
Algorithms for 3D Printing and Other Manufacturing
Methodologies

Efi Fogel

Tel Aviv University

2D Arrangements
Apr. 24th, 2017

Outline

1 2D Arrangements
Definitions & Complexity
Representation
Queries

Vertical Decomposition
Point Location Queries

The Zone Computation Algorithmic Framework
The Plane Sweep Algorithmic Framework
Arrangement of Unbounded Curves
Literature

Algorithms for 3D Printing and Other Manufacturing Methodologies 2

Outline

1 2D Arrangements
Definitions & Complexity
Representation
Queries

Vertical Decomposition
Point Location Queries

The Zone Computation Algorithmic Framework
The Plane Sweep Algorithmic Framework
Arrangement of Unbounded Curves
Literature

Algorithms for 3D Printing and Other Manufacturing Methodologies 3

Two Dimensional Arrangements
Definition (Arrangement)
Given a collection C of curves on a surface, the arrangement A (C) is the
partition of the surface into vertices, edges and faces induced by the
curves of C .

An arrangement
of circles in the
plane.

An arrangement of lines in
the plane.

An arrangement
of great-circle
arcs on a sphere.

Algorithms for 3D Printing and Other Manufacturing Methodologies 4

Arrangement Background

Arrangements have numerous applications
robot motion planning, computer vision, GIS, optimization,
computational molecular biology

A planar map of the Boston area showing the top of the arm of cape cod.
Raw data comes from the US Census 2000 TIGER/line data files

Algorithms for 3D Printing and Other Manufacturing Methodologies 5

Arrangement 2D Complexity

Definition (Well Behaved Curves)
Curves in a set C are well behaved, if each pair of curves in C intersect at
most some constant number of times.

Theorem (Arrangement in IR2)
The maximum combinatorial complexity of an arrangement of n
well-behaved curves in the plane is Θ(n2).

The complexity of arrangements induced by n non-parallel lines is Ω(n2).

Algorithms for 3D Printing and Other Manufacturing Methodologies 6

Arrangement dD Complexity

Definition (Hyperplane)
A hyperplane is the set of solutions to a single equation AX = c, where A
and X are vectors and c is some constant.

A hyperplane is any codimension-1 vector subspace of a vector space.

Definition (Hypersurface)
A hypersurface is the set of solutions to a single equation
f (x1,x2, . . . ,xn) = 0.

Theorem (Arrangement in IRd)
The maximum combinatorial complexity of an arrangement of n
well-behaved (hyper)surfaces in IRd is Θ(nd).

The complexity of arrangements induced by n non-parallel hyperplanes is
Ω(nd).
Algorithms for 3D Printing and Other Manufacturing Methodologies 7

Planar Maps
Definition (Planar Graph)
A planar graph is a graph that can be embedded in the plane.

Definition (Planar Map)
A planar map is the embedding of a planar graph in the plane. It is a
subdivision of the plane into vertices, (bounded) edges, and faces.

Theorem (Euler Formula)
Let v, e, and f be the number of vertices, edges, and faces (including the
unbounded face) of a planar map, then v − e + f = 2.

8 circles
vertices — 25
edges — 56
faces — 33 (including the unbounded face)

Algorithms for 3D Printing and Other Manufacturing Methodologies 8

Surface Maps
Planar maps generalize to surfaces!

Definition (genus)
A topologically invariant property of a surface defined as the largest
number of nonintersecting simple closed curves that can be drawn on the
surface without separating it.

Theorem (Euler Formula)
Let v, e, and f be the number of vertices, edges, and faces of a map
embedded on a surface with genus g, then v − e + f = 2−2g.

If each face is incident to at least 3 edges =⇒ 3f ≤ 2e

3v −3e +3f = 6−6g ≤ 3v −3e +2e

e ≤ 3v −6+6g

In a planar triangulation e = 3v −6, f = 2v −4
Algorithms for 3D Printing and Other Manufacturing Methodologies 9

Outline

1 2D Arrangements
Definitions & Complexity
Representation
Queries

Vertical Decomposition
Point Location Queries

The Zone Computation Algorithmic Framework
The Plane Sweep Algorithmic Framework
Arrangement of Unbounded Curves
Literature

Algorithms for 3D Printing and Other Manufacturing Methodologies 10

The Cgal Arrangement_on_surface_2 Package
Constructs, maintains, modifies, traverses, queries, and presents
arrangements on two-dimensional parametric surfaces.
Complete and Robust

All inputs are handled correctly (including degenerate input).
Exact number types are used to achieve robustness.

