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Computational geometry

From wWikipedia, the free encyclopedia

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry.
Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be
part of computational geometry.

The main impetus for the development of computational geometry as a discipline was progress in computer graphics, computer-aided design
and manufacturing (CADACAND, but many problems in computational geometry are classical in nature.

Other important applications of computational geometry include robotics (motion planning and visibility problems), geographic information
systems (G13) (geometrical location and search, route planning), integrated circuit design (IC geometry design and verification), computer-aided
engineering (CAE) (programming of numerically controlled (MC) machines).

The main branches of computational geometry are:

= Combinatonz! comput ationa! geometny, also called slgonthmic geometns, which deals with geometric objects as discrete entities. &
groundlaying book in the subject by Preparata and Shamos dates the first use of the term "computational geometry™ in this sense by
1575,

= Nurmencal computational geometny, also called machine geometns, computer-aided geometnic design (CAGD), or geometric modeling, which
deals primarily with representing real-world objects in forms suitable for computer computations in CADSCAM systermns. This branch may be
seen as a further development of descriptive geometry and is often considered a branch of computer graphics aor CAD. The term
“computational geormetry” in this meaning has been in use since 1971 F
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‘ Computational geometry,
standard assumptions

= computational model: the real RAM

= each basic operation on a small (constant-
size) set of simple objects takes unit time

= general position

m standard cs-theory asymptotic performance
measures




‘Applied computational geometry

the goal:

(re)design and implement geometric
algorithms and data structures that are at
once certified and efficient in practice




'What's the problem?

Q: Given two lines 11 and 12 in the plane, does
the line 11 pass through the intersection point
11 nI27




‘What’s the problem? cont'd

orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(gx-rx))

-
*
’f
SX=y
-




'What's the problem? cont'd

CG algorithms strongly couple numerical and
combinatorial/topological data

[Kettner et al]




= The main topics
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' Problem 1: Motion planning

decide whether a collision-free motion for the moving object from start
to goal exists, and if so plan the motion
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'Problem 2:
Aspect graph of a terrain

design a compact representation of all the different 2D images of a
polyhedral terrain, so that the view in a given query direction can be
efficiently retrieved
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'Problem 3:
Is the 3D object interlocked?

decide whether an assembled object is , hamely cannot be
taken apart with two hands
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'Problem 4:
Minimum area triangle

find the three of the given points that define the minimum area triangle
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Q: What is the connection between Problems
1,2,3 and 47

A: The best solution known to each of them
was obtained with arrangements
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‘ Topic |: Arrangements of curves and
surfaces

given a collection of curves on a surface, the
arrangement is the partition of the surface into
vertices, edges and faces induced by the curves




'What are arrangements?

= an arrangement of a set S of geometric objects is the

subdivision of space where the objects reside induced by
S

= possibly non-linear objects (circles), bounded objects
(segments), higher dimensions (planes, simplices)

= numerous applications in robotics, molecular
biology,vision, graphics, CAD/CAM, statistics, GIS

= have been studied for decades - Matousek (2002) cites
Steiner,1826; nowadays studied in combinatorial and
computational geometry
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‘ Solving it with arrangements

= transforming to arrangements

= combinatorial analysis

= design of data structures / algorithms
= iImplementation
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‘ Arrangements of lines: combinatorics

the complexity of an arrangement is the overall number of cells of all
dimensions comprising the arrangement

for planar arrangements we count vertices, edges, and

Q: what is the complexity of an arrangement of n lines?
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‘ Basic theorem of
arrangement complexity

= the maximum combinatorial complexity of an
arrangement of n well-behaved curves in the plane
iIs O(n"2); there are such arrangements whose
complexity is Q(n"2)

= more generally

the maximum combinatorial complexity of an
arrangement of n well-behaved (hyper)surfaces in
Rd is O(nY); there are such arrangements whose
complexity is Q(n9)
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‘ Arrangements in the course

= arrgs underlie each of the main topics and
some of the "additional topics’

= the practice of 2D arrangements, progress
and experience; CGAL’s arrgs package

= envelopes of surfaces (~2.5D)

= constructing 3D arrangements

= coping with higher-dimensional arrangements
(with applications of 4D and 5D arrgs)
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Swept Volumes and Their Use in
Viewpoint Computation in Robot Work-Cells

Steven Abrams Peter K. Allen*
Center for Research in Intelligent Systems
Computer Science Department
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New York, NY 10027

Abstract 1.1 Previous Research: MVP

Our previous research in this field has resulted in the
development of the Machine Vision Planning (MVP) sys-
tam M7 12 1A 181 Rrieflu MVUP talkec an nntimization

This paper discusses the automatic computation of view-
points for monitoring objects and features in an active robot

