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Basics, reminder



Assembly by disassembly

• Partitioning, first the input assembly A into subassemblies and then, 
recursively, the generated subassemblies that are not individual parts

• Implemented by two procedures:

• Partition: takes the description of an assembly S as input and 
generates two subassemblies S1 and S2, along with a path p such that 
moving S1 along p separates it from S2. Whenever such subassemblies 
and direction do not exist, the procedure returns failure

• Disassemble: applies partition to the given assembly A and, 
recursively, to the generated subassemblies



Categories of motion

• A motion step translates a body along a single direction t by some 
distance q, while rotating it at constant rate r about an axis a that is 
fixed relative to the body

• A one-step motion consists of a single motion step in which q is 
arbitrarily large

• If the rotation rate is null (i.e., the body has fixed orientation), the 
motion is a one-step translation

• A multistep motion is the concatenation of several motion steps, in 
which the last step has arbitrarily large q

• An infinitesimal motion consists of a single motion step in which q is 
arbitrarily small



The motion space approach



A general framework

• A general approach to designing the procedure partition

• The procedure needs to select a subset S out of A (exponentially 
many options) and a path p along which we separate S from A∖S

• The crux of the framework is the observation that the number of 
degrees of freedom of the path is the key factor of efficiency

• A suite of polynomial-time solutions to the partitioning problem and 
hence to assembly planning



Motion space (M-space)

• the space of parametric representations of all allowable motions for 
partitioning operations: every point in M-space uniquely defines a 
path of the subassembly moved by an operation

• the dimension of the motion space is the minimal number of 
parameters required to define a path with a fixed starting point

• the motion space must be parameterized in such away that the 
representation of a motion is independent of the subassembly that 
will eventually be moved away

• all the coordinate frames coincide with a universal frame U when the 
parts are in their assembled configurations



M-region

• For every ordered pair of parts Pi and Pj in an assembly we define 
their M-region Pij to be the collection of points p in motion space such 
that if we move Pi along the path that p represents, Pi will overlap 
with Pj at some point

• For each path p in Pij we say that Pj blocks Pi



Blocking graph

• Given an assembly A made of n parts P1,…,Pn, we associate a directed 
graph G(p) with every point p of motion space. The nodes of G(p) are 
the n parts P1,…,Pn composing the assembly, and each ordered pair 
<Pi,Pj> such that p∈Pij induces an arc of G(p) directed from Pi to Pj .We 
call this graph the directional blocking graph (or DBG) of A for path p



Non-directional blocking graph                                  
[Wilson-Latombe ‘94] 

• Let 𝜕Pij denote the set of all paths p such that if Pi moves along p it 
will eventually touch Pj, without overlap

• In general 𝜕Pij is a superset of the boundary of Pij

• The sets 𝜕Pij for all i,j ∈[1,n], i≠j, decompose the motion space into 
an arrangement of cells such that the DBG of A remains fixed over 
each cell

• The arcs of the DBG in any cell c in this arrangement correspond 
exactly to the M-regions that contain c

• The arrangement of cells thus defined, along with the DBG of each 
cell, the non-directional blocking graph (or NDBG)



Strong connectivity

• A directed graph is strongly connected if every vertex is reachable 
from every other vertex

• The strongly connected components of an arbitrary directed graph 
form a partition into subgraphs that are themselves strongly 
connected

• It is possible to test the strong connectivity of a graph, or to find its 
strongly connected components, in linear time

Graph with strongly connected components marked [Wikipedia]



NDBG and the partition problem

• Claim: The assembly partitioning problem has a positive answer 
(subassembly + path) iff there is a point p in M-space such that 
DBG(p) is not strongly connected



The procedure partition



Motion space realization

• Define the parameters of a partition path

• This determines the dimension d and coordinates of the M-space

• The shape and complexity of an M-region

• The overlay of the boundaries of the M-regions: a d-dimensional 
arrangement

• The rest is (more or less) common to all realizations:
• Construct the DBG in each cell according to containment in M-regions

• Check each DBG for strong connectivity



Example 1: One-step translation in the plane

• Reminder I:
• A one-step motion consists of a single motion step in which q is arbitrarily 

large

• If the rotation rate is null (i.e., the body has fixed orientation), the motion is a 
one-step translation

• What is the M-space?

• How does an M-region look like?