Generic – easy to interface, extend, and adapt
Modular – geometric and topological aspects are separated
Supports among the others:

various point location strategies
zone-construction paradigm
sweep-line paradigm

F vertical decomposition
F overlay computation
F batched point location

Part of the Cgal basic library

Algorithms for 3D Printing and Other Manufacturing Methodologies 11

Arrangement_2<Tra i t s , Dcel>

Is the main component in the 2D Arrangements package.
An instance of this class template represents 2D arrangements.
The representation of the arrangements and the various geometric
algorithms that operate on them are separated.
The topological and geometric aspects are separated.

The T r a i t s template-parameter must be substituted by a model of a
geometry-traits concept, e.g., ArrangementBasicTraits_2.

F Defines the type X_monotone_curve_2 that represents x -monotone
curves.

F Defines the type Point_2 that represents two-dimensional points.
F Supports basic geometric predicates on these types.

The Dce l template-parameter must be substituted by a model of the
ArrangementDcel concept, e.g., A r r_de f au l t_dce l <Tra i t s >.

Algorithms for 3D Printing and Other Manufacturing Methodologies 12

The Doubly-Connected Edge List

One of a family of
combinatorial data-structures
called the halfedge
data-structures.
Represents each edge using a
pair of directed halfedges.
Maintains incidence relations
among cells of 0 (vertex), 1
(edge), and 2 (face)
dimensions.

v1

v2

eprev

enext

e
e ′

f0

f1

f2

f3
f4

u1

u1

The target vertex of a halfedge and the halefedge are incident to each other.
The source and target vertices of a halfedge are adjacent.

Algorithms for 3D Printing and Other Manufacturing Methodologies 13

The Doubly-Connected Edge List Components

Vertex
An incident halfedge pointing at the vertex.

Halfedge
The opposite halfedge.
The previous halfedge in the component boundary.
The next halfedge in the component boundary.
The target vertex of the halfedge.
The incident face.

Face
An incident halfedge on the outer Ccb.
An incident halfedge on each inner Ccb.

Connected component of the boundary (Ccb)
The circular chains of halfedges around faces.

Algorithms for 3D Printing and Other Manufacturing Methodologies 14

Arrangement Representation

The halfedges incident to a vertex form a circular list.
The halfedges are clockwise oriented around the vertex.

The halfedges around faces form circular chains.
All halfedges of a chain are incident to the same face.
The halfedges are counterclockwise oriented along the
boundary.

Geometric interpretation is added by classes built on top of the
halfedge data-structure.

Algorithms for 3D Printing and Other Manufacturing Methodologies 15

Modifying the Arrangement

v1 v2
f

v

u

Inserting a curve that induces
a new hole inside the face f ,
a r r . i n s e r t _ i n _ f a c e _ i n t e r i o r (c , f) .

Inserting a curve from an existing vertex u
that corresponds to one of its endpoints,
i n s e r t_ f r om_ l e f t_ v e r t e x (c , v) ,
i n s e r t_ f r om_ r i g h t_v e r t e x (c , v) .

v1

v2

h 1

f f ′ h2

Inserting an x -monotone curve, the endpoints
of which correspond to existing vertices v1
and v2, i n s e r t _ a t _ v e r t i c e s (c , v1 , v2) .

The new pair of halfedges close a new face f ′.
The hole h1, which belonged to f before the
insertion, becomes a hole in this new face.

Algorithms for 3D Printing and Other Manufacturing Methodologies 16

Application: Obtaining Silhouettes of Polytopes
Application
Given a convex polytope P obtain the outline of the shadow of P cast on
the xy-plane, where the scene is illuminated by a light source at infinity
directed along the negative z-axis.

