APPLIED aspects of
COMPUTATIONAL GEOMETRY

Geometric Rounding: Snap Rounding
Arrangements of Segments

Dan Halperin
School of Computer Science
Tel Aviv University

Overview

why round?

snap rounding basics: definitions, properties, first
algorithm

better performance algorithms
the combinatorics of snap-rounded arrgs
better rounding-quality variants

di

Overview, the progression of things

= why round?

= snap rounding basics: def’s, properties, first
algorithm

= output sensitive algo |: the erasure algorithm
= the combinatorics of snap-rounded arrgs

= iterated snap roudning

= output sensitive algo |I: the bundles algorithm

m the best of both worlds: the erasure-bundles
algorithm

Slide 3

di danha, 22/05/2009

d2

Geometric rounding

= transforming an arbitrary precision object into a fixed
precision representation

= Why round?

precision too high to be useful; no finite exact numerical
representation (irrational numbers)

= isit OK to round?

depends on the application; most often consistent rounding
IS acceptable and desirable

= nhaive rounding has problems: new intersections, largely
displaced intersections, topological inversion, and more

m consistent rounding is hard

Slide 4

d2 danha, 22/05/2009

d3

Example: vertical decomposition of
arrgs of triangles

= The coordinates (x,y,z) of every triangle corner
are each represented with a 16-bit over 16-bit
rational

Slide 5

d3 danha, 22/05/2009

Complexity of numbers, input

coordinates

Triangle 1:
(-9661 / 409, 898 / 2689, -92949 / 3802),
(-15034 / 1583, -8174 / 1759, -57116 / 3851],
(13605 / 1261, -90590 / 3669, -11791 / 518)

Triangle 2:
(-77666 / 4036, -130679 / 3347, -31167 / 1630),
(-5851 / 297, 36471 / 893, -53137 / 2704),
(132613 / 3310, 3 / 8, -21926 / 1111)

Triangle 3:
(=37497 / 1939, -131078 / 3301, 591 / 3680),
(-74461 / 3822, -28120 / 33897, 7607 / 346),
(21622 / 1037, -12461 / 1441, 17957 / 827)

Triangle 4:
(-10760 / B21, -58b46 / 3057, 27619 / 1322),
(-65262 / 3181, 74693 / 3622, 17898 / 863),
(48898 / 2419, 1602 / 1627, 26390 / 1273)

Triangle 5:
(-73482 / 3845, 88794 / 2203, 2720 / 3661),
(-20691 / 1049, 92567 / 983, 57830 / 2693),
(28590 / 1363, 58699 / 3957, 62390 / 2957)

Complexity of humbers, computed coordinates

A normalized coordinate of the worst feature of the partial decomposition — 237 digits long.

PD feature = 49799838826104887192775516219046994702
461828026059123646217485873346921099238939609590257
26989674024022169299702332971 / 5027790709859107937
5631037445326440056155919434042984323896243977724409
28440717068821348688514967315807043013459806716

A normalized coordinate of the worst feature of the full decomposition — 559 digits long:

FD feature = 23279315243924676155798958688382904585
988203585590361740839519681254968145162747098072652
141858607502723046239367209776569259776678871640355
47670312162391255854958476891239829T741299582758704985
390744483577662104085231708340232525122368990013542
7999613293720681684955293128811292981 / 22458231406
216094878202976126790054324698816432478447511802089
6653636412650066501433769638474807742947270581109819
674675916341254734148663444090199254276142009850182
419444726060661342077926179045344110704705488623957
680809306210269199637837088757430354530477343135738
800521441456

Rounding vs. simplification

= the two problems are closely related but different

= sample simplification problem: given a simple polygonal
chain P and a positive real parameter ¢ find the fewest-
links polygonal chain “equivalent” to P with distance at
most € from P

= practical and efficient solution: the Douglas-Peuker
algorithm

= we will focus on rounding rather than simplification; we
are concerned with convenient (fixed size) number
representation and otherwise wish to preserve as many
properties of the original object as possible

= often a byproduct of rounding is simplification

The role of exact computing in rounding

= we will use exact geometric computing in all the
algorithms that we present below

= this is a disadvantage; is it necessary?

