APPLIED aspects of COMPUTATIONAL GEOMETRY

Spherical Arrangements, Union Boundary, Sparsity

> Dan Halperin School of Computer Science Tel Aviv University

Overview

- spherical arrangements
- another substructure: union boundary
- favorable (sparse) arrgs: atom spheres
- arrgs with low stabbing number

Arrgs of spheres

- arrgs of circles, complexity
- arrgs of spheres, complexity
- another substructure in arrangements of surfaces bounding regions: the union boundary

Arrgs of circles, the union boundary

how complex?

- the number of vertices on the boundary of the union of n ≥ 3 disks in the plane is at most 6n-12 and this bound is tight [pf]
- the complexity of the union boundary of n d-balls in R^d is $O(n^{\lceil d/2 \rceil})$, in particular in R^3 it is $\Theta(n^2)$

Proof (union boundary complexity, circels)

- the lifting transform onto the unit paraboloid z=x²+y²
- each transformed circle is contained in a plane
- the union boundary: on the paraboloid, above the upper envelope of the planes
- the complexity of the upper envelope of n planes: E=V+F-2=V+n-2 ≤2/3E+n-2
- each edge of the upper envelope contributes at most two vertices to the union boundary
- the bound is tight

A favorable arrg of spheres: arrg of atoms in a molecule

The union boundary of a molecule

- complexity
- construction
- drawing
- vertical decomposition of the arrangement:
 - inside spheres
 - outside spheres

Complexity

Theorem 2.1. Let $M = \{B_1, ..., B_n\}$ be a collection of n balls in 3-space with radii $r_1, ..., r_n$ and centers at $c_1, ..., c_n$. Let $r_{\min} = \min_i r_i$ and let $r_{\max} = \max_i r_i$. Also let $S = \{S_1, ..., S_n\}$ be the collection of spheres such that S_i is the boundary surface of B_i . If there are positive constants k, ρ such that $r_{\max}/r_{\min} < k$ and for each B_i the ball with radius $\rho \cdot r_i$ and concentric with B_i does not contain the center of any other ball in M (besides c_i), then:

- (i) for each $B_i \in M$, the maximum number of balls in M that intersect it is bounded by a constant,
- (ii) the maximum combinatorial complexity of the boundary of the union of the balls in M is O(n).

$$\frac{(r_i + 2r_{\max})^3}{(\frac{\rho}{2} \cdot r_{\min})^3} \le \frac{(3r_{\max})^3}{(\frac{\rho}{2} \cdot r_{\min})^3} \le 216 \cdot (\frac{k}{\rho})^3$$

	molecule	k	ρ	max	aver.
Γ	caffeine	2.17	0.71	10	4.5
١	acetyl	3.11	0.67	16	5.4
١	crambin	1.64	0.78	10	5.5
ı	felix	1.64	0.81	9	4.9
L	SOD	1.95	0.76	16	5.5

Robust construction with floating point

- controlled perturbation: certified, degeneracyfree geometric computing with fixed precision arithmetic
- applied to arrgs of circles, spheres, segments, to Delaunay triangulations, and more

Other sparse arrgs

- arrgs with low vertical stabbing number n curves/surfaces, vertical stabbing k
 - in the plane
 - O(nk)
 - □ in 3-space
 - O(n²k) for a proof, see [dBHOvK]
- arrgs of k polytopes with a total of n facets
 O(nk²)
- all the bounds above are tight
- motivation: for low-vertical-stabbing---visibility over a terrain, for arrgs of polytopes---assembly partitioning (later)

References

- [H-Overmars '98]
 Spheres, molecules, and hidden surface removal, CGTA
- [H-Shelton '98]
 A perturbation scheme for spherical arrangements with application to molecular modeling, CGTA
- [H-Leiserowitz '04]
 Controlled perturbation for arrangements of circles, IJCGA
- [de Berg-H-Overmars-van Kreveld '97]
 Sparse arrangements and the number of views of polyhedral scenes, IJCGA
- CGTA = Computational Geometry, Theory & Applications
- IJCGA = Intn'l Journal of Computational Geometry and Applications

THE END