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Background

= Lines, segments, and rays

= A tale of two paradigms:
sweep vs. incremental

= Arrangements of lines:

Q

the shape and complexity of
a face

the complexity of the entire
arrangements is 6(n?)




Reminder: Minimum area triangle

= find the three of the given set of n points P = {p4, p,, . - .

p,} that define the minimum area triangle




Reminder: Minimum area triangle

= find the three of the given set of n points
P={p, P, - - ., P} that define the minimum area triangle

= a naive algorithm requires O(n?) time




The transformation: Duality

Primal plane Dual Plane
= the point p .= (a, b) s thelinep .=(y=ax-5b)
= theline/.=(y=cx+d) = the point /"= (¢,—d)

this duality transform does not handle vertical lines




Properties of this duality transform

= preserves incidence




Properties of this duality transform

= preserves incidence
= preserves above/below relation




Properties of this duality transform

= preserves incidence
= preserves above/below relation

= preserves the vertical distance between a line and a
point

- g

ac—b+d
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Minimum area triangle for a fixed pair

= fix a pair of input points p; ,p;
= Wwhich point p, of P defines the smallest area triangle
with p; ,p;?
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Minimum area triangle for a fixed pair

= fix a pair of input points p; ,p;
= Wwhich point p, of P defines the smallest area triangle

with p; ,p;?
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In the dual...

= inan arrangementofnlinesP ={p";,p 75, ...

each vertex find the vertically closest line

VASsme

,p}, for
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Interim summary

= our problem: given an arrangement of n lines find the
vertex and the line that induce the smallest vertical
distance

1




Representing the arrangement |: Dcel

= vertices, half-edges, and faces
= halfedges:

o twin
0 previous
o next

s CCBs: inner
and outer
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Incremental construction

= recall the general position assumption
= computing a bounding box
= Inserting the ~th line

the edge e

the edge e’
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‘ Searching for the minimum area triangle

= line by line, going over all the relevant vertices
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How much time does it take?

= computing the bounding box

o naively O(r¥); can be done in O(n log n)
= finding where to insert line /

o simple, O(i)
= inserting line /

o O(zone complexity)

= searching for the minimum area triangle for
one line

o O(zone complexity)
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The of a curve

= the zone of a curve y in an arrangement Ais the
collection of faces of A intersected by y

= the complexity of the zone is the overall complexity of
cells of various dimensions in the closure of the zone

= we need: the complexity of the an
arrangement of / lines |
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Zone theorem

= theorem: the complexity of the zone of a line in an
arrangement of / lines is O(J)
= proof:
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How much time does it take?

= computing the bounding box
o naively O(r¥); can be done in O(n log n), exercise

= finding where to insert line /
o simple, O(i)

= inserting line /
o O(zone complexity) =

m searching for the minimum area triangle for
one line

o O(zone complexity) =
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Summary, a tour of “solving it with arrangements”:
the minimum area triangle

s transforming to arrangements, duality

= combinatorial analysis zone theorem

= design of data structures: Dcel /
algorithms: incremental
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Minimum area triangle, notes

= the solution to the minimum-area-triangle problem
[Chazelle-Guibas-Lee 84]

= the solution for any fixed dimension (minimum volume
simplex) appears in Edelsbrunner's book (1987)

m the efficiency of the solution in any dimension relies on a
hyperplane zone theorem [Edelsbrunner-Seidel-Sharir
93]

= No better solution is known to the problem; related to the
so-called 3-sum hard problems

= see also Ch 8 of the book Computational Geometry by
de Berg et al, for the incremental construction of arrgs of
lines
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Overview

Q

m Part |l, Generalizations

Q

transformations

different types of arrangements

alternative representation

construction by sweeping

other substructures: complexity and algorithms
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Transformation to arrangements

= various dualities, Plucker coordinates, the
locus method (configuration space,
Minkowski sums), and numerous other

m we will see a few more later in the course
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Variety of 2D arrangements

= major complications
o faces can have convoluted shapes
o the algebra becomes more involved
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Vertical decomposition

S

= the complexity in the plane O(arrg-complexity)

o n interior-pairwise-disjoint segments in a bounding box
—> at most 3n+1 trapezoids

= extends to higher dimensions and “well-behaved” surfaces
= partial decomposition
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Construction by sweeping

= sweeping a vertical line

s status line: intersecting curves in order

= events: endpoints and intersection points
m event queue

= complexity for arrg of n “well-behaved”
curves: O(arrg-complexity x log n)

= a possible by-product within the same
running time: the vertical decomposition
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Sweep vs. incremental construction

m efficiency (in theory) for line arrangement

= what about other types of arrangements?

o the sweep has the same complexity for n “well-
behaved” curves (constant # of pairwise
intersections): O(arrg-complexity x log n)

o for incremental construction:
zone theorem for curves?
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Substructures:
envelope, single face, zone
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Davenport-Schinzel sequences

= N,s positive integers
» U=<u,, ..., u,> aseq of integers
= U is called an (n,s) DS sequence if
o Vil1<is<n
o Vi<m, u; ¥ Uy,

o there do not exist s+2 indices i1<i2<...<ig,, so that
U,=Us=...=j and u,,=u,,=...=k for two distinct
numbers 1 <j,k<n

(we call it DS Seq of order s on n symbols, or DS(n,s) for short)

s A(n)=max{|U||UisaDS(n,s) }
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Lower envelopes

s F={f.f,,....,f } :a set of continuous function
defined over an interval I, every pair intersect in
at most s points

= m: the minimal number of subintervals such that
over each of them the lower envelopes is
uniquely defined by a function of F with index u,

m let U(f,,f,,....T) = <uq,u,,...,u >
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DS sequences and envelopes

= claim 1: U(f, f,,....f.) is a DS(n,s)

= Claim 1" for every DS(n,s) U, there exist
functions g4,...,9,, such that U(g4,...,g,) = U

for functions f, partially denied over |
m claim 2: U(f,,f,,...,f)) Is a DS(n,s+2)

s Claim 2': for every DS(n,s+2) U, there exist
partially defined functions g,,...,g,, such that

U(gs,....85) = U
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‘ The maximum complexity of envelopes

namely the maximum value of A,(n ) (or A,,,(n))

A(n)=n
A (N ) = 2n-1
As(n ) = take |: O(n log n)

A(n ) =take I: O(n log*n)
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‘ The maximum complexity of envelopes

namely the maximum value of A,(n ) (or A,,,(n))

A(n) =n
A (N ) = 2n-1
As(n') = B(na(n))

A(n ) = see references
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Constructing envelopes

= divide & conquer
= Hershberger’'s improvement
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The complexity of a single face

= with some care show that the appearance of
curves along a CCB of the marked face
constitute a DS sequence

= [he complexity of a face in an arrg where
each pair of curves intersect at most s times
IS
a0 O(A4(n)) for unbounded curves,
0 O(Ag45 (N)) for bounded curves,

g
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‘ Constructing a single face

= deterministic algorithm, O(A,,, (n )log?n) time
= randomized algorithms, expected
O(Aqs5 (N )log n) time
= A, (N ) replaced by A (n ) for unbounded
curves

= for bounded curves: the complexity and
construction of the zone follows
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Operations on arrangements

= traversals
= point location

= overlay
o Boolean operations
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ng o s > Tatb. Ve St

- arrangements?

almost everything:

different families of curves (in the form of traits classes)
Dcel and traversals

point location: simple, walk-along-a-line, RIC-based,
landmarks

incremental and zone construction

vertical decomposition

envelopes

overlay

Boolean operations

all extended to a families of parametric surfaces
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THE END




