
Algorithms for 3D Printing and
Other Manufacturing Processes

c

Digital Model Simplification

Dan Halperin

School of Computer Science

Tel Aviv University

Spring 2017

Outline

• Background

• Minimal nested polygons

• Approximation of convex polytopes

• The Douglas-Peuker algorithm

• Progressive mesh decimation

Background

Basics

• Polyhedral (polygonal) models

• Simplification/approximation: produce a model with fewer vertices,
edges, and faces

• Preserve some user-defined quality criteria

• Flavors:
• Given a fixed number of allowable features, produce the best approximation

within this bound

• Produce the minimal model (feature-# wise) preserving the quality criteria

Distance measures of approximation quality

• Symmetric difference

• Hausdorff distance

• Fr ƴ𝑒chet distance, between curves (boundaries)

[Wikipedia]

Minimal nested polygons

The problem

Given two convex polygons P and Q such that Q is contained in P,
determine a minimum-vertex polygon K that contains Q and is
contained in P

|P|+|Q|=n

Terminology

• Given P and Q, a nested polygon between P and Q is contained in P
and contains Q

• A nested polygon between P and Q is minimal if it has the minimum
number of vertices among all nested polygons

• We use P and Q (also) to denote the boundaries

• A: the closed region (the annulus) bounded between P and Q

• We walk along all polygons in CCW direction

• A supporting line segment: a directed segment in A that supports Q
on its left and has both its endpoint in P

Terminology, cont’d

• For any point a on P let La be the unique supporting segment ab
directed from a to b

• Ra: the region HLa∩A, where HLa is the closed right half-plane
determined by La

• R’a: Ra – {a}

The figures in this section are taken from the paper “Finding
minimal nested polygons” by Aggarwal et al; see references.

Basic lemmas

• Lemma 1: Every minimal nested polygon is convex

• Lemma 2: For any a∈P, R’a contains at least one vertex of any minimal
polygon

• Supporting polygon: all whose edges, except perhaps the last one, are
supporting segments

• Sa: a supporting polygon starting at a∈P

• Lemma 3: For any a∈P, Sa has at most one vertex more than the
minimum

• Lemma 4: Any minimal polygon K={v1,…,vk} can be transformed into
an Sa for some a∈P

Proof of Lemma 4

(a) move vertices to P

(b) make segments supporting (except perhaps the last one)

Algorithm
• Construct Sa for some a∈P,

Sx=Sa=Sv1= ={v1,…,vk}

• Compute the projection functions

• q: the contact point of La=Lv1 with Q

• qy/(qx-x1)=x2 sin 𝜗/(d-x1+x2+cos 𝜗)

• → x2=qy(d-x1)/sin 𝜗(qx-qy cot 𝜗-x1)

• → x2=(c1+c2x1)/(c3+c4x1), where
c1,c2,c3,c4 depend only on the
features of P and Q involved in the
contact with the edge v1v2 of Sa

Projection functions cont’d

• Similarly we can write x3=(d1+d2x2)/(d3+d4x2), where di are constants
as before

• We substitute x2 in the equation above using x2=(c1+c2x1)/(c3+c4x1),
and simplify, to get x3=(e1+e2x1)/(e3+e4x1)

• We go on to obtain the functions xi=fi(x1), i=2,…,k

• These functions are valid unless a change in contact
occurs for some edge vi,vi+1in Sx

Computing the next contact change point

• A point z∈P is called a contact-change point if Sz has at least one
contact different from Sy where y∈P is a point in a neighborhood of z
and immediately preceding it in clockwise order

• A change in contact occurs for some edge vi,vi+1in Sx , while it rotates
around qi (its contact with Q), if one of the following happnes:
• vi reaches a vertex edge of P
• vi+1 reaches a vertex edge of P
• vi,vi+1 aligns with the next edge of Q

• We denote the change point by vi
c

• While sliding from vi to vi
c at least one edge of {v1,…,vi} changes

contact; let v*i be the first such location

Change points cont’d

• Our goal is to compute v*k-1

• Assume we have already computed v*i-1 then v*i is the more
clockwise of
• vi

c

• The intersection point of the extension of v*i-1 q with P

• In the next slide, in the algorithm summary, * is replaced by a
diamond ◊

The algorithm

Remarks

• We only need to look at supporting polygons which start at the
portion of P’s boundary in Rv1

• We track vk to check for its coinciding with v1

• This may happen between contact-change points

Complexity

• Computing the initial supporting polygon Sa takes O(n) time

• Computing the initial projection functions takes O(k) time

• The total number of contact changes is O(n)

• Finding the next contact-change point takes O(k) time

• Updating the projection functions after a contact change takes O(k)
time

• For a total of O(nk) time

• Can be improved to O(n log k) time

Approximating convex polytopes

• For a parameter ε>0, a polytope P is an ε-approximating polytope to a
convex body K if the Hausdorff distance between K and P is at most ε

• Assume that the dimension d is fixed

• For ε ≤ 1, any convex body K of unit diameter can be ε-approximated
by a convex polytope P with O((1/ε)(d−1)/2) facets [Dudley, ‘74]

