Algorithms for 3D Printing and
Other Manufacturing Processes

The Width of a Polyhedron

Dan Halperin
School of Computer Science

Tel Aviv University

Spring 2017

Re-orient a heavy model to reduce height

* Heavy model, = several 100,000s of triangles
* Find the width and re-orient
* The width algorithms needs to be robust and efficient

* We will also discuss approximation, allowing to report (1+€)w, where
w is the (minimal) width

* We start with an exact solution to the 3D width problem

Outline

e Quasi output-sensitive algorithm via Gaussian maps
* Improved algorithms

* Approximation

* Robustness issues

e Generalization: penetration depth

* Minkowski sums, take |

Width, reminder

* Input: A polyhedron P in R3

e Qutput: The minimum distance between two parallel supporting
planes to P, delimiting a slab containing P

The structure of the problem

The complexity of a convex polyhedron

* The number of vertices is n
 The number of edges is at most 3n-6
* The number f faces is at most 2n-4

* If the facets are triangular then the bounds are tight

Relevant contact pairs of the supporting planes

. V-V
* V-E
4 N
o V-F
* E-E
g J
o E-F
o F-F

The case V-F

* O(n) pairs
* The distance between a plane and a point

v [Houle-Toussaint]

The case E-E

* O(n?) pairs
* The distance between a pair of lines

Width at E-E pair

0,2,1)

[Houle-Toussaint]

Exact algorithms

The Gaussian map of a polytope P in R3

* The external normal to a facet of P
-> a3 vertex on S?

 The external normals to

-> an arc on S?

* The external normals to supporting
planes of a vertex of P

-> a face on S?

Gaussian map overlay

* Overlay of the map and a mirrored version through the origin
 Sufficient to look at the upper hemisphere

e Caution about the equator

e Can be transformed into an arrg on the plane z=1

The complexity of the overlay

* Two sets of n/2
points in R3, each
arranged along one
of two skewed arcs

e Take the CH of
these n points to
vield the
polyhedron

* The overlay has
complexity Q(n?)

Algorithms

* Quasi output-sensitive algorithm
* Plane sweep, O((n+k) log n), k number of relevant EE pairs
e Special convex-map overlay [Guibas-Seidel], O(n+k)

* Randomized
* involved [Agarwal-Sharir], O(n3/2*¢)

Approximation

Strategies

* Grid of directions on S?
* requires some extra machinery(?)—see below

e Simplify the polytope
* Coresets

Robustness

What can go wrong when computing the CH

o Pl

Fig. 1. Results of a convex hull algorithm using double-precision floating-point arithmetic with the coordinate axes drawn to give the reader a frame
of reference. The algorithm makes gross mistakes (from left to right): The clearly extreme point py is left out. The convex hull has a large concave
corner with a (non-visible) self intersection near p2 and p3, which are close together. The convex hull has a clearly visible concave chain (and no
self-intersection). Details on these examples are explained in Section 4.

[kettner et al]

What can go wrong, cont’d

0.50000000000002531 0.5
(0.5000000000000171) (0.5)
17.300000000000001 8.8000000000000007
(17.300000000000001) 8.8000000000000007
24.00000000000005 12.1
(24.0000000000000517765) (12.1)
(b) (©)

Fig. 2. The weird geometry of the float-orientation predicate: The figure shows the results of float_orient(px + Xux, py + Yuy.q.r) for

0< X, Y <255, where uy =uy = 2-33 is the increment between adjacent floating-point numbers in the considered range. The result is color
coded: Yellow (red, blue, resp.) pixels represent collinear (negative, positive, resp.) orientation. The line through g and r is shown in black.