The silhouette is represented as an arrangement with two faces:
an unbounded face and
a single hole inside the unbounded face.

x

y

An icosahedron and its silhouette.

Algorithms for 3D Printing and Other Manufacturing Methodologies 17

Application: Obtaining Silhouettes of Polytopes: Insertion
Insert an edge into the arrangement only once to avoid overlaps.

Maintain a set of handles to polytope edges the projection of which
have already been inserted into the arrangement.
Implemented with the s td : : s e t data-structure.

F Requires the provision of a model of the StrictWeakOrdering.
F A functor that compares handles:� �

s t r u c t Less_than_handle {
t emp la t e <typename Type>
boo l o p e r a t o r () (Type s1 , Type s2) con s t { r e t u r n (&(∗ s1) < &(∗ s2)) ; }

} ;� �
s t d : : s e t<Po lyhedron_ha l f edge_cons t_hand le , Less_than_handle >}

Determine the appropriate insertion routines.
Maintain a map that maps polyhedron vertices to corresponding
arrangement vertices.
Implemented with the s td : : map data-structure.
s t d : : map<typename Po lyhedron : : Ver tex_const_hand le ,

typename Arrangement : : Vertex_hand le , Less_than_handle>

Algorithms for 3D Printing and Other Manufacturing Methodologies 18

Application: Obtaining Silhouettes of Polytopes:
Construction
Obtain the arrangement A that represents the silhouette of a Convex Polytope P
1. Construct the input convex polytope P.
2. Compute the normals to all facets of P.
3. for each facet f of P
4. if f is facing upwards (has a positive z component)
5. for each edge e on the boundary of f
6. if the projection of e hasn’t been inserted yet into A
7. Insert the projection of e into A .

Computes the normal to a facet.� �
s t r u c t Normal_equat ion {

temp la t e <typename Facet> typename Facet : : Plane_3 op e r a t o r () (Facet& f) {
typename Facet : : Ha l f edge_hand l e h = f . h a l f e d g e () ;
r e t u r n CGAL : : c r o s s_p roduc t (h−>next ()−>ve r t e x ()−>po i n t () −

h−>ve r t e x ()−>po i n t () ,
h−>next ()−>next ()−>ve r t e x ()−>po i n t () −
h−>next ()−>ve r t e x ()−>po i n t ()) ;

}
} ;� �

Algorithms for 3D Printing and Other Manufacturing Methodologies 19

Traversing the Halfedges Incident to an Arrangement
Vertex

Print all the halfedges incident to a vertex.� �
t emp la t e <typename Arrangement>
vo i d p r i n t _ i n c i d e n t_ h a l f e d g e s (typename Arrangement : : Ve r tex_cons t_hand le v)
{

i f (v−>i s _ i s o l a t e d ()) {
s td : : cout << "The␣ v e r t e x ␣ (" << v−>po i n t () << ") ␣ i s ␣ i s o l a t e d " << std : : e nd l ;
r e t u r n ;

}
s td : : cout << "The␣ n e i g hbo r s ␣ o f ␣ the ␣ v e r t e x ␣ (" << v−>po i n t () << ") ␣ a r e : " ;
typename Arrangement : : Ha l f e dg e_a r ound_ve r t e x_con s t_c i r c u l a t o r f i r s t , c u r r ;
f i r s t = cu r r = v−>i n c i d e n t_ h a l f e d g e s () ;
do s td : : cout << "␣ (" << cur r−>sou r c e ()−>po i n t () << ") " ;
wh i l e (++cu r r != f i r s t) ;
s t d : : cout << s td : : e nd l ;

}� �

Algorithms for 3D Printing and Other Manufacturing Methodologies 20

Traversing the Halfedges of an Arrangement Ccb

Print all x -monotone curves along a given Ccb� �
t emp la t e <typename Arrangement>
vo i d p r i n t_ccb (typename Arrangement : : C cb_ha l f e dg e_con s t_c i r c u l a t o r c i r c)
{

s td : : cout << " (" << c i r c −>sou r c e ()−>po i n t () << ") " ;
typename Arrangement : : C cb_ha l f e dg e_con s t_c i r c u l a t o r c u r r = c i r c ;
do {

typename Arrangement : : Ha l f edge_cons t_hand l e he = cu r r ;
s t d : : cout << "␣␣␣ [" << he−>curve () << "] ␣␣␣"

