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Overview

= Collins-style decomposition

= output-sensitive construction of the vertical
decomposition of arrgs of triangles

= extension to surface patches
= arrgs of planes




Arrg complexity, reminder

the maximum combinatorial complexity of an
arrangement of n well-behaved surfaces Iin
R3 is O(n3); there are such arrangements
whose complexity is Q(n3)




Arrgs of triangles, Collins decomposition

= complexity K, Q(n) < K < 6(n3)
= simple representation: Collins-style
decomposition

= complexity of the decomposition and
construction

= iImplementation




Vertical decomposition

= reminder, planar arrgs
= arrgs of triangles?




‘ Vertical decomposition, arrgs of triangles

m input triangles T = {t, t,,....t }
= We assume here general position
= A(T), the arrg

= edge (1 triangle),
iIntersection edge (2 triangles)

= vertical visibility of points

= vertical wall W(e)

m V. (T)=A(T) + W(e)'s for triangle boundary
edges




General position for triangles in space

= no two edges of distinct triangles intersect

= no vertex of a triangle is contained in another
triangle

= no triangle is vertical (parallel to the z-axis)
= etc

<back>




The shape of cells in V,(T)

= Q: Are they convex?
= A: No! they are not even simply connected
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= SO we need further refinement




‘ VD of triangles, Step 2

m V,(T) =V,(T) + W(e)'s for intersection edges

m in V,(T) the cell are cylindrical but can still
have complex shapes




‘ VD of triangles, the final refinement

m V,(T)=V,(T)+ trapezoidal decomposition of
each face of V,(T) on each triangle, extended
to 3D cells (details later)

m in V,4(T) each cell is a convex prism and
bounded by at most six facets
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‘ The complexity of V.(T)

= let K denote the complexity of A(T), namely

AT =K

= |W(e)| of a boundary edge is O(na(n)), for a
total of O(n?a(n)) (there are 3n boundary
edges), so |V,(T)| = O(n?a(n)+K)

= similarly, |[V,(T)| = O(n3a(n)+K) = O(n3a(n))

= step 3 does not increase the asymptotic
complexity, so |V;(T)| = O(n3a(n))
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The complexity of V.(T), cont'd

= we know better |V;(T)| = O(n%*¢+K)
= in particular |V5(T)| = 6(n3)
such tight bound known only for planes (trivial) and triangles

m there are arrgs of triangles with K=0O(n) and
Vo(T)| = 8(n2a*(n))

this is an unfortunate property of VD in 3-space
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‘ Output sensitive algorithm

= input: n triangles in R3 in general position
T={t.,t,,....t.}
= output: V;(T) represented as a graph
G=G(C,E)
o the nodes C: the cells (vertical prisms) of the
decomposition

o the edges E: connect neighboring cells
m goal: keep it simple!
work as much as possible in 2D spaces
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The bounding simplex

= we assume that the triangles are bounded
inside a simplex whose faces are special
triangles in T:
o they violate the general position assumption

o we are only interested in one side of each: the side
that faces the interior of the simplex
this way we do not have to handle unbounded features

= in VD we view each triangle t, € T as two-sided:
it has a top side t* and a bottom side t-
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‘ The grand scheme

= algorithm’s steps follow the definitions of V,(T),
V(T), Vo(T)

= we first compute the features of V,(T)
= then add the features of V,(T)
= then add the features of V4(T)

= and only then construct the output
representation
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Computing the features of V,(T)

= constructing the envelopes of W(e) for a
triangle boundary edge

= the curves I'(t*) defining the top arrangement
of the triangle side t*

= similarly for t-
= their arrangements A* (either top or bottom)

= running time O(n4logn) for the envelopes, and
x O(|V,(T)| log n) in total
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Computing the features of V,(T), remarks

= can be computed slightly faster but will be subsumed by
other parts of the algorithm

= In the process we add cross pointers:

o every intersection edge that appears in one
arrangement A* of triangle t;, points to the other triangle
t involved in the intersection

o every envelope edge points to the boundary edge on
whose envelope it appears

= at the end of step one the entire V,(T) is connected, the
boundary of each 3D cell is connected
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Computing the features of V,(T)

= sweeping a plane P, parallel to the yz-plane over
Vi(T)

n A =P, nV,(T)

= claim: A, is a convex subdivision

= major difficulty in computing V,(T): identifying pairwise
visibilities of intersection edges inside a 3D cell

= why not compute W(e) for all intersection edges?
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Computing the features of V,(T), cont'd