• Similar result for vertices by Bronshteyn and Ivanov

• Many variants and extensions; see, e.g., a recent paper by Arya et al
(bibliography below)

Simplifying a polygonal line

Douglas-Peuker

• Input: a polygonal line and a threshold ε>0

[Legland et al ‘14]

Progressive mesh decimation
Based primarily on Polygon Mesh Processing, Botsch et al, Chapter 7

Triangular meshes

• A collection of triangles

• A triangle mesh consists of
• a geometric component: each vertex is embedded in R3

• and a topological component, represented, for example, by a graph structure
like a DCEL, or a simpler graph connecting between vertices and faces

• A triangle mesh is a 2-manifold if it does not contain: non-manifold
edges, non-manifold vertices, self-intersections

• For our purpose we assume that the mesh bounds a volume (post
mesh repair)

Surface approximation is hard

The problem: Given a set S of n points sampled from a bivariate
function f(x,y) and an input parameter ε>0, compute a piecewise linear
function T(x,y) of minimum complexity (that is, an xy-monotone
polyhedral surface, with a minimum number of vertices, edges, or
faces) such that

|T(xp,yp) - zp| ≤ ε for all (xp,yp,zp) ∈ S

It is NP-hard to decide if a surface can be ε-approximated using k
vertices (or facets) [Agarwal and Suri]

Possible decimation operations

• Vertex removal

• Edge collapse

• Halfedge collapse

Figure 7.3 [Botsch et al]

Progressive mesh decimation by edge contraction

1. Compute a local penalty for the contraction of each edge and store
the candidate edges in a heap by penalty

2. Fetch the globally lowest penalty edge emin

3. Contract emin to a point (see below)

4. Re-compute the penalty for edges affected by the change and
update the heap accordingly

5. If heap is not empty, go to 2

Topology preservation rules

• Contracting an edge (p,q) is valid
• If both p and q are boundary vertices, then the edge (p,q) has to be a boundary edge
• For all vertices r incident to both p and q there has to be a triangle (p,q,r)

Figure 7.4 [Botsch et al]

• Alternatively, the link condition lemma [Dey et al ’99; Sec 4.2 in
Edelsbrunner’s book]

Distance measures

• In general: each triangle ti in the decimated mesh is associated with a
surface patch Si in the original mesh

• We wish the decimated mesh to stay within a prescribed ε>0 from the
original mesh

• We typically only estimate the distance

• Error accumulation (scalar or vector)

• Error quadrics – see next slide

• Hausdorff distance – good error estimation, expensive

Error quadrics

• Recall that each triangle ti in the decimated mesh is associated with a
surface patch Si in the original mesh

• Error quadrics: estimating the sum of squared distances of pj from all the
supporting planes of triangles in the patches Si that are associated with the
triangles ti surrounding pj

• Used to find the optimal location of the contraction point
• 4x4 matrix
• Over counting (up to three times per original triangle)
• Approximating the distance to a triangle by the distance to its supporting

plane can incur major underestimation
• Edge contraction ≈ addition of matrices: economical in storage and

computation
[Garland and Heckbert]

Fairness criteria

• We can use the edge penalty, which estimates the deviation from the
original mesh, to decide if we do the contraction otr not (binary
decision) or we could use it also for ordering the contraction
operations

• Alternatively, if we use the penalty only for the binary decision, we
can add other quality criteria (these are called fairness criteria), for
example:
• Produce near-equilateral triangles

• Minimize normal “jump” between adjacent triangles

Memory-less simplification

• No history, only local cost estimation per edge

• Less faithful approximation but more memory efficient

• That’s the CGAL methodology, based on [Lindstrom and Turk]

• Otherwise, the CGAL framework for simplification is generic

Simplification: Bibliography
• Alok Aggarwal, Heather Booth, Joseph O'Rourke, Subhash Suri, Chee-Keng Yap: Finding Minimal

Convex Nested Polygons. Inf. Comput. 83(1): 98-110 (1989)

• R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx.
Theory, 10(3):227–236, 1974

• Sunil Arya, Guilherme Dias da Fonseca, David M. Mount: On the Combinatorial Complexity of
Approximating Polytopes. Symposium on Computational Geometry 2016: 11:1-11:15

• David Douglas, Thomas Peucker: Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. The Canadian Cartographer 10(2), 112–122 (1973)

• Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Levy: Polygon Mesh Processing.
A K Peters 2010

• Michael Garland, Paul S. Heckbert: Surface simplification using quadric error metrics. SIGGRAPH
1997: 209-216

• Hugues Hoppe: Progressive Meshes. SIGGRAPH 1996: 99-108

• Herbert Edelsbrunner: Geometry and Topology for Mesh Generation, Cambridge 2001

Simplification: Bibliography, cont’d
• Pankaj K. Agarwal, Subhash Suri: Surface Approximation and Geometric Partitions. SODA 1994:

24-33

• Peter Lindstrom, Greg Turk: Fast and memory efficient polygonal simplification. IEEE Visualization
1998: 279-286

• Peter Lindstrom, Greg Turk: Evaluation of Memoryless Simplification. IEEE Trans. Vis. Comput.
Graph. 5(2): 98-115 (1999)

THE END