<< " (" << he−>t a r g e t ()−>po i n t () << ") " ;
} wh i l e (++cu r r != c i r c) ;
s t d : : cout << s td : : e nd l ;

}� �
he−>curve () is equivalent to he−>twin ()−>curve () ,
he−>sou r c e () is equivalent to he−>twin ()−>t a r g e t () , and
he−>t a r g e t () is equivalent to he−>twin ()−>sou r c e () .

Algorithms for 3D Printing and Other Manufacturing Methodologies 21

Traversing the Ccbs of an Arrangement Face
Print the outer and inner boundaries of a face.� �
t emp la t e <typename Arrangement>
vo i d p r i n t_ f a c e (typename Arrangement : : Face_const_handle f)
{

// P r i n t the ou t e r boundary .
i f (f−>is_unbounded ()) s t d : : cout << "Unbounded␣ f a c e . ␣" << std : : e nd l ;
e l s e {

s td : : cout << "Outer ␣ boundary : ␣ " ;
p r in t_ccb<Arrangement >(f−>outer_ccb ()) ;

}

// P r i n t the boundary o f each o f the h o l e s .
s i z e_ t i ndex = 1 ;
typename Arrangement : : Ho l e_con s t_ i t e r a t o r ho l e ;
f o r (ho l e = f−>ho l e s_beg i n () ; h o l e != f−>holes_end () ; ++hole , ++index) {

s td : : cout << "␣␣␣␣Hole ␣#" << index << " : ␣" ;
p r in t_ccb<Arrangement >(∗ ho l e) ;

}

// P r i n t the i s o l a t e d v e r t i c e s .
typename Arrangement : : I s o l a t e d_ v e r t e x_ c o n s t _ i t e r a t o r i v ;
f o r (i v = f−>i s o l a t e d_ v e r t i c e s _ b e g i n () , i nd ex = 1 ;

i v != f−>i s o l a t e d_ v e r t i c e s _ e n d () ; ++iv , ++index)
s td : : cout << "␣␣␣␣ I s o l a t e d ␣ v e r t e x ␣#" << index << " : ␣"

<< " (" << iv−>po i n t () << ") " << std : : e nd l ;
}� �
Algorithms for 3D Printing and Other Manufacturing Methodologies 22

Traversing an Arrangement
Print all the cells of an arrangement.� �
t emp la t e <typename Arrangement>
vo i d p r i n t_a r r angement (con s t Arrangement& a r r)
{

CGAL_precondit ion (a r r . i s _ v a l i d ()) ;

// P r i n t the ar rangement v e r t i c e s .
typename Arrangement : : V e r t e x_con s t_ i t e r a t o r v i t ;
s t d : : cout << a r r . number_o f_ve r t i c e s () << "␣ v e r t i c e s : " << s td : : e nd l ;
f o r (v i t = a r r . v e r t i c e s _ b e g i n () ; v i t != a r r . v e r t i c e s_ end () ; ++v i t) {

s td : : cout << " (" << v i t−>po i n t () << ") " ;
i f (v i t−>i s _ i s o l a t e d ()) s t d : : cout << "␣−␣ I s o l a t e d . " << s td : : e nd l ;
e l s e s t d : : cout << "␣−␣ deg r ee ␣" << v i t−>deg ree () << s td : : e nd l ;

}

// P r i n t the ar rangement edges .
typename Arrangement : : Edge_con s t_ i t e r a t o r e i t ;
s t d : : cout << a r r . number_of_edges () << "␣ edges : " << s td : : e nd l ;
f o r (e i t = a r r . edges_beg in () ; e i t != a r r . edges_end () ; ++e i t)

s t d : : cout << " [" << e i t −>curve () << "] " << std : : e nd l ;

