

Algorithms for 3D Printing and Other Manufacturing Processes

The Width of a Polyhedron

Dan Halperin
School of Computer Science
Tel Aviv University

Re-orient a heavy model to reduce height

- Heavy model, \geq several 100,000 s of triangles
- Find the width and re-orient
- The width algorithms needs to be robust and efficient
- We will also discuss approximation, allowing to report $(1+\varepsilon) w$, where w is the (minimal) width
- We start with an exact solution to the 3D width problem

Outline

- Quasi output-sensitive algorithm via Gaussian maps
- Improved algorithms
- Approximation
- Robustness issues
- Generalization: penetration depth
- Minkowski sums, take I

Width, reminder

- Input: A polyhedron P in R^{3}
- Output: The minimum distance between two parallel supporting planes to P, delimiting a slab containing P

The structure of the problem

The complexity of a convex polyhedron

- The number of vertices is n
- The number of edges is at most $3 n-6$
- The number f faces is at most $2 n-4$
- If the facets are triangular then the bounds are tight

Relevant contact pairs of the supporting planes

- V-V
- V-E
- V-F
- E-E
- E-F
- F-F

The case V-F

- O(n) pairs
- The distance between a plane and a point

[Houle-Toussaint]

The case E-E

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ pairs
- The distance between a pair of lines

Exact algorithms

The Gaussian map of a polytope P in R^{3}

- The external normal to a facet of P
-> a vertex on S^{2}
- The external normals to
-> an arc on S^{2}
- The external normals to supporting planes of a vertex of P
-> a face on S^{2}

Gaussian map overlay

- Overlay of the map and a mirrored version through the origin
- Sufficient to look at the upper hemisphere
- Caution about the equator
- Can be transformed into an arrg on the plane $z=1$

The complexity of the overlay

- Two sets of $n / 2$ points in R^{3}, each arranged along one of two skewed arcs
- Take the CH of these n points to yield the polyhedron

- The overlay has complexity $\Omega\left(\mathrm{n}^{2}\right)$

Algorithms

- Quasi output-sensitive algorithm
- Plane sweep, $O((n+k) \log n)$, k number of relevant EE pairs
- Special convex-map overlay [Guibas-Seidel], O(n+k)
- Randomized
- involved [Agarwal-Sharir], O($\left.\mathrm{n}^{3 / 2+\varepsilon}\right)$

Approximation

Strategies

- Grid of directions on S ${ }^{2}$
- requires some extra machinery(?)—see below
- Simplify the polytope
- Coresets

Robustness

What can go wrong when computing the CH

Fig. 1. Results of a convex hull algorithm using double-precision floating-point arithmetic with the coordinate axes drawn to give the reader a frame of reference. The algorithm makes gross mistakes (from left to right): The clearly extreme point p_{1} is left out. The convex hull has a large concave corner with a (non-visible) self intersection near p_{2} and p_{3}, which are close together. The convex hull has a clearly visible concave chain (and no self-intersection). Details on these examples are explained in Section 4.

What can go wrong, cont'd

Fig. 2. The weird geometry of the float-orientation predicate: The figure shows the results of float_orient $\left(p_{x}+X u_{x}, p_{y}+Y u_{y}, q, r\right)$ for $0 \leqslant X, Y \leqslant 255$, where $u_{x}=u_{y}=2^{-53}$ is the increment between adjacent floating-point numbers in the considered range. The result is color coded: Yellow (red, blue, resp.) pixels represent collinear (negative, positive, resp.) orientation. The line through q and r is shown in black.

Exact predicates are necessary and sufficient

- For computing the convex hull
- Arbitrary precision rational numbers will do assuming the input vertex coordinates are rational
- Compute squared distance (squared width)

Rounding, why we may need it

- Example: vertical decomposition of arrgs of triangles
- The coordinates (x, y, z) of every triangle corner are each represented with a 16-bit over 16-bit rational

