APPLIED aspects of
COMPUTATIONAL GEOMETRY

Movable separability and
assembly planning

Dan Halperin
School of Computer Science
Tel Aviv University



Overview

= movable separability
= separation sequences for convex objects in 2D

= a general framework for 2-handed assembly
planning

= improved algorithm: infinitesimal motions




‘ Movable separability




Definitions

= assembly A: a collection of pairwise interior disjoint
bodies/parts

s subassembly: a subset of parts of A in their relative
placement in (the full final) A

= assembly operation: a motion that merges s
subassemblies of A into a new subassembly of A, s is the
number of hands

m the reverse is called assembly partitioning

= assembly sequence: a total ordering on assembly
operations from separated parts to the full A

= monotone operation: only generating subassemblies of the
final A




we will discuss

= 2-handed

= monotone

= rigid-parts
assembly planning

hence we can plan assembly by disassembly




‘ Convex objects

= In the plane: admit a disassembly sequence
translating one part at a time along a fixed
(arbitrary) direction to infinity
= In 3-space”?
o depth order does not
always exist

0 moreover, assemblies of 248
convex parts may be |
Interlocked . b

[Snoeyink-Stolfi 93]




The partitioning problem, hardness

= arbitrary motions: assembly planning for
polyhedral objects of constnat maximum
complexity each is PSPACE-hard

= 2-handed assembly partitioning for polygonal
parts with translational motions only and into
connected subassemblies is NP-complete




General framework for assembly
planning, the basic ingredients

n key factor: the type of motions allowed
= reminder:

= motion-space regions (open sets) = blocking
regions, Mij

= NDBG: the arrangement of the M; s together with
their BGS’s




Strong connectivity

= a strongly connected component (or strong
component) of a directed graph is a maximal
subset of nodes such that for any pair of
nodes u,v, In this subset a path connects
utov

= a graph is strongly connected if it consists of
one strongly connected component




' DBG

<back>




The partitioning procedure

procedure partition(s):
for every cell ¢ in the NDBG of S do:
if the DBG associated with ¢ 1s not strongly connected
then return c and a feasible partition of
return failure:
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2-handed assembly by disassembly

= Input: an assmebly A, the allowable motions
= output: assembly sequence

= algorithm:

o partition A, and then the two subassemblies recursively,
or stop and announce failure

o reverse the disassembly motions into an assembly
sequence
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Example: infinite translational partitioning in 2D

= polygonal parts P,,P,, ...P,
= motion-space model: the unit circle

= blocking region M; = the motions where P; blocks
P.
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infinite translational partitioning in 2D,
complexity

= N parts, at most g vertices in a part

= computing an M; takes O(q) time

= computing the motion-space arrangement, O(n?)
time

= constructing the NDBG takes O(n?(log n+g?))

= checking all DBGs for strong connectivity, at O(n?)
a piece, takes total O(n%) time

= (dis)assemble takes O(n°) time
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Interlocking and infinitesimal motions
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Example: infinitesimal translation in 3D

= The approach works in motion-space of any dimension,
especially interesting d=2,5; we exemplify for d=2
(translation in 3-space)

= polyhedral parts P,,P,, ...P,

= motion-space model: the (upper) hemisphere, or the plane
tangent to the North pole

= the non-blocking region Q; = where P; does not block P;
closed sets

= The motion-space arrangement
o covering set
o maximally covered cells
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Maximally covered cells

= covered by more sets than any of their immediate neighbors, or

= a cell Cis maximally covered if the covering set of any point on the
relative boundary of C is the same as the covering set of its interior,
and C is a maximal connected region of d-space with this covering set
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Maximally covered cells suffice

claim: if there is a solution (S,0) to the infinitesimal
partitioning problem with subassembly S and
direction 9, then there is a solution (S,0°) where &’
IS iIn @ maximally covered cell
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Motion-space arrangement in d-space

n K: # of pairs of parts in contact
= N: total # of constraints

thus we have K polytopes in Rd with a total of N
facets

= combinatorial bounds
o arrg of hyperplanes
O(Nd)
o arrg of K polytopes with N facets
O(NL;—'{J'Hlﬁj
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The number of maximally covered cells

n K: # of pairs of parts in contact
= N: total # of constraints

= Q: how many maximally covered cells?
n A O(Kd)

The number of DBG's to test depends on the number of pairs
of parts in contact and not on the complexity of the parts or
the complexity of their contacts

Kis never greater than N and typically much smaller
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Finding a point in each
maximally covered cell (MCC)

= consider the bottommost point in each bounded
MCC (lowest in the X, direction)

= it is @ meeting point of at least d facets that are
coming from at most d polytopes (more facets
may meet there but we consider only d)

= look at the bottommost point in the intersection of
any i polytopes inour setfori=12, ..., d

= for unbounded cells, add a bounding box B of all
the vertices of the arrg, and repeat the above with
B as one of the at most d polytopes
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Infinitesimal partitioning, algorithm

1. forz=1,...,d

2. for each subset R of input polytopes such that R| =1

H + J,cr(Halfspaces in r)

e LP(H,X4l)

If e = NULL goto 2, else

If DBG(e) is not strongly connected

e

o o

7. Output e and movable subassembly
8. exit

9. Report “INTERLOCKED”

repeat the above while taking the bounding box B in each subset R
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Infinitesimal partitioning, analysis

= solving all the LP’s takes total time oO(kx**n)

= cannot use adjacency in building DBG's, needs
point location structures

= let m, denote the number of facets of the i-th
polytope
= overall construction time

K I
Y omPTY = owlslt

2=1
= overall query time

K
O(K’d) z O(logm;) = O(Kd+1 log N)

1=1
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Infinitesimal trans + rot in 3-space

= motion space is S°

m contact constraints transformed into
point/plane contacts

= each contact constraint is a 5-dim hyperplane

= running time O(K*N+K® log N) after O(N2+eps)
expected-time preprocessing
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Experiments, Kvs N
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Infinitesimal partitioning, example

da=2 (0 1 0) d=% (0. 99 0. 0058 0. 0.)
P

1
P1n_ ~
Pﬁ}i P2 Pé 7L P2
FL = P3 FL/ P3
) /

J / ]

P4 P4

m for d=2, 22 representative points/DBG’s generated, all
confirmed to be strongly connected

m for d=5, 190 representative DBG’s, only 118 of which are
strongly connected; above, right: an example of non-
strongly connected DBG
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Exercise: infinite translation in 3-space
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Additional topics, challenges

= tolerancing, sensitivity analysis
= assembly planning with more complex motions
= optimization
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THE END