• Reminder II:
• Two sets A and B intersect if and only if the Minkowski sum A⨁−B contains 

the origin, where −B is the set B reflected through the origin

• More generally: A∩(B ⨁{t}) ≠ ∅ iff t ∈ A⨁−B



One-step translation, M-region



One-step translation, constructing the NDBG

• Overlay the arcs Pij on S1: sort the endpoints of the arcs

• Compute the BDG at, say, 𝜃=0

• * Check for strong connectivity, if not SC, report a strongly connected 
component and a direction of separation and stop, else

• Move to the next cell of the 1D arrangement. If contains 𝜃=0, then 
report failure and stop. Else update the DBG according to the vertex 
you crossed, and go to * 



One-step translation, complexity

• n - # of polygonal parts

• q – maximum complexity of a single part

• The boundary of Pij can be computed in O(q2) time for a total of 
O((nq)2) time – needs some care

• Overlay of the n2 arcs on S1 results in an arrg of complexity O(n2) and 
takes O(n2 log n) time to construct

• The complexity of a single DBG is O(n2) and it takes O(n2) time to build 
it

• Updating the graph at a crossing point takes constant time

• Total construction time of the NDBG O(n2(log n + q2))



One-step translation, complexity, cont’d

• Deciding strong connectivity for a single DBG takes O(n2) time

• Total running time of the disassemble procedure O(n5)

• Total running time of the entire algorithm O((nq)2 + n5)



Amortizing strong connectivity tests

• One can use the knowledge about the sequence of insertions and 
deletions of edges in all the DBGs together to improve the amortized 
running time of a strong-connectivity test to O(n1.376)               
[Khanna-Motwani-Wilson ‘98]



One-step translation in 3-space

• See separate set of slides



Multi-step motions



Finite set of arbitrary-length multi-step paths

• If we are given the subassembly, finding a multi-step path can be 
carried out in polynomial time 

• If the assembly is not given but the given infinite family of paths (M-
space) has fixed dimension, then the partition problem can be solved 
in polynomial time

• Question: We are given an assembly and we have to solve the 
partition problem for a finite set of arbitrary-length multi-step paths; 
can we solve this problem efficiently, say even for multi-step 
translations in the plane?



The interference diagram (ID) for translations



ID, details of multi-step translation in the plane

• The assembly is placed in a fixed location in the plane

• The assembly and all its parts have a joint reference frame

• We compute the Minkowski sum Pj⨁-Pi for each ordered pair of 
distinct parts

• Next, we construct the arrangement of the boundaries of the 
Minkowski sums

• Each valid path starts at the common origin and ends at the 
unbounded cell of the arrangement

• The DBG of the path has an edge (Pi,Pj) for every Pj⨁-Pi that it crosses



Example



Suggestion for a project

• Devise an interactive graphic program to answer the partition 
problem for query multi-step-translations paths for polygonal parts in 
the plane. Analyze the complexity of each step. 

Remarks:

• The ID is given almost for free with CGAL (Minkowski sums + 
arrangements of segments)

• Challenge 1: construct an efficient version of the ID (not all details in a 
Minkowski sum may be necessary)

• Challenge 2: allow for tight passages in the partition paths



ID for multi-step motions (trans+rot) in the plane

• What is the shape of an M-region?

• How can we construct it?

• C-space visualization:

https://www.youtube.com/watch?v=SBFwgR4K1Gk&feature=youtu.be&hd=1

https://www.youtube.com/watch?v=SBFwgR4K1Gk&feature=youtu.be&hd=1


Two-step translations in the plane: 
The M-space approach

• Every partition path consists of a segment from the origin to the point 
(x,y) followed by a ray in direction 𝜃

• The M-space is three-dimensional, with coordinates (x,y,𝜃)

• We will construct a superset of the boundary surfaces of the M-
regions

• Once we have the arrangement of these surfaces, the procedure is as 
before



The boundary surfaces of the first step

• Consider first only paths that start at the origin and end at the point (x,y); 
the M-region Pij: 

(x,y) is part of the M-region if Pi, when moved along the segment from the 
origin to (x,y), intersects Pj

• Notice the difference between the contribution of Pi,Pj to the ID (middle 
figure) and to M-space (right figure)



First segment contribution to the entire M-space

• Notice that the portion of the M-region of Pij due to the first segment 
remains the same regardless of what the direction of the final ray is

• We extend the boundary curves in the plane to be the same for every 
𝜃-slice 



The boundary surfaces of the second step

• Consider now only paths that start at (x,y) and move to infinity along 
the direction 𝜃; an 𝜃–slice of the M-region Pij: 

(x,y) is part of the 𝜃–slice of the M-region Pij if Pi, when moved along 
the segment from (x,y) along 𝜃 to inifinity, intersects Pj



Second, ray, contribution to the entire M-space

• We now have to make similar analysis for every direction 𝜃 between 0 
and 2𝜋, and take the union of all these curves

• Distinguish between shadows that are part of the Minkowski sum and 
shadows that are rays and produce the respective surfaces separately

[H-Wilson ‘96]



Infinitesimal separability in 3-space
Leonidas J. Guibas, Dan Halperin, Hirohisa Hirukawa, Jean-Claude Latombe, Randall 
H. Wilson: Polyhedral Assembly Partitioning Using Maximally Covered Cells in 
Arrangements of Convex Polytopes. Int. J. Comput. Geometry Appl. 8(2): 179-200 
(1998)