// P r i n t the ar rangement f a c e s .
typename Arrangement : : F a c e_con s t_ i t e r a t o r f i t ;
s t d : : cout << a r r . number_of_faces () << "␣ f a c e s : " << s td : : e nd l ;
f o r (f i t = a r r . f a c e s_beg i n () ; f i t != a r r . faces_end () ; ++f i t)

p r i n t_ f a c e <Arrangement >(f i t) ;
}� �
Algorithms for 3D Printing and Other Manufacturing Methodologies 23

Outline

1 2D Arrangements
Definitions & Complexity
Representation
Queries

Vertical Decomposition
Point Location Queries

The Zone Computation Algorithmic Framework
The Plane Sweep Algorithmic Framework
Arrangement of Unbounded Curves
Literature

Algorithms for 3D Printing and Other Manufacturing Methodologies 24

Vertical Decomposition

Is a refinement of the original subdivision A of n edges.

In the plane
Contains O(n) pseudo trapezoids (triangles
and trapezoids).
A pseudo trapezoid is determined by

F 2 vertices left(∆) and right(∆), and
F 2 segments top(∆) and bottom(∆).

Generalizes to higher dimensions and arrangements induces by well
behaved objects.

bottom(∆)

top(∆)

left(∆)

top(∆)

bottom(∆)

left(∆)

bottom(∆)

top(∆)

left(∆) bottom(∆)

top(∆)

left(∆)

Algorithms for 3D Printing and Other Manufacturing Methodologies 25

Vertical Decomposition Complexity

R—a bounding rectangle
S—a set of n interior disjoint line segments
T (S)—the trapezoidal map of S
T (S) is a planar map with v vertices, e edges, and f faces
A vertex of T (S) is either

a vertex of R,
an endpoint of a segment in S, or
the point where the vertical extension hits

v ≤ 4+2n+2(2n) = 6n+4
f ≤ 3n+1

The lower left corner of R is left(∆) of one trapezoid
The right endpoint of a segment can be left(∆) of one trapezoid
The left endpoint of a segment can be left(∆) of two trapezoid

Algorithms for 3D Printing and Other Manufacturing Methodologies 26

Application: Decomposing an Arrangement of Line
Segments

Application
Constructs the vertical decomposition of a given arrangement.

Algorithms for 3D Printing and Other Manufacturing Methodologies 27

Decomposing an Arrangement of Line Segments: Code� �
t emp la t e <typename Arrangement , typename Kerne l>
vo i d v e r t i c a l _ d e c ompo s i t i o n (Arrangement& ar r , Ke rne l& ke r)
{

t y p ed e f s t d : : p a i r <typename Arrangement : : Ver tex_const_hand le ,
s t d : : p a i r <CGAL : : Object , CGAL : : Object> > Vd_entry ;

// For each v e r t e x i n the arrangment , l o c a t e the f e a t u r e tha t l i e s
// d i r e c t l y be low i t and the f e a t u r e t ha t l i e s d i r e c t l y above i t .
s t d : : l i s t <Vd_entry> v d_ l i s t ;
CGAL : : decompose (a r r , s t d : : b a c k_ i n s e r t e r (v d_ l i s t)) ;

// Go ove r the v e r t i c e s (g i v en i n a s c end i ng l e x i c o g r a p h i c a l xy−o r d e r) ,
// and add segements to the f e a u t r e s be low and above i t .
c on s t typename Ke rne l : : Equal_2 equa l = ke r . equa l_2_ob jec t () ;
typename s td : : l i s t <Vd_entry >: : i t e r a t o r i t , p r ev = v d_ l i s t . end () ;
f o r (i t = v d_ l i s t . b eg i n () ; i t != v d_ l i s t . end () ; ++i t) {

// I f the f e a t u r e above the p r e v i o u s v e r t e x i s not the c u r r e n t v e r t e x ,
// Add a v e r t i c a l segment to the f e a t u r e below the v e r t e x .
typename Arrangement : : Ver tex_cons t_hand le v ;
i f ((p r ev == v d_ l i s t . end ()) | |

!CGAL : : a s s i g n (v , prev−>second . second) | |
! equa l (v−>po i n t () , i t −>f i r s t −>po i n t ()))

add_ve r t i c a l_segment (a r r , a r r . non_const_handle (i t −>f i r s t) , i t −>second . f i r s t , k e r) ;
// Add a v e r t i c a l segment to the f e a t u r e above the v e r t e x .
add_ve r t i c a l_segment (a r r , a r r . non_const_handle (i t −>f i r s t) , i t −>second . second , ke r) ;
p r ev = i t ;

}
}� �
Algorithms for 3D Printing and Other Manufacturing Methodologies 28

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the
cell of A containing q.

q

In degenerate situations the query point can

lie on an edge, or
coincide with a vertex.

