
Algorithms for 3D Printing and
Other Manufacturing Processes

c

Introduction

Dan Halperin

School of Computer Science

Tel Aviv University

Spring 2017

3D Printing

3D Printing, videos

• Intro: https://www.youtube.com/watch?v=Ev-MM9cGKiQ

• GE: https://www.youtube.com/watch?v=l0SXlkrmzyw

• SLM (4 lasers): https://www.youtube.com/watch?v=sbPpFHZL_cU

https://www.youtube.com/watch?v=Ev-MM9cGKiQ
https://www.youtube.com/watch?v=l0SXlkrmzyw
https://www.youtube.com/watch?v=l0SXlkrmzyw
https://www.youtube.com/watch?v=sbPpFHZL_cU

Other manufacturing processes

• CNC machining (subtractive)

• Molding and casting

• Assembly

• Many more …

A typical industrial 3DP cycle

• Obtain digital models

• Fix models

• Orient part model

• |Add support|

• |Nest many part models|

• Print assembly

• Unpack assembly

• Clean parts

About the course

The main veins of the course

• Algorithms – theory

• Algorithms – practice!

• 3DP background, technologies

• Actual printing practice: preparation, slicing, gcode, …

• Open source software: Cura, CGAL, Meshlab, …

Algorithmic topics as time permits

• Part orienting, minimizing height

• Digital surface simplification

Contest I: approximate height minimization

• Movable separability in tight quarters

• Nesting/packing

Contest II: (2D) few-parts multi-copies packing

• Mutual relations between robotics and 3DP

Course mechanics and grade

• 70%
• Assignments (3-4), including programming and 3D printing

• Small project with algorithmic component, e.g., object restoration, 3D-printing of an
interesting mechanism, contribution to any relevant open source project; modest
budget available

• 5%
• Presentation, 15 mins, relevant topic of student’s choice

• 25%
• Exam (2 hours)

This is the first time the course is given – you can influence its evolution!

Team

• Dan Halperin

danha@post.tau.ac.il

http://acg.cs.tau.ac.il/danhalperin

Schreiber 219

Office hours: Monday, 19:00 – 20:00

• Efi Fogel

efif@post.tau.ac.il

http://acg.cs.tau.ac.il/people/efifogel

Schreiber M18 (floor -1) the robotics lab

Office hours: Monday, 15:00 – 16:00

mailto:danha@post.tau.ac.il
mailto:efif@post.tau.ac.il

Actual 3D printing

• Part of the assignments

• In addition each student will have an allowance of free printing

• Each student will get a key to the Ultimaker3 niche on the 2nd floor of
Schreiber, just behind the staircase

Efi Fogel will instruct and assist with the printing

More background

The (archived) starting point
3dprintingindustry.com/3d-printing-basics-free-beginners-guide/history/

…

Lingua franca in 3DP

• High level: STL and expansions

v

slicer

v

• Low level: gcode and derivatives

STL file format

• http://www.fabbers.com/tech/STL_Format

• https://en.wikipedia.org/wiki/STL_(file_format)

• There are various support tools on the web including STL viewers

• Pay attention whether you use ASCII STL or Binary STL (for very big files
ASCII may be too wasteful)

http://www.fabbers.com/tech/STL_Format
https://en.wikipedia.org/wiki/STL_(file_format)

Two simple algorithms

Problem 1: Finding the width of a polygon

• Input: a simple polygon 𝑃, given by the vertices in CCW order

• Output: the minimum distance between two parallel supporting lines
of 𝑃

In addition to the width, we will output the direction normal to the
parallels

[H. Pirzadeh]

The outer-normal diagram of a convex polygon

• A mapping between the boundary P of a convex polygon and the unit circle
S1, where a point u in S1 represents the direction from the center of S1 to u

• Adaptation of the Gaussian map of smooth surfaces to the case of the
boundary of convex polytopes

• Interpretation I: a set-valued function, which assigns to each point p on P
the set of outer normals of support lines to P at p

• Def: Extremal vertex of P in direction u

• Interpretation II: the decomposition of S1 into maximal components in each
of which the set of extremal vertices in the corresponding directions is the
same

• We will call this diagram the Gaussian map (a slight abuse)

The width

• Directional width wQ(u) of the polygon Q in direction u, is the distance
between the support lines to Q with outer normals u and –u

• Overlaying the G-map with a copy of the G-map rotated by π, gives us
the relevant pairs of features

• The width of Q := min wQ(u) over all directions u

Width, algorithm wrap-up

• Compute the convex hull CH(P)

O(n)

(reasonable to do in O(n log n) time in practice)

• Overlay the Gaussian map with a copy rotated by π

O(n)

• Find the vertex-edge pair that gives the minimal distance

O(n)

Width, remarks

• In 3DP: reduce height for polyhedral parts

• Part orienting for handing the part to a robot, using the width
function; video: the parallel jaw gripper

• Part orienting from stable poses

• The gomboc: a convex mono-monostatic 3D homogeneous body:
when resting on a flat surface, has just one stable and one unstable
point of equilibrium

Width, further remarks: pure rotations

• Reduce height requires part re-orienting

• For example in Ex 1.1 we need to rotate the planar part by angle 𝜃

• At later stages we will be concerned with computing pure rotations,
which will require special number types

• Number types at our disposal: arbitrary length integers, arbitrary
length floating-point numbers, rationals, algebraic numbers of various
sorts

• For (approximate) pure rotations we will use a result by Canny et al
[CDR 92], which has several available implementations

Problem 2: Disassembly sequences

• Input: a set of pairwise interior-disjoint convex parts in the plane and
a direction

• Output: an ordering of the parts, such that we can move each part in
turn along the given direction, without colliding with the parts that
have not yet been moved

http://paulbourke.net/texture_colour/randomtile/

Disassembly, cont’d

• Unpacking the build assembly in 3DP

• Verifying a product assemblability

• Planning assembly sequences (in reverse)

[Assembrix]

Disassembly
Step I: Segments

[O’Rourke, CG in C]

Algorithm for segments

• The blocking relation for segments

• Compute the (directional) blocking graph

naively in O(n2) time

efficiently in O(n log n) time

• Topologically sort the n vertices (segments)

O(n) time

• Total O(n log n) time

[Guibas-Yao ‘83]

Disassembly
Step II: Convex polygons

[O’Rourke, CG in C]

Algorithm for convex polygons

• Input: m pairwise disjoint convex polygons with a total of n vertices

• Output: as before

• Find the segment connecting the topmost and bottommost points in
each convex polygon

• Apply the segment-algorithm

• Total running time O(n + m log m) time

Does not extend to 3D

[Wikipedia]

THE END

