APPLIED aspects of COMPUTATIONAL GEOMETRY

Arrangements, 2D

Dan Halperin
School of Computer Science
Tel Aviv University

Overview

- Part I, A first tour of "solving it with arrangements":

The minimum area triangle problem

- duality, dcel, incremental construction, zone
- Part II, Generalizations
- transformations
- different types of arrangements
- alternative representation
- construction by sweeping
- other substructures: complexity and algorithms

Overview

- Part I, A first tour of "solving it with arrangements":

The minimum area triangle problem

- duality, dcel, incremental construction, zone
- Part II, Generalizations
- transformations
- different types of arrangements
- alternative representation
- construction by sweeping
- other substructures: complexity and algorithms

Background

- Lines, segments, and rays
- A tale of two paradigms:
sweep vs. incremental
- Arrangements of lines:
- the shape and complexity of a face
- the complexity of the entire arrangements is $\theta\left(\mathrm{n}^{2}\right)$

Reminder: Minimum area triangle

- find the three of the given set of n points $P=\left\{p_{1}, p_{2}, \ldots\right.$, p_{n} \} that define the minimum area triangle

Reminder: Minimum area triangle

- find the three of the given set of n points
$P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ that define the minimum area triangle
- a naïve algorithm requires $O\left(n^{3}\right)$ time

The transformation: Duality

Primal plane

- the point $p:=(a, b)$
- the line $/:=(y=c x+d)$

Dual Plane

- the line $p^{*}:=(y=a x-b)$
- the point $/^{*}:=(c,-d)$
this duality transform does not handle vertical lines

Properties of this duality transform

- preserves incidence

Properties of this duality transform

- preserves incidence
- preserves above/below relation

θ

Properties of this duality transform

- preserves incidence
- preserves above/below relation
- preserves the vertical distance between a line and a point

Minimum area triangle for a fixed pair

- fix a pair of input points p_{i}, p_{j}
- which point p_{k} of P defines the smallest area triangle with p_{i}, p_{j} ?

Minimum area triangle for a fixed pair

- fix a pair of input points p_{i}, p_{j}
- which point p_{k} of P defines the smallest area triangle with p_{i}, p_{j} ?

In the dual...

- in an arrangement of n lines $P^{*}=\left\{p^{*}{ }_{1}, p^{*}{ }_{2}, \ldots, p^{*}\right\}$, for each vertex find the vertically closest line

Interim summary

- our problem: given an arrangement of n lines find the vertex and the line that induce the smallest vertical distance

Representing the arrangement I: Dcel

- vertices, half-edges, and faces
- halfedges:
- twin
- previous
- next
- CCBs: inner and outer

Incremental construction

- recall the general position assumption
- computing a bounding box
- inserting the i-th line

Searching for the minimum area triangle

- line by line, going over all the relevant vertices

How much time does it take?

- computing the bounding box
a naively $O\left(n^{2}\right)$; can be done in $O(n \log n)$
- finding where to insert line i
- simple, O (i)
- inserting line i
- O(zone complexity)
- searching for the minimum area triangle for one line
- O(zone complexity)

The zone of a curve

- the zone of a curve γ in an arrangement A is the collection of faces of A intersected by γ
- the complexity of the zone is the overall complexity of cells of various dimensions in the closure of the zone
- we need: the complexity of the zone of a line in an arrangement of i lines

Zone theorem

- theorem: the complexity of the zone of a line in an arrangement of i lines is $O(i)$
- proof:

How much time does it take?

- computing the bounding box
a naively $O\left(n^{2}\right)$; can be done in $O(n \log n)$, exercise
- finding where to insert line i
- simple, O (i)
- inserting line i
- $O($ zone complexity $)=O(i)$
- searching for the minimum area triangle for one line
- O(zone complexity) $=O(i)$
- Overall O(n^{2}) time

Summary, a tour of "solving it with arrangements": the minimum area triangle

- transforming to arrangements, duality
- combinatorial analysis zone theorem
- design of data structures: Dcel / algorithms: incremental
- implementation

Minimum area triangle, notes

- the solution to the minimum-area-triangle problem [Chazelle-Guibas-Lee 84]
- the solution for any fixed dimension (minimum volume simplex) appears in Edelsbrunner's book (1987)
- the efficiency of the solution in any dimension relies on a hyperplane zone theorem [Edelsbrunner-Seidel-Sharir 93]
- no better solution is known to the problem; related to the so-called 3-sum hard problems
- see also Ch 8 of the book Computational Geometry by de Berg et al, for the incremental construction of arrgs of lines

Overview

- Part I, A first tour of "solving it with arrangements": The minimum area triangle problem
- duality, dcel, incremental construction, zone
- Part II, Generalizations
- transformations
- different types of arrangements
- alternative representation
- construction by sweeping
- other substructures: complexity and algorithms

Transformation to arrangements

- various dualities, Plücker coordinates, the locus method (configuration space, Minkowski sums), and numerous other
- we will see a few more later in the course

Variety of 2D arrangements

- major complications
- faces can have convoluted shapes
- the algebra becomes more involved

Vertical decomposition

- the complexity in the plane O (arrg-complexity)
- n interior-pairwise-disjoint segments in a bounding box
\rightarrow at most $3 \mathrm{n}+1$ trapezoids
- extends to higher dimensions and "well-behaved" surfaces
- partial decomposition

Construction by sweeping

- sweeping a vertical line
- status line: intersecting curves in order
- events: endpoints and intersection points
- event queue
- complexity for arrg of n "well-behaved" curves: O(arrg-complexity x log n)
- a possible by-product within the same running time: the vertical decomposition

Sweep vs. incremental construction

- efficiency (in theory) for line arrangement
- what about other types of arrangements?
- the sweep has the same complexity for n "wellbehaved" curves (constant \# of pairwise intersections): O(arrg-complexity x log n)
- for incremental construction:
zone theorem for curves?