Algorithms for 3D Printing and Other Manufacturing Methodologies 29

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the
cell of A containing q.

q

In degenerate situations the query point can

lie on an edge, or
coincide with a vertex.

Algorithms for 3D Printing and Other Manufacturing Methodologies 30

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the
cell of A containing q.

In degenerate situations the query point can

lie on an edge, or
coincide with a vertex.

Algorithms for 3D Printing and Other Manufacturing Methodologies 31

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the
cell of A containing q.

q

In degenerate situations the query point can
lie on an edge, or

coincide with a vertex.

Algorithms for 3D Printing and Other Manufacturing Methodologies 32

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the
cell of A containing q.

q

In degenerate situations the query point can
lie on an edge, or

coincide with a vertex.

Algorithms for 3D Printing and Other Manufacturing Methodologies 33

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the
cell of A containing q.

q

In degenerate situations the query point can
lie on an edge, or
coincide with a vertex.

Algorithms for 3D Printing and Other Manufacturing Methodologies 34

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the
cell of A containing q.

q

In degenerate situations the query point can
lie on an edge, or
coincide with a vertex.

Algorithms for 3D Printing and Other Manufacturing Methodologies 35

Point Location Algorithms

Traditional Point Location Strategies
Hierarchical data structure [Kir83]
Persistent search trees [ST86]
Random Incremental Construction [Mul91, Sei91]

Point-location in Triangulations
Walk along a line [DPT02]
The Delaunay Hierarchy [Dev02]
Jump & Walk [DMZ98, DLM99]

Other algorithms
Entropy based algorithms [Ary01]
Point location using Grid [EKA84]

Algorithms for 3D Printing and Other Manufacturing Methodologies 36

Cgal Point Location Strategies

Naive
Traverse all edges of the arrangement to find the closest.

Walk along line
Walk along a vertical line from infinity.

Trapezoidal map Randomized Incremental-Construction (RIC)
Landmark

Algorithms for 3D Printing and Other Manufacturing Methodologies 37

Walk Along a Line

Start from a known place in the arrangement and walk from there
towards the query point through a straight line.

No preprocessing performed.
No storage space consumed.

The implementation in Cgal:
Start from the unbounded face.
Walk down to the point through a vertical line.
Asymptotically O(n) time.
In practice: quite good, and easy to maintain.

Algorithms for 3D Printing and Other Manufacturing Methodologies 38

Triangulation Point Location

Preprocessing:
Triangulate the planar map.

F Triangles are much simpler than the arbitrary shapes of faces.
F O(n logn) time and O(n) space.
F Retain relations between planar map vertices and triangulation.

Query:
Find the triangle P containing the query point q.

F Walk from an arbitrary vertex.
F O(n) time in the worst case, but O(

√
n) time on average, if the

vertices are distributed uniformly at random.
Find the face in the arrangement that contains the triangle P.

Algorithms for 3D Printing and Other Manufacturing Methodologies 39

Landmark Point Location

Given an arrangement A

Preprocess
Choose the landmarks and locate
them in A .

Store the landmarks in a nearest
neighbor search-structure.

Answer query
Given a query point q

Find the landmark ` closest to q
using the search structure.

F The landmarks are on a grid =⇒
Nearest grid point found in O(1)
time.

“Walk along a line” from ` to q.

q

`

Algorithms for 3D Printing and Other Manufacturing Methodologies 40

Landmark Point Location

Given an arrangement A

Preprocess
Choose the landmarks and locate
them in A .

Store the landmarks in a nearest
neighbor search-structure.

Answer query
Given a query point q

Find the landmark ` closest to q
using the search structure.