[kettner et al]

Exact predicates are necessary and sufficient

* For computing the convex hull

 Arbitrary precision rational numbers will do assuming the input vertex
coordinates are rational

 Compute squared distance (squared width)

Rounding, why we may need it

* Example: vertical decomposition of arrgs of triangles

* The coordinates (x,y,z) of every triangle corner are each represented
with a 16-bit over 16-bit rational

Complexity of numbers, input coordinates

Triangle 1:
(-9661 / 495, 898 / 2689, -92949 / 3802),
(-150234 / 1583, -8174 / 1759, -57116 / 3851],
(13605 / 1261, -90590 / 3669, -11791 / 518)

Triangle 2:
(-77665 / 4036, -130679 / 3347, -31167 / 1630),
(-5861 / 297, 36471 / 893, -53137 / 2704),
(132613 / 3310, 3 / 8, -21926 / 1111)

Triangle 3:
(-37497 / 1939, -131078 / 3301, 591 / 3680),
(-74461 / 3822, -28120 / 3397, 7607 / 346),
(21622 / 1037, -12481 / 1441, 17957 / 827)

Triangle 4:
(-10760 / 521, -58546 / 3067, 27619 / 1322),
(-65262 / 3181, 74693 / 3622, 178988 / 863),
(48898 / 2419, 1602 / 1627, 26390 / 1273)

Triangle 5:
(-73482 / 3845, 88794 / 2203, 2720 / 3661),
(—20691 / 1049, 9257 / 983, 57830 / 2693),
(285090 / 1363, 38699 / 3957, 62390 / 2957)

Complexity of nhumbers, computed coordinates

A normalized coordinate of the worst feature of the partial decomposition — 237 digits long.

PD feature = 49799838826104887192775516219046994702
461828025069123646217485873346921099238939609590257
26989674024022169299702332971 / 5027790709859107937
563103744532644005619919434042984323896243077724409
28440717068821348688514967315807T043013459806716

A normalized coordinate of the worst feature of the full decomposition — 559 digits long:

FD feature = 23279315243924676155798958688382904585
98B8203585590361740835519681254968145162747098072652
141858607502723046239367209776569259776678871640355
4T6703121623912568549584T7891239829741299582T8704985
3907444835776621040852317083402326261223689900135642
7999613293720681684955293128811292981 / 22458231406
216094878202976126790054324698816432478447511802089
665363641250066501433769538474807742947270581109819
674675916341254734148663444090199264276142009850182
419444726060661342077926179045344110704705488623057
680809306210269199637837(088757430354530277343135738
800521441456

Nnts
of segme
unding arrangements

Snap ro

7
7.
2

\

Ty,

7
%

W

W
)
)
o

N
=
SS

—
—

]

Wty
il
i

--904-5 i

i\

\
ti\\\“

W

N
S,

I
gy
1ty 17"
Uty

Generalization: penetration depth

What is penetration depth

* Let A and B be two convex polyhedra in R3. The penetration depth of
A and B, denoted 1(A,B), is the minimum distance by which A has to
be translated such that A and B do not intersect

(A, B) = min{|[t|| | nt(A+t)NB =0, t € Rg}

Width and penetration depth

Claim: For a convex polyhedron P, width(P)= 1t(P,P)

* Let w be the width, and v be the vector realizing it

* Let s be the minimum separation distance and u be the vector
realizing it

es<| vl
ew<|ul

*s<llvil=w<llull=s

Computing the penetration depth, preliminaries

* Let A and B be two convex polyhedra in R3 with m and n facets
respectively

* We can determine in O(m+n) time whether they intersect (LP)
* If they do not, then 1t(A,B)=0 and we are done

* Otherwise, we move to a configuration-space formulation, where B is
a static obstacle and A is translating

e Let P denote the Minkowski sum B@(-A)
* Let O denote the origin of the coordinate system
* then m(A,B)= min{d(O,x} | x € bd(P)}

Minkowski sums

Take |

The Minkowski sum of two sets P and Q

in Euclidean space is the result of adding
every point in P to every point in Q

{(xpy)} D H b= A{0Gq + x5, +3))}

PQ

Moo

1864 - 1909

[e1padiyjim]

Convex polytopes

* The farthest point of the sum in any direction is the sum of the
farthest points in that direction of the summands

* The sum of convex polytopes is a convex polytope

* For polygons with m and n vertices, the sum has at most m +n
vertices

* For polytopes (3D) with m and n vertices, the sum has
®(mn) vertices; exact numbers [Fogel-H-Weibel ‘09]

Minkowski sums and Gaussian maps

| Observation

The overlay of the Gaussian maps of two convex polytopes P and Q is the
Gaussian map of the Minkowski sum of P and Q.

overlay(G(P),G(Q)) =G(Po Q

@ The overlay identifies all the pairs
of features of P and @ respectively
that have common supporting

planes.

