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Overview
� Part I, A first tour of “solving it with arrangements”: 

The minimum area triangle problem
� duality, dcel, incremental construction, zone

� Part II, Generalizations
� transformations

2

� transformations
� different types of arrangements
� alternative representation
� construction by sweeping
� other substructures: complexity and algorithms



Overview
� Part I, A first tour of “solving it with arrangements”: 

The minimum area triangle problem
� duality, dcel, incremental construction, zone

� Part II, Generalizations
� transformations

3

� transformations
� different types of arrangements
� alternative representation
� construction by sweeping
� other substructures: complexity and algorithms



Background
� Lines, segments, and rays
� A tale of two paradigms: 

sweep vs. incremental
� Arrangements of lines:

the shape and complexity of 
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� the shape and complexity of 
a face

� the complexity of the entire
arrangements is θ(n2)



Reminder: Minimum area triangle
� find the three of the given set of n points P = {p1, p2, . . . , pn} that define the minimum area triangle
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Reminder: Minimum area triangle
� find the three of the given set of n points                           

P = {p1, p2, . . . , pn} that define the minimum area triangle
� a naïve algorithm requires O(n3) time
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The transformation: Duality

Primal planePrimal planePrimal planePrimal plane
� the point p := (a, b)
� the line l := (y = cx + d)

Dual PlaneDual PlaneDual PlaneDual Plane
� the line p* := (y = ax − b)
� the point l * := (c,−d)

this duality transform does not handle vertical lines
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this duality transform does not handle vertical lines



Properties of this duality transform
� preserves incidence
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Properties of this duality transform
� preserves incidence
� preserves above/below relation
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Properties of this duality transform
� preserves incidence
� preserves above/below relation
� preserves the vertical distance between a line and a 

point
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Minimum area triangle for a fixed pair
� fix a pair of input points pi ,pj
� which point pk of P defines the smallest area triangle
with pi ,pj?
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Minimum area triangle for a fixed pair
� fix a pair of input points pi ,pj
� which point pk of P defines the smallest area triangle
with pi ,pj?

12



In the dual…
� in an arrangement of n lines P* = {p *1, p *2, . . . , p *n}, for
each vertex find the vertically closest line
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Interim summary
� our problem: given an arrangement of n lines find the 

vertex and the line that induce the smallest vertical 
distance
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Representing the arrangement I: Dcel

� vertices, half-edges, and faces
� halfedges:

� twin
previous� previous

� next
� CCBs: inner 

and outer
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Incremental construction
� recall the general position assumption
� computing a bounding box
� inserting the i-th line

the edge the edge the edge the edge eeee
the edge the edge the edge the edge e’e’e’e’
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the edge the edge the edge the edge e’e’e’e’
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Searching for the minimum area triangle

� line by line, going over all the relevant vertices
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How much time does it take?
� computing the bounding box

� naively O(n2); can be done in O(n log n)
� finding where to insert line i

� simple, O(i)
inserting line i� inserting line i
� O(zone complexity)

� searching for the minimum area triangle for 
one line
� O(zone complexity)
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The zone of a curve
� the zone of a curve ɣ  in an arrangement A is the 

collection of faces of A intersected by ɣ 
� the complexity of the zone is the overall complexity of 

cells of various dimensions in the closure of the zone
� we need: the complexity of the zone of a line in an 

arrangement of i lines
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arrangement of i lines



Zone theorem
� theorem: the complexity of the zone of a line in an
arrangement of i lines is O(i)
� proof:
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How much time does it take?
� computing the bounding box

� naively O(n2); can be done in O(n log n), exercise
� finding where to insert line i

� simple, O(i)
� inserting line i� inserting line i

� O(zone complexity) = O(i)
� searching for the minimum area triangle for 

one line
� O(zone complexity) = O(i)

� Overall O(n2) time
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Summary, a tour of “solving it with arrangements”: 
the minimum area triangle

� transforming to arrangements, duality
� combinatorial analysis zone theorem
� design of data structures: Dcel / design of data structures: Dcel / 

algorithms: incremental
� implementation
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Minimum area triangle, notes
� the solution to the minimum-area-triangle problem 

[Chazelle-Guibas-Lee 84]
� the solution for any fixed dimension (minimum volume 

simplex) appears in Edelsbrunner's book (1987)
� the efficiency of the solution in any dimension relies on a 

hyperplane zone theorem  [Edelsbrunner-Seidel-Sharirhyperplane zone theorem  [Edelsbrunner-Seidel-Sharir
93]

� no better solution is known to the problem; related to the 
so-called 3-sum hard problems