Complexity of numbers, input coordinates

```
Triangle 1:
    (-9661 / 499, 898 / 2689, -92949 / 3802),
    (-15034 / 1583, -8174 / 1759, -57116 / 3851),
    (13605 / 1261, -90590 / 3669, -11791 / 518)
Triangle 2:
    (-77665 / 4036, -130679 / 3347, -31167 / 1630),
    (-5851 / 297, 36471 / 893, -53137 / 2704),
    (132613 / 3310, 3 / 8, -21926 / 1111)
Triangle 3:
    (-37497 / 1939, -131078 / 3301, 591 / 3680),
    (-74461 / 3822, -28120 / 3397, 7607 / 346),
    (21622 / 1037, -12461 / 1441, 17957 / 827)
Triangle 4:
    (-10760 / 521, -58546 / 3057, 27619 / 1322),
    (-65262 / 3181, 74693 / 3622, 17898 / 863),
    (48898 / 2419, 1602 / 1627, 26390 / 1273)
Triangle 5:
    (-73482 / 3845, 88794 / 2203, 2720 / 3661),
    (-20591 / 1049, 9257 / 983, 57830 / 2693),
    (28590 / 1363, 38699 / 3957, 62390 / 2957)
```


Complexity of numbers, computed coordinates

A normalized coordinate of the worst feature of the partial decomposition - 237 digits long:
PD feature $=49799838826104887192775516219046994702$ 461828025059123646217485873346921099238939609590257 26989674024022169299702332971 / 5027790709859107937 563103744532644005619919434042984323896243977724409 28440717068821348688514967315807043013459806716

A normalized coordinate of the worst feature of the full decomposition - 559 digits long:
FD feature $=23279315243924676155798958688382904585$ 988203585590361740839519681254968145162747098072652 141858607502723046239367209776569259776678871640355 476703121623912558549584789123982974129956278704985 390744483577662104085231708340232525122368990013542 7999613293720681684955293128811292981 / 22458231406 216094878202976126790054324698816432478447511802089 665363641250066501433769538474807742947270581109819 674675916341254734148663444090199254276142009850182 419444726060661342077926179045344110704705488623957 680809306210269199637837088757430354530277343135738 809521441456

Snap rounding arrangements of segments

Generalization: penetration depth

What is penetration depth

- Let A and B be two convex polyhedra in R^{3}. The penetration depth of A and B, denoted $\pi(A, B)$, is the minimum distance by which A has to be translated such that A and B do not intersect

$$
\pi(A, B)=\min \left\{\|t\| \mid \operatorname{int}(A+t) \cap B=\emptyset, t \in \mathbb{R}^{3}\right\}
$$

Width and penetration depth

Claim: For a convex polyhedron P, width $(P)=\pi(P, P)$

- Let w be the width, and v be the vector realizing it
- Let s be the minimum separation distance and u be the vector realizing it
- $s \leq\|v\|$
- w $\leq\|u\|$
- $s \leq\|v\|=w \leq\|u\|=s$

Computing the penetration depth, preliminaries

- Let A and B be two convex polyhedra in R^{3} with m and n facets respectively
- We can determine in $O(m+n)$ time whether they intersect (LP)
- If they do not, then $\pi(A, B)=0$ and we are done
- Otherwise, we move to a configuration-space formulation, where B is a static obstacle and A is translating
- Let P denote the Minkowski sum $\mathrm{B} \oplus(-\mathrm{A})$
- Let O denote the origin of the coordinate system
- then $\pi(A, B)=\min \{d(O, x\} \mid x \in b d(P)\}$

Minkowski sums
Take I

The Minkowski sum of two sets P and Q in Euclidean space is the result of adding every point in P to every point in Q
$\left\{\left(x_{1}, y_{1}\right)\right\} \oplus\left\{\left(x_{2}, y_{2}\right)\right\}=\left\{\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right\}$

H. Stintowdi

1864-1909

$$
\bullet \cdot \bullet
$$

Convex polytopes

- The farthest point of the sum in any direction is the sum of the farthest points in that direction of the summands
- The sum of convex polytopes is a convex polytope
- For polygons with m and n vertices, the sum has at most $m+n$ vertices
- For polytopes (3D) with m and n vertices, the sum has $\Theta(m n)$ vertices; exact numbers [Fogel-H-Weibel '09]

Minkowski sums and Gaussian maps

Observation

The overlay of the Gaussian maps of two convex polytopes P and Q is the Gaussian map of the Minkowski sum of P and Q.

$$
\operatorname{overlay}(G(P), G(Q))=G(P \oplus Q)
$$

- The overlay identifies all the pairs of features of P and Q respectively that have common supporting
 planes.
- These common features occupy the same space on \mathbb{S}^{2}.
- They identify the pairwise features that contribute to $\partial(P \oplus Q)$.