Substructures:

 envelope, single face, zone

Davenport-Schinzel sequences

- n,s positive integers
- $\mathrm{U}=\left\langle\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}\right\rangle$ a seq of integers

■ U is called an (n, s) DS sequence if

- $\forall i 1 \leq i \leq n$
$\square \forall i<m, u_{i} \neq u_{i+1}$
- there do not exist $\mathrm{s}+2$ indices $\mathrm{i} 1<\mathrm{i} 2<\ldots<\mathrm{i}_{\mathrm{s}+2}$ so that $\mathrm{u}_{\mathrm{i} 1}=\mathrm{u}_{\mathrm{i} 3}=\ldots=\mathrm{j}$ and $\mathrm{u}_{\mathrm{i} 2}=\mathrm{u}_{\mathrm{i} 4}=\ldots=\mathrm{k}$ for two distinct numbers $1 \leq \mathrm{j}, \mathrm{k} \leq \mathrm{n}$
(we call it DS Seq of order s on n symbols, or DS(n, s) for short)
- $\lambda_{\mathrm{s}}(\mathrm{n})=\max \{|\mathrm{U}| \mid \mathrm{U}$ is a $\mathrm{DS}(\mathrm{n}, \mathrm{s})\}$

Lower envelopes

- $\mathrm{F}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right\}$:a set of continuous function defined over an interval I, every pair intersect in at most s points
- m: the minimal number of subintervals such that over each of them the lower envelopes is uniquely defined by a function of F with index u_{i}
- let $\mathrm{U}\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right)=\left\langle\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}\right\rangle$

DS sequences and envelopes

- claim 1: $\mathrm{U}\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right)$ is a $\mathrm{DS}(\mathrm{n}, \mathrm{s})$
- Claim 1': for every DS(n,s) U, there exist functions g_{1}, \ldots, g_{n} such that $U\left(g_{1}, \ldots, g_{n}\right)=U$
for functions f_{i} partially denied over I
- claim 2: $\mathrm{U}\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right)$ is a $\mathrm{DS}(\mathrm{n}, \mathrm{s}+2)$
- Claim 2': for every DS(n,s+2) U, there exist partially defined functions g_{1}, \ldots, g_{n} such that $\mathrm{U}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}\right)=\mathrm{U}$

The maximum complexity of envelopes

 namely the maximum value of $\lambda_{\mathrm{s}}(\mathrm{n})\left(\right.$ or $\left.\lambda_{\mathrm{s}+2}(\mathrm{n})\right)$```
\(\lambda_{1}(\mathrm{n})=\mathrm{n}\)
\(\lambda_{2}(n)=2 n-1\)
\(\lambda_{3}(n)=\) take \(\mathrm{I}: ~ O(n \log n)\)
```

$\lambda_{s}(n)=$ take $\mathrm{I}: ~ \mathrm{O}\left(\mathrm{n} \log ^{*} \mathrm{n}\right)$

## The maximum complexity of envelopes

 namely the maximum value of $\lambda_{\mathrm{s}}(\mathrm{n})\left(\right.$ or $\left.\lambda_{\mathrm{s}+2}(\mathrm{n})\right)$$$
\begin{aligned}
& \lambda_{1}(\mathrm{n})=\mathrm{n} \\
& \lambda_{2}(\mathrm{n})=2 \mathrm{n}-1 \\
& \lambda_{3}(\mathrm{n})=\theta(\mathrm{na}(\mathrm{n}))
\end{aligned}
$$

$\lambda_{s}(n)=$ see references

## Constructing envelopes

- divide \& conquer
- Hershberger's improvement


## The complexity of a single face

- with some care show that the appearance of curves along a CCB of the marked face constitute a DS sequence
- The complexity of a face in an arrg where each pair of curves intersect at most s times is
- $O\left(\lambda_{s}(n)\right)$ for unbounded curves,
- $O\left(\lambda_{s+2}(n)\right)$ for bounded curves,
- $\mathrm{O}\left(\lambda_{\mathrm{s}+1}(\mathrm{n})\right)$ for curves bounded on one side


## Constructing a single face

- deterministic algorithm, $O\left(\lambda_{s+2}(n) \log ^{2} n\right)$ time
- randomized algorithms, expected $\mathrm{O}\left(\lambda_{\mathrm{s}+2}(\mathrm{n}) \log \mathrm{n}\right)$ time
- $\lambda_{\mathrm{s}+2}(\mathrm{n})$ replaced by $\lambda_{\mathrm{s}}(\mathrm{n})$ for unbounded curves
- for bounded curves: the complexity and construction of the zone follows


## Operations on arrangements

- traversals
- point location
- overlay
- Boolean operations


## What of it is in @ arrangements?

almost everything:

- different families of curves (in the form of traits classes)
- Dcel and traversals
- point location: simple, walk-along-a-line, RIC-based, landmarks
- incremental and zone construction
- vertical decomposition
- envelopes
- overlay
- Boolean operations
- all extended to a families of parametric surfaces


## References

- [Sharir -Agarwal '95] Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge U Press
- [Halperin '04]

Arrangements (Ch 24), in CRC Handbook on Discrete and Computational Geometry

- [Agarwal-Sharir '00]

Chapters 1\&2 in NH Handbook of
Computational Geometry

THE END