Preliminaries

• The direction of a one-step motion is given by a unit vector in six 
dimensions

• An infinitesimal motion separates two subassemblies if it displaces 
one relative to the other, by an arbitrarily small amount, without 
overlapping of their interiors (modified from our earlier goal of 
“sufficiently far away from one another”)

• Makes sense only if the assembly is connected



Motivation

• Much easier than full one-step motion in 3-space - M-space is 6-
dimensional with complex shapes of M-regions

• Infinitesimal motion can be used as a hint for finite motion –
continued in the same direction

• Testing if an object is interlocked – no infinitesimal motion, then there 
is no separation with two hands 



M-space

• As before, all parts are represented in a common universal coordinate 
frame U

• We represent all possible infinitesimal motions on S5, the (five-
dimensional) unit sphere in six-dimensional space



The kinematics of contacts (“black box”)

• An infinitesimal motion of any part Pi is described by a six-
dimensional vector dX=(dx, dy, dz, da, db, dc): three components for
translation and three components for rotation

• Let v be a vertex of Pi. The motion described by dX causes v to 
undergo a translation JvdX, where Jv is a constant 3x6 Jacobian matrix: 
each column of Jv gives the translation v experiences due to a unit 
motion of Pi in the corresponding parameter of dX

• Assume that Pi and Pj are in contact such that the vertex v of Pi is 
contained in the face f of Pj. Let nf be the outgoing normal vector to f. 
The motion dX causes v to penetrate f when nfJvdX< 0, to break the 
contact with f (> 0), slide in f (=0)



The kinematics of contacts, cont’d

• Let Pi and Pj be two parts in contact such that a 
face f of one and a face g of the pother are 
overlapping

• Let ui be the vertices of the convex hull of f∩g

• Claim: The set of allowable motions for this contact 
are the intersection of the closed half-spaces    
ngJuidX ≥ 0



The critical surfaces of the M-space

• For each vertex ui of the convex hull of the intersection of two parts, 
the equation ngJuidX = 0 defines a five-dimensional hyperplane in the 
six-dimensional space of infinitesimal motions, which partitions S5
into two open half-spheres and a great circle

• These induce an arrangement of cells of dimensions 0,1,2,3,4,5 on S5. 
The DBG is fixed over each such cell

• After constructing the NDBG (5D arrg + DBGs), the rest is as before



Infinitesimal motion in 3-space, complexity

• n - # of polygonal parts

• Two faces with complexity f and g can have O(fg) intersections but only 
O(f+g) vertices on the boundary of the nvex hull of the intersection

• K – # of ordered pairs of parts in contact

• N- # of contact-constraints (penetration)

• The size of the NDBG arrangement is O(N5)

• Each DBG has r ∈ O(n2) edges, where r is the number of pairs of parts in 
contact

• Computing a candidate partition takes O(rN5)

• We will improve on this procedure below



Complexity

• Given n parts in the assembly, let D1 and D2 be two DBGs for a 
certain motion space, Di=(V,Ei), with E1⊆E2, the it suffices to test D1 
for strong connectivity (monotonicity of strong connectivity)

• Ideally, we would know this containment property without even 
computing E2. Then this would save not only the test for SC but also 
the construction of D2

• We manage to exploit this observation for infinitesimal motions. We 
exemplify thos for infinitesimal translation in 2-space



Infinitesimal translations in 3-space

• The M-space is S2

• We project it on a plane tangent to the sphere: the information on 
the two hemispheres is symmetric

• Let Qij denote the complement of Pij: every point in Qij represents an 
infinitesimal transaltion where Pi does not penetrate in Pj



Maximally covered cell

• Maximally covered cell: a cell that is covered by more Qij’s than its 
immediate neighbors

• Claim: it suffices to test only the DBGs of maximally covered cells for strong 
connectivity 



Maximally covered cells: number and algorithm

• Given an assembly A of n polyhedral parts, the NDBG of the assembly 
for infinitesimal motions, where any direction of motion is defined by 
d parameters, has at most O(Kd) maximally covered cells, where K is 
the number of ordered pairs of parts in contact in the assembly. A 
sample direction in each maximally covered cell can be computed in 
total time O(Kd-1N) time, where N denotes the number of 
“equivalent” point–plane contacts in the assembly, as before

• Compare with the earlier result of O(N5) – in practice K<<N – see 
table in the next slides

• The cells are sampled using linear programming – much easier than 
computing arrangements in higher dimensions

[Guibas et al ‘98]









Challenges



• k-handed assembly planning, for k>2

• Constraints introduced by the mechanical system manipulating the 
parts (moving and holding the parts together)

• Assembly planning for tolerance parts

• Optimizing assembly sequences
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THE END