Cube

Minkowski sum

tetrahedron

How to represent Minkowski sums in general? The language of arrangements

- Much more involved than the convex case
- Should allow for complex topology, holes of any dimension
- Arrangements of curves and surfaces do the job

Why are Minkowski sums so useful? Here's a major reason:

- Claim: Two sets A and B intersect if and only if the Minkowski sum $A \oplus-B$ contains the origin, where $-B$ is the set B reflected through the origin

In the plane $-B$ is B rotated by π radians around the origin

Example

R - a polygonal object that moves by translation
P - a set of polygonal obstacles

Claim: When translating, R intersects P iff $\operatorname{ref}(R)$ is inside $P \oplus-R$

Back to penetration depth

Reminder, computing the penetration depth

- Let A and B be two convex polyhedra in R^{3} with m and n facets respectively
- We can determine in $O(m+n)$ time whether they intersect (LP)
- If they do not, then $\pi(A, B)=0$ and we are done
- Otherwise, we move to a configuration-space formulation, where B is a static obstacle and A is translating
- Let P denote the Minkowski sum $B \oplus(-A)$
- Let O denote the origin of the coordinate system
- then $\pi(A, B)=\min \{d(O, x\} \mid x \in b d(P)\}$

Computing the penetration depth, cont'd

- Find the shortest distance from O to the boundary of the Minkowski sum $B \oplus(-A)$
- It is the distance between O and a face of $B \oplus(-A)$
- Each face is the sum of a vertex of one and the face of another, or an edge of one and an edge of another
- All edges correspond to vertices of the overlay of the Gaussian maps of B and -A
- Maximum complexity of the overlap $\Theta(m n)$
- Notice the similarity with width computation

Approximating the penetration depth

- And hence the width w
- We allow to report $(1+\varepsilon)$ w
- Divide the interval $[0, \pi]$ into ceiling $\left(\mathrm{c}_{1} / \sqrt{ } \varepsilon\right.$) intervals for a constant c_{1}
- Create a grid of points on S^{2} such that from any point on S^{2} the distance to a grid point is at most $\sqrt{ } \varepsilon$
- For each grid point p compute the distance between O and the intersection of the ray from O indirection p with the boundary of $B \oplus(-A)$
- Output the smallest such distance as w'

Computing the directional penetration depth

- What is the minimum separation distance in direction p ?
- Can we find it efficiently without computing the entire $B \oplus(-A)$?
- This can be done in $O\left(\log ^{2}(m+n)\right)$ using the hierarchical representation of each of B and -A [Dobkin et al]
- Why cannot we use the (much easier to compute) directional width?

Approximating the penetration depth, cont'd

Claim: $\mathrm{w}^{\prime} \leq(1+\varepsilon) \mathrm{w}$

- v : the vector that realizes the depth
- u : the computed vector (in the direction of a grid point)

$$
\|u\| \leq \frac{\|v\|}{\cos \alpha} \leq \frac{\|v\|}{1-\alpha^{2} / 2} \leq\left(1+\alpha^{2}\right)\|v\| \leq(1+\varepsilon)\|v\|
$$

- Running time

$$
O\left(m+n+\left(\log ^{2}(m+n)\right) / \varepsilon\right)
$$

Computing the width in 3D: Bibliography

- Michael E. Houle, Godfried T. Toussaint: Computing the width of a set. Symposium on Computational Geometry 1985: 1-7

Basics

- Pankaj K. Agarwal, Micha Sharir: Efficient Randomized Algorithms for Some Geometric Optimization Problems. Discrete \& Computational Geometry 16(4): 317-337 (1996) $\mathrm{O}\left(\mathrm{n}^{3 / 2+\varepsilon}\right)$ time algorithm
- Pankaj K. Agarwal, Leonidas J. Guibas, Sariel Har-Peled, Alexander Rabinovitch, Micha Sharir: Computing the Penetration Depth of Two Convex Polytopes in 3D. SWAT 2000: 328-338

Includes the approximation algorithm via penetration depth

- David P. Dobkin, John Hershberger, David G. Kirkpatrick, Subhash Suri: Computing the Intersection-Depth of Polyhedra. Algorithmica 9(6): 518-533 (1993)

Efficient computation of the directional penetration depth, needed in the approximation algorithm

THE END