s Kurt Mehlhorn [Mini-course on Geometric Rounding,
2002]: “I doubt however, that there is a general strategy
for geometric rounding which avoids the construction of
the "exact object’ as a first step”

If the above conjecture is true then “what rounding is for
constructions” is inferior to “what filtering is for predicates” (but
rounding has other benefits of course)

Snap rounding (SR) arrgs of segments,
/O

= Input: n segments and a grid of pixels such that the
center points of the pixels have integer coordinates (the
centers of pixels form the integer grid)

= reminder, the vertices of the arrangement: either
segment endpoints (2n) or intersection of segments (I, at
most 8(n?)); in this context a.k.a.: critical points

= we call the input segments ursegments

= output: an arrangement of segments where all the
vertices are centers of grid pixels; details follow

N

L7

%

2777

777
- |

iy
e, = =

s
7542

"

77
2775

N
\

CL77

7
v,

\

"
77

rvy
LL7

L7
1 1Y

N

Iy,

3
1

7
v
L7

S
s
TR e
o

=
-
= i~
=
S i

¥

.
SRR ,juzu
"_.,Q—

10

Snap rounding arrgs of segments,
definition

= a pixel containing an arrg vertex is a hot pixel

11

Snap rounding arrgs of segments,
definition

= a pixel containing an arrg vertex is a hot pixel

m for each ursegment s construct its approximating
polygonal chain s* by connecting the centers of the hot
pixels that s crosses in the order of crossing

12

Snap rounding arrgs of segments,
definition

= a pixel containing an arrg vertex is a hot pixel

m for each ursegment s construct its approximating
polygonal chain s* by connecting the centers of the hot
pixels that s crosses in the order of crossing

13

Snap rounding arrgs of segments,
definition

= a pixel containing an arrg vertex is a hot pixel

= for each ursegment s construct its approximating

polygonal chain s* by connecting the centers of the hot
pixels that s crosses in the order of crossing

= the chain is made of links or subsegments

14

Remark: what's in a hot pixel

= a hot pixel contains:
o the interior of the pixel
o the interior of the pixel’s bottom edge
o the interior of the pixel’s left edge
o the bottom-left corner of the pixel

= thus every point inside the grid limits belongs to exactly
one hot pixel

= real coordinate r is rounded to | r+1/2], namely if
u=round(r), re [u-1/2,u+1/2)

= the grid may be translated and scaled; the rounding
computation is similar

15

Properties of snap rounding

n fixed precision representation

need to show: no new vertices are created (below, together
with topological similarity)

= geometric proximity
= topological similarity

16

Properties, geometric proximity

claim: the rounding chain s* is in the Minkowski sum
of s with a pixel centered at the origin p(0)

proof:
o s and the pixel are convex and so is their Minkowski sum

o sufficient to show that each vertex of s* (which is the
center of a hot pixel) is in this Minkowski sum; recall:
s intersects p(c) iff cis inside s @ -p(0) (= p(0))

17

Properties, topological similarity

= transforming s into s* viewed as a continuous deformation
process; features may collapse but a curve does not cross
over a vertex

= two-stage deformation process: each segment is broken by
the hot pixels into external fragments and internal fragments

= the endpoints of external fragments lie on hot pixel
boundaries at nodes and throughout the process a chain is
defined as the polysegment through these nodes

= stage 1: collapsing the hot pixels horizontally onto their medial
vertical axis

m stage 2: collapsing the vertical axis onto its middle point

= corollary, fixed precision representation: no new vertices are
created

18

A simple algorithm for snap rounding

(1) Bentley-Ottman sweep to identify hot pixels

2) reconstructing the chain s* by the hot pixels through
which s passes

= intersection detection by sweepline

= Y structure = the dynamic sweepline

s X structure = the dynamic event queue

= events: left endpoint, right endpoint, intersection point
= output sensitivity

overall running time O((n+l)logn + L)
L — overall complexity of the rounding chain
recall: n - # of input segs, | - # of intersections in the original arrg

19

Output sensitive algorithm, Take I:
The hot-pixel erasure algorithm

= avoid computing all intersections when unnecessary

= running time O(n log n + >, .. |S;| log n), where H is the
set of hot pixels, and S, is the set of segments crossing
the pixel h

= worst-case running time: will be discussed later, after
understanding the combinatorial complexity of snap
rounding