= goal of this step: mark on A" intersection edges
visible from t* when looking upwards and similarly

mark on A intersection edges visible from t- when
looking downwards
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Computing the features of V,(T), the sweep

= A, changes continuously between events

= the events: the vertices of V,(T) plus one new
type of events: vertical visibility of intersection
edges

m Data structures:

0 events queue Q, sorted by x-coordinate
operations: insert, delete, fetch minimum

o 2D status structure
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The status structure

= a collection of convex faces represented as
two list of vertices for the upper and lower
chains respectively

U3
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The events

= a vertex may (dis)appear
= an edge may (dis)appear
= a face may (dis)appear

X2 KX
e
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Vertical visibility events

U3

Us = Uy

v2

= how to detect them
= how to handle them
m actual vs. false events
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‘ Computing the features of V,(T), wrap up

= V=|V,(T)| events, each handled at O(log n)
time

= at the end of this step, each cell has cylindrial
shape, with one top and one bottom triangle

= the cells can still have complex shape

= as in the previous steps we have not yet built
a 3D structure but rather collected features of
dimension <3

= denote the arrg on t* after Step 2 by B/*
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Computing the full decomposition V,(T)

m project each B.* onto the xy-plane and apply
y-vertical decomposition

= lift the added walls back to B*

= extend each of the added segments into a z-
vertical wall inside its 3D cell: this is V4(T)

= each cell has at most six facets, with a single
triangle at the top and at the bottom

m this step takes O(V log n) time
= overall time of the algo O(n?log n+ V log n)
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‘ Representing the full decomposition

= Reminder, V,4(T) represented as a graph
G=G(C,E)
o the nodes C: the prisms of the decomposition

o the edges E connect neighboring cells that share
an edge either on the floor or on the ceiling

= work the prisms from say the B,*'s, need to
record top triangle info for each vertex
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Completing same-triangle ceiling/floor
connections, altenatives

m for each ceiling vertex record the face on the
floor above it, and for each floor vertex record
the face on the ceiling below it

m construct a point-location structure on each
Bi* (within the algorithm’s asymptotic running
time); one crossing will cost O(log n)

= propagate floor/ceiling info thru cells (details

only known in 2D) such that each cell has a
constant number of neighbors across triangle
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‘ Output-sensitive algorithm,
take Il (lighter overhead)

= same input, same output

= as before, sweep a plane parallel to the yz-
plane over the triangles T keeping
o an event queue Q, oredered by x-coordinates
o the set of convex faces of V,(T) on A, (but without

first computing V,(T))

= as before, the sweep produces the features of
V,(T); from that point on we resort to the
previous algorithm
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Algorithm, take Il, the difference

= do not compute (almost) anything in advance

= the only events inserted into Q before the
sweep: triangles corners

m everything else is detected on the fly

= Problem: how will we know where to insert a
new triangle when it appears

= Solution: maintain a dynamic point location
(PL) structure for A,: O(log n) update time,
O(log?n) query time
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Algorithm, take Il, analysis

m every operation during the sweep, including
the update of the PL structure, but without PL
gueries, can be carried out in O(log n) time

m every operation above can be charged to a
feature of |V,(T)|, and no feature gets charged
more than a constant number of time, as we
assumed general position

= the n PL queries take O(log?n) time each
m the total running time is O(n log®n +V log n)
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Extension: well-behaved surface patches

= a patch is an xy-monotone portion of an
algebraic surface of constant maximum degree

= when projected onto the xy-plane it is bounded
by a constant number of algebraic curves of
constant maximum degree

= the patches are in general position
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Extension to arrgs of surface patches,
cont'd

= instead of convex, the faces of A, are now y-
monotone

= need to add extra vertices on boundary curves
at points where their projection onto the xy-
plane has y-vertical tangency

= the total running time is the same:
O(n log?n +V log n)

= the first version runs in O(nA,(n)log n+V log n)
for an appropriate g
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‘ Alternative with fewer cells:
Partial vertical decomposition
= V,(T) as before

» extra flood faces on A, when it meets
o the first corner of a triangle
o the last corner of a triangle

o a middle corner (face on the side that does not contain

the triangle)
o intersection of a boundary edge with another triangle

= all cells are convex
= partial VD for triangles has 6(n3) complexity
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Arrgs of planes

= single cell, envelope

= vertical decomposition

= our output-sensitive algo runs in near-optimal
time

= optimal-time alternative: incidence-graph
representation and incremental construction

= alternative decomposition: bottom-vertex
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THE END




