APPLIED aspects of
COMPUTATIONAL GEOMETRY

Minkowski Sums, The
General Polygonal Case

Dan Halperin
School of Computer Science
Tel Aviv University

Overview

= complexity
= algorithms

m practice: convex decomposition + union
o good convex decompositions for Minkowski sums
o handling degeneracies

= alternative methods
= Offset polygons

Reminder:
Minkowski sum of arbitrary polygonal sets

= P,&(P,u P3) = (P,®P,) U (P®P;)

n Step 1 Decompose P and @ into convex subpolygons
P, .., P,and @Q,, ..., @

s Step 2 Compute P, @ Q; for each pair

s Step 3 Construct the union of those subsums

Minkowski sum of arbitrary polygonal sets,
complexity

= two simple polygons with m,n vertices
= upper bound
contained in the arrangements of mn hexagons

hence O(m?n?)

= lower bound

Il

Minkowski sum of polygonal sets:
convex plus simple

m convex polygon with m vertices, simple polygon with n

= upper bound
o pseudo-disc property
o complexity of pseudo-disc convex polygons with a total of k

vertices

o in summary: O(mn)

= lower bound

The practice of the decomposition framework

m Step 1 Decompose P and @ into convex subpolygons ~,, ...,
P, and Q,, ..., @

s Step 2 Compute R;:=F, ® Q; for each pair
m Step 3 Construct the union of those subsums

Steps 1 and 3 are (were) challenging from a practical point of
view. The main issues:

2 union strategy
o handle degeneracies correctly in the union computation
o suitable decomposition

remarks:

o the oddity of computing the union of polygons; 3sum-hard problems
o running times in the experiments below obsolete, proportions remain

Step 3.
Constructing the union of the subsums

algorithms for computing the union of a set of
convex polygons:

= Arrangement union algorithm
= Incremental union algorithm
= Divide-and-Conquer union algorithm

all algorithms handle degenerate inputs

recall that R;:=P; ®Q, , and let R = U{R;}

Arrangement algorithm

= add all the edges
of R into a planar
arrangement

= compute carefully for each face, edge and
vertex whether it is inside union

n time: O((/+k) log k) or O(/+k log k)
O(/+k) - traversal

k - number of edges in R
/- number of intersections among edges of R

Incremental algorithm

= add the polygons of R one after the other

= maintain the partial union as a planar map by
removing redundant edges

m_practically works much better on most problems

9

Divide-and-conquer algorithm

= using the incremental union algorithm
compute the sum of Pwith every
subpolygon of Q- the result are fmaps

= using the Arrangement algorithm compute
the union of each pair of maps to get /2
maps

= repeat recursively =L
fog t times 5, AN

10

'Degenerate case:
tight passage

Degenerate case:
tight placement

12

\Arrangement union algorithm:
Handling degeneracies

1. While inserting the polygons, maintain the boundary countfor each halfedge

2. Update /nside count for each face - in how many polygons it is contained
IC(f,) = 1C(f,) - BC(e4) + BC(e,)

3. Identify boundary edges by comparing the inside count to the boundary count

13

Sample input data

A 4 4 4 4

Ad 4 4 4 A4

4 4 4 4 4

*4.41-‘

robot fork

z

random

stars

comb

14

Results: union construction time

15

Results: Cpq = Mpa/Veq

Vpq - number of vertices in the underlying arrangement
Mpq - number of vertices on the boundary of P&Q

16

‘ Results:
Union time vs. Cpq

= When the Minkowski sum is relatively complex
(larger Cpq) then the arrangement algorithm
performs better

= when Cpq, is small we can save time by
removing the non-relevant edges as we do in
the /ncremental union algorithm

m the performance of the divide and conquer
algorithm is mostly between the other two
algorithms

17

Order of insertion

Covered fork Underlying arrangement Minkowski sum
input sets

idea: use fatness ordering to get output sensitivity effect

18

Order of insertion - results

160 B random permutation
140- [fathess permutation

120-
‘o 100

o
Q

S O
S S

Union time (Sec

N
bt

bt

covered comb fat grid random robot
fork {79, 76} {403,30} {297,15} {100,100} {192, 20}

19

The practice of the decomposition framework

s Step 1 Decompose P and @ into convex
subpolygons P, ..., P, and @Q,, ..., Q,

s Step 2 Compute P,- D Q/ for each pair
m Step 3 Construct the union of those subsums

Steps 1 and 3 are (were) challenging from a practical
point of view. The main issues:

o union strategy
o handle degeneracies correctly in the union
computation

o suitable decomposition

20

Motivation

%*Hq—
naive traing. min d? triang. min convex
>d? 754 530 192
parts 33 33 6
Mink. sum time 2133 1603 120

Time in milli-seconds for computing
the Minkowski sum of the polygon
with a small convex polygon with 4
vertices

‘ Triangulations

Naive triangulation:
extend a diagonal
from each vertex until
we get a triangulation

Optimal triangulation:
minimizing the
maximum degree:
using dynamic
programming, O(n3)
[KB92]

Optimal triangulation:
minimizing Xd?:

a modification of the min-
max-degree triangulation

22

‘ Convex decompositions (no Steiner
points)

Greedy convex
decomposition:
extend a diagonal
from each vertex until
we get only convex
subpolygons