20

The erasure algorithm, bird’'s eye view

= erase the arrangement inside a hot pixel, the moment
the sweepline reaches the leftmost critical point inside
that pixel

21

The erasure algorithm, bird’'s eye view

= erase the arrangement inside a hot pixel, the moment
the sweepline reaches the leftmost critical point inside
that pixel

22

The erasure algorithm, bird’'s eye view

1) erase the arrangement inside a hot pixel, the moment
the sweepline reaches the leftmost critical point inside
that pixel

2) stretch the nodes (endpoints of external fragments) to
the corresponding hot pixels centers - trivial

23

The erasure algorithm, details

= sweepline events:

o original segment endpoints
segment intersection
segment/pixel-boundary intersection
original segment re-insertion
right end of hot pixel boundary

The erasure algorithm, details, cont'd

pixel detected as hot at its leftmost critical point (discovered at
x=xpos during the sweep)

the top and bottom boundaries of the hot pixel to the right of
the detection point are added to the sweep line

the portions of ursegments to the right of xpos and within the
hot pixel are erased; if prevail outside the pixel, reinserted at
the pixel boundary

for each hot pixel we keep four lists of segments abutting on
the boundaries of the rectangle contained in the hot pixel and
defined by intersecting the hot pixel with the right half plane
delimited by x=xpos (needed for step (2), stretching)

the sweep inside the hot pixel does not stop at xpos; for
example, if a left endpoint of an urseg is detected inside the
pixel, the urseg is added to the y-structure

25

The erasure algorithm, analysis

= similar to standard sweep-line algorithm

= work on a hot pixel proportional to the
number (!) S, of ursegments that cross it,
rather than to the complexity of the arrg
inside it, with O(log n) work per crossing
ursegments

= running time: O(n Iog n+ ZheH 1S, | log n)
n Q: how much tlme , ,\1_

r—“—r“—-r‘.---

26

A problem with SR’s rounding quality

= if we allow b bits per integer, our pixel grid
has 2P x 2° square pixels

m the distance between a vertex and a non-
iIncident edge

1/3/(20 —1)2+1=27"

27

ing

lterated Snap Roundi

‘ A solution

(ISR)

P ER I [I I BN B |

“ _ I N T A A _ |
F-do—L_gr=t _an=t_ Y
_ _ AN AN _ _

Famamsr — 1
|

| _ s | _ | _ iy

i e v |
_ _ I ' _ _

"III_II_I o N DR ™ |

| | | (A |

_
I_
_
_
L
_
I_
_
e e

T T T AT T T T T T T
|

| | | | | | | |
_III_II_I J_ _L_J__L =]

|
| |
TR
| |
—d__L_ ity B S
| |
| |
— =

EEmmmn — 1

"III_II_I Ao =L _ 1 _ —

| | [

|

| |
e

| |

i B

| |

|

28

ISR, algorithm

Input: a set S of n segments

Output: a set S* of n polygonal chains; initially S* = ()
[* stage 1: preprocessing */

1. compute the set 7 of hot pixels

2. construct a segment intersection search structure D
on H

[* stage 2: rerouting */

3. for each input segment s € S

4. Initialize outpuT_cHAIN tO be empty

5. REROUTE(s)

e. add outpuT_cHaIN tOo S*

29

ISR, algorithm

REROUTE(S)

/l s i1s the input segment with endpoints p and ¢

1. query D to find H,, the set of hot pixels intersected by s

2. if H, contains a single hot pixel // s is entirely inside a pixel
3. then add the center of the hot pixel containing s to

OUTPUT_CHAIN

4. else

3. let 1y, mo. m, be the centers of the » hot pixels in
H, in the order of the intersection along s

6. if (r = 2 and p, g are centers of pixels)

T then add the link myms to outPuT_CHAIN

8. else

9. fori =11tor —1

10. REROUTE(T72;7112 1 1)

30

ISR, alternative view

= Reroute for one ursegment is described by a

tree
nodes denoted by full-line

circles contain segments with
| which we query the structure

D

,f N the dashed circle denotes a
segment which is an exact

2
copy of the segment of its
~~ parent

ISR, properties

= finite process
ISR = a finite number of rounds of SR
no new pixels created

a polysegment s* is (weakly) x-monotone and (weakly) y-
monotone

m preserves the topology in the same sense that SR does

= a vertex is at least half a unit away from any non-incident
edge

= the rounding chain is in the Minkowski sum of the

ursegment and a square of side size k (= depth of the
recurrence of Reroute) centered at the origin