Vvvz'i:vkpz 4.2 Robustness Issues s, it mod-
hedral it (i.e. fo-
imatin \ function
presen. Unfortunately, we have empirically found that the ar- ;i: tlcl)nzsr
ﬁffifﬁ rangement computations (using both commercial and re- ' ¢ e
‘ search geometric engines) are often not robust enough to  robustin
L I handle the arrangement computations discussed above (c?ue meets all
to floating-point error and related issues). We are exploring  ich com-
Sev methods for improving the robustness of these algorithms. ~ ralmodel
of sets Even in the cases for which an arrangement can not be r;i::n 223
;?xesra computed, we are able to take the set of polygons 7 and  yapoly-
Bach 11 graphically render them, displaying what the result should le. This
irr'eg‘;r look like. Figure 6 shows a rendering of a Puma 560 swept
and oc through a trajectory in which the arm first moves up, then
‘Sr;s[t‘;r; to the viewer’s left, and then down. environ-

. o s example,
we may have a work-cell in which one or more robots are
assembling an object. We may wish to automatically mon-
itor this assembly task. Figure 1 shows the basic setup

has focused on sensor planning in static environments, i.e.
where all of the objects are stationary, and is typically ap-
plied to automated inspection tasks. These systems can be

.
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Given two planar curves, their convolution curve is defined as the
set of all vector sums generated by all pairs of curve points which

have the same () planar graph of convolution curves. For the elimination of

planar objects is

their Minkowski sum O; @ O, is defined as the set of all vector

sums generated by all pairs of points in O, and O, respectively:

€ O} (O

object boundary redundant parts in untrimmed convolution curves, we demon-  sents the object in-

set of the Minke - ¢\ 10 a method based on a plane sweep algorithm [34] and apply

parts in the cor

‘bjects considers all
indaries of the two

sum boundary. the algorithm to piecewise linear approximations of the con-  utational efficiency

portant geomet
among planar ¢

volution curves. (There is no known implemented algorithm

ore concerned with
sum.

of tworational«  which can determine the arrangement of planar curve segments  which are bounded

‘tice, one needs
nomial/rational

convolutien cu  (he arrangement of approximating line segments.) Experimental
results of this new trimming algorithm are promising.

which is not aj
liferation. In tt >
techniques of offset curves and develop several new methods for ap-
proximating convolution curves. Moreover, we introduce efficient
methods to estimate the error in convolution curve approxima-
tion. This paper also discusses various other important issues in the
boundary construction of the Minkowski sum. @ 1998 Academic Press

Key Words: convolution curve; offset curve; Minkowski sum;
C-space obstacle; sweeping; curve approximation; Bézier curve;
B-spline curve.

1. INTRODUCTION

Convolution is a classic operation which has been used as a

robustly; therefore, we use a robust algorithm that can determine - The problem of

lenoted as 3(0; &
omputing the curve
5 [3]. In the convo-
lution operation, the vector sums are applied only to the pairs of
curve points that have the same curve normal direction:

DeriNtTioN 1.1, Let Ci (1) = (x1(2), 1 (#)) and Ca(s) = (xa(s),
¥2(s)) be two planar regular parametric curves. The convolution
curve Cy * C, is defined by

(C1 % C)(t) = Cy (1) + Ca(s(1)), )
where
CLn) || Cys () 3)

and

23



[Berberich et al]
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‘ Topic |l: Minkowski sums

s Given two sets P and Q, their Minkowski
sumP ® Q={pt+qg/pe P, gec Q}

= When P and @ are polygonal sets, their
Minkowski sum is a polygonal planar map
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‘Typical usage: collision detection

@ - a polygonal object that moves by translation
P - a set of polygonal obstacles

Z/a "
M

refeénce Clalm When translating, Q intersects P
|ff ref(Q) is inside P @ -Q

point
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' Fundamental complexity bounds

input sum
complexity

Pisconvex  O(m+n)
0 1s convex

P is convex O(m n) M
Q is general [KLPS]

Pis general  O(m’ n’)
Q 1s general

P with m vertices, Q with n vertices



\Applications of Minkowski sums:
Minimum distance separation

Translate the small

polygon P such that it
will not penetrate Q Separated polygons
/ /
/——/ > /%
——

Find the closest
point to the
origin that 1s
outside Q @ -P
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‘ Applications of Mink sums, cont’d:
Polygon containment

L

Can a polygon Pbe ~ Compute (B\ Q) © -P:

place inside another (B 1s a bounding box of Q)
polygon Q? P can be placed inside Q

when the reference point 1s
placed in one of the holes
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‘ Applications of Mink sums, cont’d:
Robot motion planing

4 4 A 4 4
A A i A 4 :

A 4 4 4 A4

4 4 A

A
j4 A

%

£

, obstacles and computed planar  Minkowski sum of the
computed path map with obstacles
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‘ Minkowski sums of convex polygons

m properties
= complexity
= algorithm (overlaying 1D arrangements)
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EXACT MINKOWSKI SUMS
AND APPLICATIONS

