APPLIED aspects of
COMPUTATIONAL GEOMETRY

Arrangements, 3D

Dan Halperin
School of Computer Science
Tel Aviv University

Overview

= Collins-style decomposition

= output-sensitive construction of the vertical
decomposition of arrgs of triangles

= extension to surface patches
= arrgs of planes

Arrg complexity, reminder

the maximum combinatorial complexity of an
arrangement of n well-behaved surfaces Iin
R3 is O(n3); there are such arrangements
whose complexity is Q(n3)

Arrgs of triangles, Collins decomposition

= complexity K, Q(n) < K < 6(n3)
= simple representation: Collins-style
decomposition

= complexity of the decomposition and
construction

= iImplementation

Vertical decomposition

= reminder, planar arrgs
= arrgs of triangles?

‘ Vertical decomposition, arrgs of triangles

m input triangles T = {t, t,,....t }
= We assume here general position
= A(T), the arrg

= edge (1 triangle),
iIntersection edge (2 triangles)

= vertical visibility of points

= vertical wall W(e)

m V. (T)=A(T) + W(e)'s for triangle boundary
edges

General position for triangles in space

= no two edges of distinct triangles intersect

= no vertex of a triangle is contained in another
triangle

= no triangle is vertical (parallel to the z-axis)
= etc

<back>

The shape of cells in V,(T)

= Q: Are they convex?
= A: No! they are not even simply connected

.
.

/ '
o P
SN -
e

ot

£ 1)

= SO we need further refinement

‘ VD of triangles, Step 2

m V,(T) =V,(T) + W(e)'s for intersection edges

m in V,(T) the cell are cylindrical but can still
have complex shapes

‘ VD of triangles, the final refinement

m V,(T)=V,(T)+ trapezoidal decomposition of
each face of V,(T) on each triangle, extended
to 3D cells (details later)

m in V,4(T) each cell is a convex prism and
bounded by at most six facets

10

‘ The complexity of V.(T)

= let K denote the complexity of A(T), namely

AT =K

= |W(e)| of a boundary edge is O(na(n)), for a
total of O(n?a(n)) (there are 3n boundary
edges), so |V,(T)| = O(n?a(n)+K)

= similarly, |[V,(T)| = O(n3a(n)+K) = O(n3a(n))

= step 3 does not increase the asymptotic
complexity, so |V;(T)| = O(n3a(n))

11

The complexity of V.(T), cont'd

= we know better |V;(T)| = O(n%*¢+K)
= in particular |V5(T)| = 6(n3)
such tight bound known only for planes (trivial) and triangles

m there are arrgs of triangles with K=0O(n) and
Vo(T)| = 8(n2a*(n))

this is an unfortunate property of VD in 3-space

12

‘ Output sensitive algorithm

= input: n triangles in R3 in general position
T={t.,t,,....t.}
= output: V;(T) represented as a graph
G=G(C,E)
o the nodes C: the cells (vertical prisms) of the
decomposition

o the edges E: connect neighboring cells
m goal: keep it simple!
work as much as possible in 2D spaces

13

The bounding simplex

= we assume that the triangles are bounded
inside a simplex whose faces are special
triangles in T:
o they violate the general position assumption

o we are only interested in one side of each: the side
that faces the interior of the simplex
this way we do not have to handle unbounded features

= in VD we view each triangle t, € T as two-sided:
it has a top side t* and a bottom side t-

14

‘ The grand scheme

= algorithm’s steps follow the definitions of V,(T),
V(T), Vo(T)

= we first compute the features of V,(T)
= then add the features of V,(T)
= then add the features of V4(T)

= and only then construct the output
representation

15

Computing the features of V,(T)

= constructing the envelopes of W(e) for a
triangle boundary edge

= the curves I'(t*) defining the top arrangement
of the triangle side t*

= similarly for t-
= their arrangements A* (either top or bottom)

= running time O(n4logn) for the envelopes, and
x O(|V,(T)| log n) in total

16

Computing the features of V,(T), remarks

= can be computed slightly faster but will be subsumed by
other parts of the algorithm

= In the process we add cross pointers:

o every intersection edge that appears in one
arrangement A* of triangle t;, points to the other triangle
t involved in the intersection

o every envelope edge points to the boundary edge on
whose envelope it appears

= at the end of step one the entire V,(T) is connected, the
boundary of each 3D cell is connected

17

Computing the features of V,(T)

= sweeping a plane P, parallel to the yz-plane over
Vi(T)

n A =P, nV,(T)

= claim: A, is a convex subdivision

= major difficulty in computing V,(T): identifying pairwise
visibilities of intersection edges inside a 3D cell

= why not compute W(e) for all intersection edges?