32

ISR, complexity

= we compute the hot pixels in O(n log n + [) time

= using multi-level partition trees to answer segment/pixel
qgueries, split between vertical pixel boundaries and
horizontal boundaries

= each tree, when allowed Munit of storage, ~¥ <M < N’
takes Oo(m'*™*) preprocessing time, and answer queries in

O(N'**//M + g) time, where g is the number of hot pixels
found

= using standard tricks we can balance between
preprocessing and query time without knowning the
number of queries in advance

= the number of queries at most 2L, where L is the total
number of links in all the chains together

33

‘ ISR, complexity summary

o time O(nlogn + I + L2B3N2/3+2 L) forany ¢ > 0
e space O(n + N + L2/3N?2/3+¢)

n - # of segments

[- # of intersections in the original arrg

N - # of hot pixels

[. - overall complexity of the rounding chains

34

ISR, implementation

= substituting multi-level partition trees by
c-oriented kd-trees

m Selective rotations (creating a tree only for
many potential queries)

= using exact rotations

35

ISR, CGAL

= ISR is currently CGAL’s SR software

m the user can curb the number k of iterations
(height of the tree)

m setting k=1 results in a standard snap-rounded
arrangement

36

SR vs. ISR, example 1

177

>

O

Input zoom in

SR output zoom in

ISR output zoom in

WA
RS .
RNNSSEERY ey L
AR 2
B
asaa‘#ss& o D b
RN A7 L -
*5@5:':‘7;{"' +:--@$ éﬁ {;% -
THIH R Gl - -
SIS e oy
S S AL 1 S ELTIAT
;\ l(:’ ! - ! e : 2; ?; .cnc(;f! = I Vﬁ:_ﬁ : :f
i W ? e, T H Eg: e M 5 D, He H
N e ; ’75; e e :
I T Ay 2 R
’5 iy T — S
SR output ISR output
T ,.-f . b
TTRTIR S
= 7 |/> ’ g
., T R
f/f/f ﬁ/ /_/ / | }.,_-2 | / >'_4
1
"'\.‘
o

37

SR vs. ISR, example 2

Input points Input triangulation SR output ISR output

Input zoom in SR output zoom in ISR output zoom in

38

| SR vs. ISR, example 3

Input zoom in SR output zoom in ISR output zoom in

39

A problem with ISR

= input segment, SR, ISR
= huge drift
= can be as large as 6(n?) pixels, for n input segs

40

A solution: ISR with Bounded Drift

= ISRBD results with two different allowable
drift parameter

m for details see bib list

41

The complexity of SR and ISR

= the complexity of a single chain s* can be 8(n?)
= the overall complexity of all the chains can be 6(n3)

The complexity of SR and ISR, cont'd

= the maximum complexity of an SR’ed (or ISR’ed)
arrangement is O(n + |) which is at most O(n?)

43

Worst-case performance of the erasure algorithm

= Q: back to the standard snap rounding:

what is the worst case complexity of the
erasure algorithm on the above input?

m A @, (”]i:_')g n -+ EF!-EH

Sh|logn)
which can be o(n?logn)
= can we do better?

44

The collapse of many similar segments

= all the algorithms we have seen so far work Q(n3) time
on the example above, although the (in fact any)
rounded arrangement has complexity O(n?)

= many segments collapse to the same final chain

= if we only care about the final rounded arrg then we can
handle similar ursegments collectively; we avoid
handling ursegments individually wherever possible

45

Intersection-sensitive snap rounding:
The bundles algorithm

= input: as before

= output: the rounded arrangement represented as a graph

o the nodes represent the centers of hot pixels

o an arc connects two nodes that correspond to hot pixels h and g
iff an ursegment passes through h and g and crosses no other
hot pixel in-between

= the bundles algorithm runs in time O((n+l) log n)
= Q: how much time i
it takes on this? e

46

The bundles algorithm, overview

1)