Eval Flato Ef Fogel

Dan Halperin Eran Leiscrowitz

School of Computer Science
Tel Aviv University

W
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‘ Minkowskl sums In the course

= the general polygonal case: theory and
practice

n Offset polygons
= summing 3-polytopes

= the general polyhedral case: current state
and challenges

Minkowski sums under rotation, video [Jyh Ming Lien]
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‘ Topic llI: Geometric rounding

m EGC: the exact geometric computing
paradigm

s EGC vs. fixed-precision approximation
= nhumber types in geometric computing
= Who needs rounding

= what is difficult about rounding
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Complexity of nhumbers, input

coordinates

Triangle 1:
(-9661 / 499, 898 / 2689, -92949 / 3802),
(-15034 / 1683, -8174 / 1789, -57116 / 3851],
(13605 / 1261, -90590 / 3669, -11791 / 518)

Triangle 2:
(-77665 / 4036, -130679 / 3347, -31167 / 1630),
(-58561 / 297, 3€471 / 893, -53137 / 2704),
(132613 / 3310, 3 / 8, -21926 / 1111)

Triangle 3:
(-37497 / 1939, -131078 / 3301, 591 / 3680),
(-74461 / 3822, -28120 / 3397, 7607 / 346),
(21622 / 1037, -12461 / 1441, 17957 / 82T)

Triangle 4:
(-10760 / 521, -58b46 / 3057, 27619 / 1322),
(-65262 / 3181, 74693 / 3622, 17898 / 863),
(48898 / 2419, 1602 / 1627, 26390 / 1273)

Triangle 5:
(-73482 / 3845, 88794 / 2203, 2720 / 3661),
(-20591 / 1049, 9257 / 983, 57830 / 2693),
(28590 / 1363, 38699 / 3957, 62390 / 2957)
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Complexity of humbers, computed coordinates

A normalized coordinate of the worst feature of the partial decomposition — 237 digits long.

PD feature = 49799838826104887192775516219046994702
461828026059123646217485873346921099238939609590257
26989674024022169299702332971 / 5027790709859107937
5631037445326440056155919434042984323896243977724409
28440717068821348688514967315807043013459806716

A normalized coordinate of the worst feature of the full decomposition — 559 digits long:

FD feature = 23279315243924676155798958688382904585
988203585590361740839519681254968145162747098072652
141858607502723046239367209776569259776678871640355
47670312162391255854958476891239829T741299582758704985
390744483577662104085231708340232525122368990013542
7999613293720681684955293128811292981 / 22458231406
216094878202976126790054324698816432478447511802089
6653636412650066501433769638474807742947270581109819
674675916341254734148663444090199254276142009850182
419444726060661342077926179045344110704705488623957
680809306210269199637837088757430354530477343135738
800521441456




‘ Snhap rounding

while using limited bit-size coordinates,
snap rounding has nice preservation properties:
geometric and topological
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‘ (Snap) Rounding in the course

= shap rounding arrangements of segments:
properties and basic algorithm

= improved algorithms
= improved rounding

= rounding in 3D: current state and challenges
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‘ Topic IV
Movable separability and
assembly planning

mechanical assembly planning, video
assembly planning guidance

39



‘ A variety of movable separability
problems

= interlocked polygons

= example of a hard separability problem for
polygons

m (

ol

V'Im 2

[O’'Rourke, based on Chazelle et al ‘84]




‘ Movable separability in the course

= separation sequences for convex objects in 2D,3D

= 2-handed assembly planning, non-directional
blocking graphs, and motion-space; infinite
translations in the plane

= improved algorithm: infinitesimal motions
= practice: infinit. motions, infinite translations in 3D

= tolerancing, sensitivity analysis
= assembly planning with more complex motions
= optimization

41



s Course mechanics
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| Administrivia

= grade:
20% multiple-choice exam

80% assignments (one large-scale)
= helpdesk: Monday 1500 — 1600, ACG lab:
Efi Fogel (~efif) and Eric Berberich (~ericb)
= office hours: Monday 1900 — 2000,
Schreiber 219
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= Additional topics
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Computational Geometry Algorithms Library

project goal (1996): "make the large body of
geomelric algorithms developed in the field of
Computational Geometry avallable for use in

academia and industry”
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'The CGAL project and library

m technical criteria: robustness, efficiency,
ease of use, homogeneity

= strong connection to ongoing research:

engineering geometric algorithms =
+

robust geometric computing

46



'The CGAL project in numbers

500,000 lines of C++ code
10,000 downloads/year (+ Linux distributions)
3,500 manual pages
3,000 subscribers to cgal-announce
1,000 subscribers to cgal-discuss
120 packages

60 commercial users

20 active developers

12 months release cycle

2 licenses: Open Source and commercial
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‘ Delaunay triangulations and their
relatives as modeling tools

0N
=
N

A

o re

T
2

N. Amenta




‘ Algorithmic motion planning







THE END




