
Algorithms for 3D Printing and
Other Manufacturing Processes

c

The Width of a Polyhedron

Dan Halperin

School of Computer Science

Tel Aviv University

Spring 2017

Re-orient a heavy model to reduce height

• Heavy model, ≥ several 100,000s of triangles

• Find the width and re-orient

• The width algorithms needs to be robust and efficient

• We will also discuss approximation, allowing to report (1+ε)w, where
w is the (minimal) width

• We start with an exact solution to the 3D width problem

Outline

• Quasi output-sensitive algorithm via Gaussian maps

• Improved algorithms

• Approximation

• Robustness issues

• Generalization: penetration depth

• Minkowski sums, take I

Width, reminder

• Input: A polyhedron P in R3

• Output: The minimum distance between two parallel supporting
planes to P, delimiting a slab containing P

The structure of the problem

The complexity of a convex polyhedron

• The number of vertices is n
• The number of edges is at most 3n-6

• The number f faces is at most 2n-4

• If the facets are triangular then the bounds are tight

Potential contact pairs of the supporting planes

• V-V

• V-E

• V-F

• E-E

• E-F

• F-F

Relevant

The case V-F

• O(n) pairs

• The distance between a plane and a point

The case E-E

• O(n2) pairs

• The distance between a pair of lines

Exact algorithms

The Gaussian map of a polytope P in R3

• The external normal to a facet of P

-> a vertex on S2

• The external normals to

-> an arc on S2

• The external normals to supporting
planes of a vertex of P

-> a face on S2

Gaussian map overlay

• Overlay of the map and a mirrored version through the origin

• Sufficient to look at the upper hemisphere

• Caution about the equator

• Can be transformed into an arrg on the plane z=1

The complexity of the overlay

• Two sets of n/2
points in R3, each
arranged along one
of two skewed arcs

• Take the CH of
these n points to
yield the
polyhedron

• The overlay has
complexity Ω(n2)

Algorithms

• Quasi output-sensitive algorithm
• Plane sweep, O((n+k) log n), k number of relevant EE pairs

• Special convex-map overlay [Guibas-Seidel], O(n+k)

• Randomized
• involved [Agarwal-Sharir], O(n3/2+ε)

Approximation

Strategies

• Grid of directions on S2

• requires some extra machinery(?)—see below

• Simplify the polytope

• Coresets

Robustness

What can go wrong when computing the CH

[kettner et al]

What can go wrong, cont’d

[kettner et al]

Exact predicates are necessary and sufficient

• For computing the convex hull

• Arbitrary precision rational numbers will do assuming the input vertex
coordinates are rational

• Compute squared distance (squared width)

Rounding, why we may need it

• Example: vertical decomposition of arrgs of triangles

• The coordinates (x,y,z) of every triangle corner are each represented
with a 16-bit over 16-bit rational

Snap rounding arrangements of segments

Generalization: penetration depth

What is penetration depth

• Let A and B be two convex polyhedra in R3. The penetration depth of
A and B, denoted π(A,B), is the minimum distance by which A has to
be translated such that A and B do not intersect

Width and penetration depth

Claim: For a convex polyhedron P, width(P)= π(P,P)

• Let w be the width, and v be the vector realizing it

• Let s be the minimum separation distance and u be the vector
realizing it

• s ≤ ∥ v ∥

• w ≤ ∥ u ∥

• s ≤ ∥ v ∥ = w ≤ ∥ u ∥ = s

Computing the penetration depth, preliminaries

• Let A and B be two convex polyhedra in R3 with m and n facets
respectively

• We can determine in O(m+n) time whether they intersect (LP)

• If they do not, then π(A,B)=0 and we are done

• Otherwise, we move to a configuration-space formulation, where B is
a static obstacle and A is translating

• Let P denote the Minkowski sum B⨁(-A)

• Let O denote the origin of the coordinate system

• then π(A,B)= min{d(O,x} | x ∈ bd(P)}

Minkowski sums
Take I

The Minkowski sum of two sets P and Q
in Euclidean space is the result of adding
every point in P to every point in Q

{(𝑥1, 𝑦1)} ⊕ {(𝑥2, 𝑦2)} = {(𝑥1 + 𝑥2, 𝑦1 + 𝑦2)}

𝑃 ⨁ 𝑄𝑃, 𝑄

1864 - 1909

[w
ikip

ed
ia]

