APPLIED aspects of COMPUTATIONAL GEOMETRY

Minkowski Sums, Preliminaries

Dan Halperin School of Computer Science Tel Aviv University

Overview

- what are Minkowski sums
- basic properties
- the case of two convex polygons

later:

- convex polyhedra
- arbitrary polygons
- offset polygons
- arbitrary polyhedra

Minkowski sums

Given two sets P and Q in R^d, their
Minkowski sum P ⊕ Q = {p+q | p ∈ P, q ∈ Q}

Typical usage: collision detection

- R a polygonal object that moves by translation
- P a set of polygonal obstacles

Typical usage, cont'd

R - a robot that moves by translation

P - a set of obstacles

Claim: When translating, R intersects P iff ref(R) is inside P \oplus -R

R(x,y) denotes R with the reference point at (x,y) -R = -R(0,0) = $\{(-a,-b) \mid (a,b) \in R\}$

Proof (not restricted to 2D)

Basic properties

- the Minkowski sum of two convex sets is convex
- a farthest point in direction d in the Minkowski sum P ⊕ Q is the sum of a farthest point in direction d in P and a farthest point in direction d in Q
 - the Minkowski sum of convex polygons is a convex polygon

Sum of convex polygons

- |P|=m |Q|=n
- The complexity (# of edges here) of the sum is at most

```
m+n
```

- when is it exactly m+n?
- Algorithm
 - the normal diagram of a convex polygon
 - 1D arrangement overlay
 - running time O(m+n)

Minkowski sum of arbitrary polygonal sets

• notice that $P_1 \oplus (P_2 \cup P_3) = (P_1 \oplus P_2) \cup (P_1 \oplus P_3)$

- Step 1 Decompose P and Q into convex subpolygons $P_1, ..., P_s$ and $Q_1, ..., Q_t$
- Step 2 Compute $P_i \oplus Q_i$ for each pair
- Step 3 Construct the union of those subsums

the Minkowski sum of polygonal sets is a polygonal set

(more implications, on complexity and algorithms, will follow)

Applications of Minkowski sums, reminder: Minimum distance separation

Translate the small polygon *P* such that it will not penetrate *Q*

Separated polygons

Find the closest point to the origin that is outside $Q \oplus -P$

Applications of Mink sums, cont'd: Polygon containment

Can a polygon *P* be placed inside another polygon *Q*?

Compute $(B \setminus Q) \oplus -P$: (B is a bounding box of Q) P can be placed inside Qwhen the reference point is placed in one of the holes

Applications of Mink sums, cont'd: Robot motion planing

robot, obstacles and computed path

computed planar map

Minkowski sum of the robot with obstacles

THE END