairs of proximating convolution curves. Moreover we introduce efficient methods to estimate the error in convolution curve approximaion. This paper also discusses various other important issues in the Key Words: convon of the Minkowski sum. 1998 Academic Press C-space obstacle; sweeping: curve approximation; Bézier curve; B -spline curve. curve points that have the same curve normal direction:

Definition 1.1. Let $C_{1}(t)=\left(x_{1}(t), y_{1}(t)\right)$ and $C_{2}(s)=\left(x_{2}(s)\right.$ $\left.y_{2}(s)\right)$ be two planar regular parametric curves. The convolution curve $C_{1} * C_{2}$ is defined by

$$
\begin{equation*}
\left(C_{1} * C_{2}\right)(t)=C_{1}(t)+C_{2}(s(t)), \tag{2}
\end{equation*}
$$

where

1. INTRODUCTION

$C_{1}^{\prime}(t) \| C_{2}^{\prime}(s(t))$
(3)

Convolution is a classic operation which has been used as a

[Berberich et al]

Topic II: Minkowski sums

- Given two sets P and Q, their Minkowski sum $P \oplus Q=\{p+q / p \in P, q \in Q\}$
- When P and Q are polygonal sets, their Minkowski sum is a polygonal planar map

Typical usage: collision detection

Q - a polygonal object that moves by translation P - a set of polygonal obstacles

Claim: When translating, Q intersects P iff $\operatorname{ref}(Q)$ is inside $P \oplus-Q$

Fundamental complexity bounds

Applications of Minkowski sums: Minimum distance separation

Translate the small polygon P such that it will not penetrate Q

Separated polygons

Find the closest point to the origin that is outside $Q \oplus-P$

Applications of Mink sums, cont'd: Polygon containment

Can a polygon P be place inside another polygon Q ?

Compute $(\boldsymbol{B} \backslash \boldsymbol{Q}) \oplus-\boldsymbol{P}$: (B is a bounding box of Q)
P can be placed inside Q
when the reference point is placed in one of the holes

Applications of Mink sums, cont'd: Robot motion planing

Minkowski sums of convex polygons

- properties
- complexity
- algorithm (overlaying 1D arrangements)

EXACT MINKOWSKI SUMS AND APPLICATIONS

Eyal Flato Efí Fogel

Dan Halperin Eran Leiserowitz

School of Computer Science Tel Aviv University多

Minkowski sums in the course

- the general polygonal case: theory and practice
- offset polygons
- summing 3-polytopes
- the general polyhedral case: current state and challenges

Minkowski sums under rotation, video [Jyh Ming Lien]

Topic III: Geometric rounding

- EGC: the exact geometric computing paradigm
- EGC vs. fixed-precision approximation
- number types in geometric computing
- who needs rounding
- what is difficult about rounding

Complexity of numbers, input coordinates

```
Triangle 1:
    (-9661 / 499, 898 / 2689, -92949 / 3802),
    (-15034 / 1583, -8174 / 1759, -57116 / 3851),
    (13605 / 1261, -90590 / 3669, -11791 / 518)
Triangle 2:
    (-77665 / 4036, -130679 / 3347, -31167 / 1630),
    (-5851 / 297, 36471 / 893, -53137 / 2704),
    (132613 / 3310, 3 / 8, -21926 / 1111)
Triangle 3:
    (-37497 / 1939, -131078 / 3301, 591 / 3680),
    (-74461 / 3822, -28120 / 3397, 7607 / 346),
    (21622 / 1037, -12461 / 1441, 17957 / 827)
Triangle 4:
    (-10760 / 521, -58546 / 3057, 27619 / 1322),
    (-65262 / 3181, 74693 / 3622, 17898 / 863),
    (48898 / 2419, 1602 / 1627, 26390 / 1273)
Triangle 5:
    (-73482 / 3845, 88794 / 2203, 2720 / 3661),
    (-20591 / 1049, 9257 / 983, 57830 / 2693),
    (28590 / 1363, 38699 / 3957, 62390 / 2957)
```


Complexity of numbers, computed coordinates

A normalized coordinate of the worst feature of the partial decomposition - 237 digits long:
PD feature $=49799838826104887192775516219046994702$ 461828025059123646217485873346921099238939609590257 26989674024022169299702332971 / 5027790709859107937 563103744532644005619919434042984323896243977724409 28440717068821348688514967315807043013459806716

A normalized coordinate of the worst feature of the full decomposition - 559 digits long;
FD feature $=23279315243924676155798958688382904585$ 988203585590361740839519681254968145162747098072652 141858607502723046239367209776569259776678871640355 476703121623912558549584789123982974129958278704985 390744483577662104085231708340232525122368990013542 $7999613293720681684955293128811292981 / 22458231406$ 216094878202976126790054324698816432478447511802089 665363641250066501433769538474807742947270581109819 674675916341254734148663444090199254276142009850182 419444726060661342077926179045344110704705488623957 680809306210269199637837088757430354530277343135738 809521441456

Snap rounding

while using limited bit-size coordinates, snap rounding has nice preservation properties: geometric and topological

(Snap) Rounding in the course

- snap rounding arrangements of segments: properties and basic algorithm
- improved algorithms
- improved rounding
- rounding in 3D: current state and challenges

Topic IV:

Movable separability and assembly planning

mechanical assembly planning, video assembly planning guidance

A variety of movable separability problems

- interlocked polygons
- example of a hard separability problem for polygons

Movable separability in the course

- separation sequences for convex objects in 2D,3D
- 2-handed assembly planning, non-directional blocking graphs, and motion-space; infinite translations in the plane
- improved algorithm: infinitesimal motions
- practice: infinit. motions, infinite translations in 3D
- tolerancing, sensitivity analysis
- assembly planning with more complex motions
- optimization
- Background
- The main topics
- Course mechanics
- Additional topics

Administrivia

- grade:

20\% multiple-choice exam 80\% assignments (one large-scale)

- helpdesk: Monday 1500-1600, ACG lab:

Efi Fogel (~efif) and Eric Berberich (~ericb)

- office hours: Monday 1900-2000,

Schreiber 219

- Background
- The main topics
- Course mechanics
- Additional topics

Computational Geometry Algorithms Library

project goal (1996): "make the large body of geometric algorithms developed in the field of Computational Geometry available for use in academia and industry"

The CGAL project and library

- technical criteria: robustness, efficiency, ease of use, homogeneity
- strong connection to ongoing research: engineering geometric algorithms = algorithm engineering + robust geometric computing

The CGAL project in numbers

500,000 lines of C++ code
10,000 downloads/year (+ Linux distributions)
3,500 manual pages
3,000 subscribers to cgal-announce
1,000 subscribers to cgal-discuss
120 packages
60 commercial users
20 active developers
12 months release cycle
2 licenses: Open Source and commercial

Delaunay triangulations and their relatives as modeling tools

N. Amenta

Algorithmic motion planning

THE END