18

Computing the features of V,(T), cont'd

= goal of this step: mark on A" intersection edges
visible from t* when looking upwards and similarly

mark on A intersection edges visible from t- when
looking downwards

19

Computing the features of V,(T), the sweep

= A, changes continuously between events

= the events: the vertices of V,(T) plus one new
type of events: vertical visibility of intersection
edges

m Data structures:

0 events queue Q, sorted by x-coordinate
operations: insert, delete, fetch minimum

o 2D status structure

20

The status structure

= a collection of convex faces represented as
two list of vertices for the upper and lower
chains respectively

U3

21

The events

= a vertex may (dis)appear
= an edge may (dis)appear
= a face may (dis)appear

X2 KX
e

22

Vertical visibility events

U3

Us = Uy

v2

= how to detect them
= how to handle them
m actual vs. false events

23

‘ Computing the features of V,(T), wrap up

= V=|V,(T)| events, each handled at O(log n)
time

= at the end of this step, each cell has cylindrial
shape, with one top and one bottom triangle

= the cells can still have complex shape

= as in the previous steps we have not yet built
a 3D structure but rather collected features of
dimension <3

= denote the arrg on t* after Step 2 by B/*

24

Computing the full decomposition V,(T)

m project each B.* onto the xy-plane and apply
y-vertical decomposition

= lift the added walls back to B*

= extend each of the added segments into a z-
vertical wall inside its 3D cell: this is V4(T)

= each cell has at most six facets, with a single
triangle at the top and at the bottom

m this step takes O(V log n) time
= overall time of the algo O(n?log n+ V log n)

25

‘ Representing the full decomposition

= Reminder, V,4(T) represented as a graph
G=G(C,E)
o the nodes C: the prisms of the decomposition

o the edges E connect neighboring cells that share
an edge either on the floor or on the ceiling

= work the prisms from say the B,*'s, need to
record top triangle info for each vertex

26

Completing same-triangle ceiling/floor
connections, altenatives

m for each ceiling vertex record the face on the
floor above it, and for each floor vertex record
the face on the ceiling below it

m construct a point-location structure on each
Bi* (within the algorithm’s asymptotic running
time); one crossing will cost O(log n)

= propagate floor/ceiling info thru cells (details

only known in 2D) such that each cell has a
constant number of neighbors across triangle

27

‘ Output-sensitive algorithm,
take Il (lighter overhead)

= same input, same output

= as before, sweep a plane parallel to the yz-
plane over the triangles T keeping
o an event queue Q, oredered by x-coordinates
o the set of convex faces of V,(T) on A, (but without

first computing V,(T))

= as before, the sweep produces the features of
V,(T); from that point on we resort to the
previous algorithm

28

Algorithm, take Il, the difference

= do not compute (almost) anything in advance

= the only events inserted into Q before the
sweep: triangles corners

m everything else is detected on the fly

= Problem: how will we know where to insert a
new triangle when it appears

= Solution: maintain a dynamic point location
(PL) structure for A,: O(log n) update time,
O(log?n) query time

29

Algorithm, take Il, analysis

m every operation during the sweep, including
the update of the PL structure, but without PL
gueries, can be carried out in O(log n) time

m every operation above can be charged to a
feature of |V,(T)|, and no feature gets charged
more than a constant number of time, as we
assumed general position

= the n PL queries take O(log?n) time each
m the total running time is O(n log®n +V log n)

30

Extension: well-behaved surface patches

= a patch is an xy-monotone portion of an
algebraic surface of constant maximum degree

= when projected onto the xy-plane it is bounded
by a constant number of algebraic curves of
constant maximum degree

= the patches are in general position

31

Extension to arrgs of surface patches,
cont'd

= instead of convex, the faces of A, are now y-
monotone

= need to add extra vertices on boundary curves
at points where their projection onto the xy-
plane has y-vertical tangency

= the total running time is the same:
O(n log?n +V log n)

= the first version runs in O(nA,(n)log n+V log n)
for an appropriate g

32

‘ Alternative with fewer cells:
Partial vertical decomposition
= V,(T) as before

» extra flood faces on A, when it meets
o the first corner of a triangle
o the last corner of a triangle

o a middle corner (face on the side that does not contain

the triangle)
o intersection of a boundary edge with another triangle

= all cells are convex
= partial VD for triangles has 6(n3) complexity

33

Arrgs of planes

= single cell, envelope

= vertical decomposition

= our output-sensitive algo runs in near-optimal
time

= optimal-time alternative: incidence-graph
representation and incremental construction

= alternative decomposition: bottom-vertex

34

References

m for general references see the end of the
presentation on 2D arrangements

= output-sensitive algorithm for VD of 3D arrgs:
[de Berg-Guibas-H '96]
Vertical decompositions for triangles in 3-space,
DCG

= output-sensitive algorithm with lighter overhead,
partial 3D decomposition:
[Shaul-H ‘02]
Improved construction of vertical decompositions
of 3D arrangements, SoCG

35

References, cont’d

= arrangements of planes, the incidence graph:

[Edelsbrunner ‘87]
Chapter 7 of Algorithms in Combinatorial

Geometry, Springer

= requirements from well-behaved surface
patches
[Agarwal-Sharir '00]
Section 2 of Chapter 2 “Arrangements and Their
Applications” in NH Handbook of Computational

Geomelry

36

THE END