2)

identifies the set V of nodes of the output graph
G=(V,E), namely the hot pixels (standard, nothing new)

determines E, namely decides which pairs of nodes of
G should be connected by an arc

the second stage is carried out in two sweep-line
passes; we split the ursegs into S* and S-, ursegs with
positive and negative slopes respectively, and each is
treated separately

we assume for simplicity that there are no axis-aligned
ursegs — can be easily relaxed; still we may have axis-
aligned edges in the rounded arrg

47

Determining the arcs of G for S*

= when the sweep-line is at x=xpos, a bundle is a set of
ursegments intersecting the sweep-line, all originating
from the same hot pixel to the left of xpos, and whose
“fan” does not intersect any hot pixel

= for a bundle b=(S,,h,)

o S,: the ursegments in the bundle

o hy : the hot pixel of origin

o u(b): its uppermost urseg

o I(b): its lowest urseg

o asearch tree T, that stores all the ursegs of b

= atree T storing all the u(b)’s and I(b)’s in their order
along the sweep-line

48

The sweep poly line

= consists of up to five axis-aligned segments

= sweeping over a hot pixel:

A A A
(a) (b) (c)

Actions upon reaching a hot pixel h

1) find all bundles reaching h

o by querying the status line with the interval
[se(h):nw(h)] of south-east, north-west corners

2) split the bundles and create new bundles

o one continuing above, one below, and one
starting at h (two of the above may be empty)

3) update the status structures, T and T,'s
o while sweeping inside h

= total running time O((n+l) log n)

50

The best of both worlds:
The erasure-bundles algorithm

= input: as before
= output: the rounded arrangement represented as a graph
o the vertices represent the centers of hot pixels

o an edge connects to vertices that correspond to hot
pixels h and g iff an ursegment passes through h and
g and crosses no other hot pixel in-between

o extra data structure from which the original

ursegments which collapsed to an edge can be
retrieved

51

The erasure-bundles algorithm,
running time

= the algorithm runs in time
O(nlog n+ 2, _, /s(h) log n),

where /s(h) is the number of ursegments that
have an endpoint or an intersection inside h

= Q: what is the running time in the following?

52

The erasure-bundles algorithm,
detalls

= the algorithm, as its name implies, marries the
erasure algorithm with the bundles algorithm,
with the addition of maintaining a persistent data
structure, which compactly encodes which

ursegments collapse into each edge of the
rounded arrg

= homework: complete the details
see bib list

53

Snap rounding: pros and cons

pros

» convenient numerical output

» fairly efficient

» preserves certain topological properties

cons

» very limited range of effective applicability

» requires special machinery for preprocessing (is it
necessary?)

» devise consistent and efficient rounding schemes for
planar arrangements of curves and for arrangements of
surfaces in higher dimensions

54

References

precursor of SR, contains examples why naive rounding is bad
[Greene-Yao '86]
Finite-resolution computational geometry, FOCS, 143-152

= the basic SR approach

[Hobby ‘99]
Practical segment intersection with finite precision output
CGTA 13:199-214

= the erasure algorithm

[Guibas-Goodrich-Hershberger-Tanenbaum ‘97]

Snap rounding line segments efficiently in two and three dimensions
SoCG, 284-293

ISR

[H-Packer ‘02]

lterated snap rounding, CGTA 23:209-225

55

References, cont’d

m properties of SR
[Guibas-Marimont ‘98]
Rounding arrangements dynamically, [IJCGA 8:157-178
= the bundles algorithm
[de Berg-H-Overmars ‘07]
An intersection-sensitive algorithm for snap rounding
CGTA 36:159-165
= the erasure-bundles algorithm
[Hershberger ‘08]
Improved output-sensitive snap rounding
DCG, 39:298-318
= ISRBD
[Packer ‘08]
lterated snap rounding with bounded drift, CGTA 40:231-251

56

References, more work on rounding

[Fortune ‘99]

Vertex-rounding a three-dimensional polyhedral subdivision
DCG 22:593-618

[Devillers-Guiges ‘06]

Inner and outer rounding of Boolean operations on lattice polygonal
regions, CGTA 33:3-17

[Milenkovic ‘00]

Shortest path geometric rounding, Algorithmica 27:57-86
DCG, 39:298-318

[Eigenwillig-Kettner_Wolper ‘07]

Snap rounding of Bezier curves, SoCG 158-167

57

THE END