Warm-up

= ?⨁

Convex polytopes

• The farthest point of the sum in any direction is the sum of the
farthest points in that direction of the summands

• The sum of convex polytopes is a convex polytope

• For polygons with 𝑚 and 𝑛 vertices, the sum has at most 𝑚 + 𝑛
vertices

• For polytopes (3D) with 𝑚 and 𝑛 vertices, the sum has
Θ(𝑚𝑛) vertices; exact numbers [Fogel-H-Weibel ‘09]

Minkowski sums and Gaussian maps

How to represent Minkowski sums in general?
The language of arrangements

• Much more involved than the convex case

• Should allow for complex topology, holes of any dimension

• Arrangements of curves and surfaces do the job

Why are Minkowski sums so useful?
Here’s a major reason:

• Claim: Two sets 𝐴 and 𝐵 intersect if and only if the Minkowski sum
𝐴 ⨁ − 𝐵 contains the origin, where −𝐵 is the set 𝐵 reflected through
the origin

In the plane −𝐵 is 𝐵 rotated by π radians around the origin

Example

𝑅 - a polygonal object that moves by translation

𝑃 - a set of polygonal obstacles

reference
point

Claim: When translating, 𝑅 intersects 𝑃 iff
ref(𝑅) is inside 𝑃 ⨁ − 𝑅

Back to penetration depth

Reminder, computing the penetration depth

• Let A and B be two convex polyhedra in R3 with m and n facets
respectively

• We can determine in O(m+n) time whether they intersect (LP)

• If they do not, then π(A,B)=0 and we are done

• Otherwise, we move to a configuration-space formulation, where B is
a static obstacle and A is translating

• Let P denote the Minkowski sum B⨁(-A)

• Let O denote the origin of the coordinate system

• then π(A,B)= min{d(O,x} | x ∈ bd(P)}

Computing the penetration depth, cont’d

• Find the shortest distance from O to the boundary of the Minkowski
sum B⨁(-A)

• It is the distance between O and a face of B⨁(-A)

• Each face is the sum of a vertex of one and the face of another, or an
edge of one and an edge of another

• All edges correspond to vertices of the overlay of the Gaussian maps
of B and –A

• Maximum complexity of the overlap Θ(𝑚𝑛)

• Notice the similarity with width computation

Approximating the penetration depth

• And hence the width w

• We allow to report (1+ε)w

• Divide the interval [0,π] into ceiling(c1/√𝜀) intervals for a constant c1

• Create a grid of points on S2 such that from any point on S2 the
distance to a grid point is at most √𝜀

• For each grid point p compute the distance between O and the
intersection of the ray from O indirection p with the boundary of
B⨁(-A)

• Output the smallest such distance as w’

Computing the directional penetration depth

• What is the minimum separation distance in direction p?

• Can we find it efficiently without computing the entire B⨁(-A)?

• This can be done in O(log2(m+n)) using the hierarchical representation
of each of B and –A [Dobkin et al]

• Why cannot we use the (much easier to compute) directional width?

Approximating the penetration depth, cont’d

Claim: w’ ≤ (1+ε)w

• v: the vector that realizes the depth

• u: the computed vector (in the direction of a grid point)

• Running time

ε

ε)

Computing the width in 3D: Bibliography
• Michael E. Houle, Godfried T. Toussaint: Computing the width of a set. Symposium on

Computational Geometry 1985: 1-7

Basics

• Pankaj K. Agarwal, Micha Sharir: Efficient Randomized Algorithms for Some Geometric
Optimization Problems. Discrete & Computational Geometry 16(4): 317-337 (1996)

O(n3/2+ε) time algorithm

• Pankaj K. Agarwal, Leonidas J. Guibas, Sariel Har-Peled, Alexander Rabinovitch, Micha Sharir:
Computing the Penetration Depth of Two Convex Polytopes in 3D. SWAT 2000: 328-338

Includes the approximation algorithm via penetration depth

• David P. Dobkin, John Hershberger, David G. Kirkpatrick, Subhash Suri: Computing the
Intersection-Depth of Polyhedra. Algorithmica 9(6): 518-533 (1993)

Efficient computation of the directional penetration depth, needed in the approximation
algorithm

THE END