@ These common features occupy the
same space on S?.

@ They identify the pairwise features
that contribute to B(P@ Q) Cube Minkowski sum tetrahedron

How to represent Minkowski sums in general?
The language of arrangements

* Much more involved than the convex case

e Should allow for complex topology, holes of any dimension

* Arrangements of curves and surfaces do the job

NS
/

0] \
4~ 3 : |
i X
¢ Y LY
N e

Why are Minkowski sums so useful?
Here’s a major reason:

e Claim: Two sets A and B intersect if and only if the Minkowski sum
A @ — B contains the origin, where —B is the set B reflected through
the origin

In the plane —B is B rotated by 1 radians around the origin

Example

R - a polygonal object that moves by translation
P - a set of polygonal obstacles

7/ A
M

refe(;,enrlce Claim: When translating, R intersects P iff
- ref(R) isinside P @ — R

Back to penetration depth

Reminder, computing the penetration depth

* Let A and B be two convex polyhedra in R3 with m and n facets
respectively

* We can determine in O(m+n) time whether they intersect (LP)
* If they do not, then 1t(A,B)=0 and we are done

* Otherwise, we move to a configuration-space formulation, where B is
a static obstacle and A is translating

e Let P denote the Minkowski sum B@(-A)
* Let O denote the origin of the coordinate system
* then m(A,B)= min{d(O,x} | x € bd(P)}

Computing the penetration depth, cont’d

* Find the shortest distance from O to the boundary of the Minkowski
sum B@D(-A)

* It is the distance between O and a face of BEH(-A)

e Each face is the sum of a vertex of one and the face of another, or an
edge of one and an edge of another

* All edges correspond to vertices of the overlay of the Gaussian maps
of B and —A

* Maximum complexity of the overlap ®(mn)
* Notice the similarity with width computation

Approximating the penetration depth

* And hence the width w
* We allow to report (1+€)w

* Divide the interval [0,mt] into ceiling(cl/\/s) intervals for a constant c,

* Create a grid of points on S? such that from any point on S? the
distance to a grid point is at most Ve

o(For each grid point p compute the distance between O and the A
intersection of the ray from O indirection p with the boundary of

BO(-A)

e Qutput the smallest such distance as w’

Computing the directional penetration depth

* What is the minimum separation distance in direction p?
e Can we find it efficiently without computing the entire B@(-A)?

* This can be done in O(log?(m+n)) using the hierarchical representation
of each of B and —A [Dobkin et al]

* Why cannot we use the (much easier to compute) directional width?

Approximating the penetration depth, cont’d

Claim: w’ < (1+¢g)w

 v: the vector that realizes the depth

e u: the computed vector (in the direction of a grid point)
< AL < T < 1@yl < (14l

cosaw — 1 —a?/2 ~

* Running time

O(m +n+ (log”(m +n))/ ¢

Computing the width in 3D: Bibliography

* Michael E. Houle, Godfried T. Toussaint: Computing the width of a set. Symposium on
Computational Geometry 1985: 1-7
Basics

* Pankaj K. Agarwal, Micha Sharir: Efficient Randomized Algorithms for Some Geometric
Optimization Problems. Discrete & Computational Geometry 16(4): 317-337 (1996)

O(n3/2*¢) time algorithm

* Pankaj K. Agarwal, Leonidas J. Guibas, Sariel Har-Peled, Alexander Rabinovitch, Micha Sharir:
Computing the Penetration Depth of Two Convex Polytopes in 3D. SWAT 2000: 328-338

Includes the approximation algorithm via penetration depth

e David P. Dobkin, John Hershberger, David G. Kirkpatrick, Subhash Suri: Computing the
Intersection-Depth of Polyhedra. Algorithmica 9(6): 518-533 (1993)

Efficient computation of the directional penetration depth, needed in the approximation
algorithm

THE END

[Gaither, ArtByAl, CGAL arrgs]