� see also Ch 8 of the book Computational Geometry by 
de Berg et al, for the incremental construction of arrgs of 
lines
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Transformation to arrangements
� various dualities, Plücker coordinates, the 

locus method (configuration space, 
Minkowski sums), and numerous other

� we will see a few more later in the course
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Variety of 2D arrangements

� major complications
� faces can have convoluted shapes
� the algebra becomes more involved
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Vertical decomposition

� the complexity in the plane O(arrg-complexity)
� n interior-pairwise-disjoint segments in a bounding box 

at most 3n+1 trapezoids
� extends to higher dimensions and “well-behaved” surfaces
� partial decomposition
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Construction by sweeping
� sweeping a vertical line
� status line: intersecting curves in order
� events: endpoints and intersection points
� event queueevent queue
� complexity for arrg of n “well-behaved” 

curves: O(arrg-complexity x log n) 
� a possible by-product within the same 

running time: the vertical decomposition
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Sweep vs. incremental construction
� efficiency (in theory) for line arrangement
� what about other types of arrangements?

� the sweep has the same complexity for n “well-
behaved” curves (constant # of pairwise
intersections): O(arrg-complexity x log n)intersections): O(arrg-complexity x log n)

� for incremental construction:
zone theorem for curves?
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Substructures: 
envelope, single face, zone
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Davenport-Schinzel sequences
� n,s positive integers
� U = <u1, …, um>  a seq of integers
� U is called an (n,s) DS sequence if

� ∀i 1 ≤ i ≤ n
∀i < m, u ≠ u� ∀i < m, ui ≠ ui+1

� there do not exist s+2 indices i1<i2<…<is+2 so that 
ui1=ui3=…=j and ui2=ui4=…=k for two distinct 
numbers 1 ≤ j,k ≤ n

(we call it DS Seq of order s on n symbols, or DS(n,s) for short)
� λs(n ) = max { |U| | U is a DS(n,s) }
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Lower envelopes
� F={f1,f2,…,fn} :a set of continuous function 

defined over an interval I, every pair intersect in 
at most s points

� m: the minimal number of subintervals such that 
over each of them the lower envelopes is over each of them the lower envelopes is 
uniquely defined by a function of F with index ui

� let U(f1,f2,…,fn) = <u1,u2,…,um>
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DS sequences and envelopes
� claim 1: U(f1,f2,…,fn) is a DS(n,s)
� Claim 1': for every DS(n,s) U, there exist 

functions g1,…,gn such that  U(g1,…,gn) = U

for functions f partially denied over Ifor functions fi partially denied over I
� claim 2: U(f1,f2,…,fn)  is a DS(n,s+2)
� Claim 2': for every DS(n,s+2) U, there exist 

partially defined functions g1,…,gn such that  
U(g1,…,gn) = U
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The maximum complexity of envelopes
namely the maximum value of λs(n ) (or λs+2 (n )) 

λ1(n ) = n
λ2(n ) = 2n-12
λ3(n ) = take I: O(n log n)

λs(n ) = take I: O(n log*n)
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The maximum complexity of envelopes
namely the maximum value of λs(n ) (or λs+2 (n )) 

λ1(n ) = n
λ2(n ) = 2n-12
λ3(n ) = θ(nα(n))

λs(n ) = see references
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Constructing envelopes
� divide & conquer
� Hershberger’s improvement
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The complexity of a single face
� with some care show that the appearance of 

curves along a CCB of the marked face 
constitute a DS sequence

� The complexity of a face in an arrg where 
each pair of curves intersect at most s times each pair of curves intersect at most s times 
is
� O(λs(n)) for unbounded curves,
� O(λs+2 (n )) for bounded curves, 
� O(λs+1 (n )) for curves bounded on one side
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Constructing a single face
� deterministic algorithm, O(λs+2 (n )log2n) time
� randomized algorithms, expected 

O(λs+2 (n )log n) time
� λs+2 (n ) replaced by λs(n ) for unbounded 

curves
λs+2 (n ) replaced by λs(n ) for unbounded 
curves

� for bounded curves: the complexity and 
construction of the zone follows
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Operations on arrangements
� traversals
� point location
� overlay

� Boolean operations
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What of it is in                    arrangements? 

almost everything:
� different families of curves (in the form of traits classes)
� Dcel and traversals
� point location: simple, walk-along-a-line, RIC-based,

landmarkslandmarks
� incremental and zone construction
� vertical decomposition
� envelopes
� overlay
� Boolean operations
� all extended to a families of parametric surfaces
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THE END
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