Optimal decomposition:
minimum number of
convex subpolygons:
using dynamic
programming,

O(r?n log n) [Keil85]

Optimal decomposition:
minimum Xd.2 convex
decomposition:

a modification of Keil’'s
optimal convex
decomposition

23

Convex decompositions (allowing
Steiner points)

N

Slab decomposition:

extend upward and
downward a vertical
segment from each
reflex vertex

Angle “bisector”
decomposition:
extend an angle
bisector from each
reflex vertex. Gives a 2-
approximation for the
min-convex
decomposition (w/

Vo

_—
KD decomposition:

extend vertical or
horizontal segments from
reflex vertices following
the KD-tree construction
schema

Steiner points) [CD85]

24

Results: fork input

LI

25

Results: star input

26

Results: countries borders input

27

Results: random looking polygons input

28

Min-convex costs

B decomposition time
30- [union time

min convex slabs + ab + kd +

Times for computing the Minkowski sum of two star
shaped polygons with 100 vertices each

29

First round conclusions

= triangulations give poor results
= Min-convex is almost always best

= computing the optimal decompositions can
take more time than computing the union

= continue with: min-convex, slab, AB, KD

)

30

Nonoptimality of min-convex

= Minimizing the number of convex
subpolygons is not always the best strategy:

7 subpolygons

6 subpolygons

31

Nonoptimality of min-convex (contd.)

i\§>

No. of vertices in 23448 9379

the underlying arr.

Minkowski sum 71.7 25.6

running time (sec)

|-

knife input Minkowski sum underlying arr.

Mixed decomposition

s decomposition techniques that handle P and
Q separately might not be sufficient

= according to the previous results, we wish to
consider the overall length of the
decomposition

33

Decomposition length effect:

an example

P - fixed size, two types of
decompositions

Q - fixed decomposition, scaled
size

i

smoub O

v

34

Decomposition length effect: results

Q grows >

70
-0 short
60 7AN A min convex
2
o 40 JAY
c 30 e——
o A A
c
> 20 =
10
0 T T T T T T T T

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6
diameter(P) / diameter(Q)

time for computing the Minkowski sum of a knife polygon P (using two types of
decompositions) with a random polygon Q that is scaled differently

35

Mixed objective function - motivation

Time of the arrangement union algorithm:

O(/+ klog k)

4 "
7is the number of Kk is the number of
intersections among edges of R; we get
edges of R; it is smaller « for

harder to optimize / decompositions with
lower number of

subpolygons.

36

Smaller number of intersections of
segments

= we want each edge of R to intersect as few
polygons of R as possible

= u(L(Ry)) - the standard rigid-motion invariant
measure of the set of lines intersecting R;

= u(L(Ry)) is the perimeter of R,

37

Length vs. number of intersections

38

The mixed function

ka(2Ap + Ip) + Kp(2Aq + Ig)
kp - number of subpolygons in the convex decomposition of P
AP - total length of diagonal in the decomposition of P

HP - the perimeter of P
The function measures the overall length of the edges of R.

An O(n?rp* + m?ry?)-time decomposition
algorithm that minimzes this function (based
on [Keil85])

39

‘ Improved AB algorithms

Minimal length AB decomposition: from each Improved/Reflex AB decomposition: look
reflex vertex, extend the shorter: an angle harder for 2-reflex eliminators
bisector or short diagonal

40

Improved AB & KD algorithms (contd.)

Composite AB+KD decomposition: use KD decomposition for
concave chains and AB for the rest of the reflex vertices

160 m ab
140 5 sbskd
S 1201
%100—/

E 80
c 601
2 40f
- 201

(=)

30 teeth, 15 concave 20 teeth, 20 concave 15 teeth, 30 concave
41

‘ Small side AB

Small side AB decomposition: we look for 2-reflex eliminators
that “block” the minimal number of reflex vertices

42

Decomposition improvements: results

Small side AB: 50% faster that regular
AB

Union time (sec)
Averages on several inputs

ab + kd + ab+kd+ minlength improved reflex ab + small side
ab + ab + ab +

Alternative approach to computing
Minkowski sums: the convolution method

all existing methods traverse an arrangement in the final
stage, deciding the features that participate in the
sum; the difference is in how the arrangement is
constructed

» take |: computing all critical curves
= take Il: computing convolution cycles

44

Offset polygons

popular form of Minkowski sums: the sum of a polygon
and a disc

m Offset polygon for a convex polygon is easy to
compute

= decomposition approach applies with higher-
degree algebra

45

References

Most of the presentation is based on

o [Agarwal-Flato-H ‘02]

Polygon decomposition for efficient construction of Minkowski sums, CGTA
o Chapter 13 of the book “Computational Geometry” by de Berg et al

The “convolution” approach

0 [Guibas-Ramshaw-Stolfi "83]

A Kinetic framework for computational geometry, FOCS

0o [Guibas-Seidel "85]

Computing convolutions by reciprocal search, DCG

o [Wein ‘07]

Exact and approximate construction of offset polygons, CAD

CGTA = Computational Geometry, Theory & Applications
CAD = Computer-Aided-Design Journal

DCG = Discrete and Computational Geometry

FOCS = IEEE Symp. Foundations of Computer Science

46

THE END

