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Assembly Properties

Interlocked Separated
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Polyhedral Assembly Partitioning with Infinite Translations
Input: n pairwise interior disjoint polytopes in IR3

A = {P1,P2, . . . ,Pn}

Output: A proper subset S ⊂ A and a direction ~d in IR3,
S can be translated as a rigid body to infinity along ~d
without colliding with A\S
Sliding motions of parts over other parts are allowed
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The Partitioning Process

1 Convex Decomposition
2 Sub-part Gaussian map construction
3 Sub-part Gaussian map reflection
4 Pairwise sub-part Minkowski sum construction
5 Pairwise sub-part Minkowski sum projection
6 Pairwise Minkowski sum projection
7 Motion-space construction
8 Motion-space processing

Different extensions of arrangements induced by geodesic arcs
embedded on the sphere are used at different phases.
Only rational arithmetic is used.
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The Split Star Assembly

Has the shape of the first stellation of the rhombic dodecahedron

Is illustrated atop the right pedestal
in M. C. Escher’s Waterfall woodcut

Viewed from different angles
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Phase 1: Convex Decomposition
The Split Star six parts decomposed into 3 convex sub-parts each

We applied the decomposition operation manually
We experimented with 3 different decompositions:

Each part decomposed into 3, 5, and 8 pieces
The 8-piece decompsition results with 48 identical tetrahedra
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Phase 2: Sub-part Gaussian Map Construction
Samples of the Gaussian maps of sub-parts of the Split Star assembly

R1 R2 R3 B1 B2 B3
Output: Ordered list of parts, each part is an ordered list of the convex sub-part

Gaussian-maps

The reflections of the Gaussian-maps through the origin

−R1 −R2 −R3 −B1 −B2 −B3
Output: Ordered list of parts, each part is an ordered list of the convex sub-part

Gaussian-maps
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Phase 3: Sub-part Gaussian Map Reflection
Samples of the Gaussian maps of sub-parts of the Split Star assembly

R1 R2 R3 B1 B2 B3
Output: Ordered list of parts, each part is an ordered list of the convex sub-part

Gaussian-maps

The reflections of the Gaussian-maps through the origin

−R1 −R2 −R3 −B1 −B2 −B3
Output: Ordered list of parts, each part is an ordered list of the convex sub-part

Gaussian-maps

Algorithms for 3D Printing and Other Manufacturing Methodologies 10



Phase 4: Pairwise Sub-part Minkowski Sum Construction

for i in {1,2, . . . ,n}
for j in {1,2, . . . ,n}

if i == j continue
for k in {1,2, . . . ,mi}

for ` in {1,2, . . . ,mj}
M ij

k` = P j
`⊕ (−P i

k)
Output: A map from ordered pairs of distinct indices into lists of Minkowski sums
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Phase 5: Pairwise Sub-part Minkowski Sum
Projection

for i in {1,2, . . . ,n}
for j in {1,2, . . . ,n}

if i == j continue
for k in {1,2, . . . ,mi}

for ` in {1,2, . . . ,mj}
Qij

k` = project(M ij
k`)

Output: A map from ordered pairs of distinct indices into lists of central projections
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Phase 5: Pairwise Sub-part Minkowski Sum
Projection
Samples of the pairwise Minkowski sums of sub-parts of the Split Star

R1⊕ (−G1) R1⊕ (−B1) G1⊕ (−R1) G1⊕ (−B1) B1⊕ (−R1) B1⊕ (−G1)
Middle row — Minkowski sums
Top row — Gaussian maps
Bottom row — central projection of the Minkowski sums on S2
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Phase 5: Pairwise Sub-part Minkowski Sum Projection

for i in {1,2, . . . ,n}
for j in {1,2, . . . ,n}

if i == j continue
for k in {1,2, . . . ,mi}

for ` in {1,2, . . . ,mj}
Qij

k` = project(M ij
k`)

Given a convex Minkowski sum C , there are four different cases:
1 The origin is contained in the interior of a facet of C
2 The origin lies in the interior of an edge of C
3 The origin coincides with a vertex of C
4 The origin is separated from C
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Phase 6: Pairwise Minkowski Sum Projection

for i in {1,2, . . . ,n}
for j in {1,2, . . . ,n}

if i == j continue
Qij = /0
for k in {1,2, . . . ,mi}

for ` in {1,2, . . . ,mj}
Qij = Qij ∪Qij

k`

B⊕ (−R) R⊕ (−B)
Output: A map from ordered pairs of distinct indices into single central projections
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Phase 6: Pairwise Minkowski Sum Projection

The Peg-in-the-hole assembly viewed from two opposite directions

Sub-part Minkowski-sum projections The union
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Phase 7: Motion-Space Construction

Output: A single arrangement that represents the motion space
Each arrangement cell is extended with a directional blocking graph (DBG)
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Phase 8: Motion-Space Processing

Traverse all vertices, edges, and faces of the motion-space
arrangement
Test the DBG associated with each cell for strong connectivity

Direction Subset
1. −1,−1,−1 GBT
2. −1,−1, 1 RBT
3. −1, 1,−1 GPT
4. −1, 1, 1 RPT
5. 1,−1,−1 GBY
6. 1,−1, 1 RBY
7. 1, 1,−1 GPY
8. 1, 1, 1 RPY
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Assembly Partitioning: Results

Decompose each part into as few as possible sub-parts with as small
as possible number of features
An automatic decomposition operation that arrives at optimal or near
optimal decompositions is expensive

Time consumption in seconds of the Split Star partitioning using different decompositions
A — number of convex sub-parts per part
B — number of sub-part vertices per part
C — total number of convex sub-parts
D — total number of Minkowski sums
E — total number of arrangements of geodesic arcs embedded on the sphere

A B C D E 1 2 3 4 5 6 7 8
3 16 18 270 607 NA 0.01 0.04 2.38 0.41 2.05

0.36 0.015 22 30 750 1591 NA 0.01 0.05 5.03 1.09 7.07
8 32 48 1920 3967 NA 0.01 0.06 11.12 2.41 27.99
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Infinite Translational Partitioning in IR3: Complexity

n—number of parts
q—the maximum number of vertices per part.
v—total number of vertices in the n parts

Theoretical, exploiting similarity between DBGs associated with
incident cells and avoiding convex decomposition

O(v2)—number of arcs inducing the motion-space arrangement
O(v4)—motion-space arrangement complexity
O(v4)—NDBG complexity
O(n1.376)—strong connectivity computation amortized time
consumption
O(n1.376v4)—total time consumption

Alternatively
O(q2)—Qij compexity
O((nq)4)—motion-space arrangement complexity
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