F The landmarks are on a grid =⇒
Nearest grid point found in O(1)
time.

“Walk along a line” from ` to q.

q

`

Algorithms for 3D Printing and Other Manufacturing Methodologies 41

Landmark Point Location

Given an arrangement A

Preprocess
Choose the landmarks and locate
them in A .
Store the landmarks in a nearest
neighbor search-structure.

Answer query
Given a query point q

Find the landmark ` closest to q
using the search structure.

F The landmarks are on a grid =⇒
Nearest grid point found in O(1)
time.

“Walk along a line” from ` to q.

q

`

Algorithms for 3D Printing and Other Manufacturing Methodologies 42

Landmark Point Location

Given an arrangement A

Preprocess
Choose the landmarks and locate
them in A .
Store the landmarks in a nearest
neighbor search-structure.

Answer query
Given a query point q

Find the landmark ` closest to q
using the search structure.

F The landmarks are on a grid =⇒
Nearest grid point found in O(1)
time.

“Walk along a line” from ` to q.

q

`

Algorithms for 3D Printing and Other Manufacturing Methodologies 43

Landmark Point Location

Given an arrangement A

Preprocess
Choose the landmarks and locate
them in A .
Store the landmarks in a nearest
neighbor search-structure.

Answer query
Given a query point q
Find the landmark ` closest to q
using the search structure.

F The landmarks are on a grid =⇒
Nearest grid point found in O(1)
time.

“Walk along a line” from ` to q.

q

`

Algorithms for 3D Printing and Other Manufacturing Methodologies 44

Landmark Point Location

Given an arrangement A

Preprocess
Choose the landmarks and locate
them in A .
Store the landmarks in a nearest
neighbor search-structure.

Answer query
Given a query point q
Find the landmark ` closest to q
using the search structure.

F The landmarks are on a grid =⇒
Nearest grid point found in O(1)
time.

“Walk along a line” from ` to q.

q

`

Algorithms for 3D Printing and Other Manufacturing Methodologies 45

Trapezoidal Map
Randomized Incremental-Construction

A — an arrangement.

Preprocess
For each segment in random order.

F Update the trapezoidal map.
F Insert the new trapezoid into a search structure.

O(n logn) time, O(n) space.

Answer query
Given a query point q

Search the trapezoid in the search structure.
Obtain the cell containing the trapezoid.
O(logn) expected time (if the segments were processed in random
order).

Algorithms for 3D Printing and Other Manufacturing Methodologies 46

Trapezoidal Map
Randomized Incremental-Construction

A — an arrangement.
Preprocess

For each segment in random order.

F Update the trapezoidal map.
F Insert the new trapezoid into a search structure.

O(n logn) time, O(n) space.
Answer query

Given a query point q

Search the trapezoid in the search structure.
Obtain the cell containing the trapezoid.
O(logn) expected time (if the segments were processed in random
order).

Algorithms for 3D Printing and Other Manufacturing Methodologies 47

Trapezoidal Map
Randomized Incremental-Construction

A — an arrangement.
Preprocess

For each segment in random order.
F Update the trapezoidal map.

F Insert the new trapezoid into a search structure.
O(n logn) time, O(n) space.

Answer query
Given a query point q

Search the trapezoid in the search structure.
Obtain the cell containing the trapezoid.
O(logn) expected time (if the segments were processed in random
order).

Algorithms for 3D Printing and Other Manufacturing Methodologies 48

Trapezoidal Map
Randomized Incremental-Construction

A — an arrangement.
Preprocess

For each segment in random order.
F Update the trapezoidal map.
F Insert the new trapezoid into a search structure.

O(n logn) time, O(n) space.

Answer query
Given a query point q

Search the trapezoid in the search structure.
Obtain the cell containing the trapezoid.
O(logn) expected time (if the segments were processed in random
order).

Algorithms for 3D Printing and Other Manufacturing Methodologies 49

Trapezoidal Map
Randomized Incremental-Construction

A — an arrangement.
Preprocess

For each segment in random order.
F Update the trapezoidal map.
F Insert the new trapezoid into a search structure.

O(n logn) time, O(n) space.
Answer query

Given a query point q

Search the trapezoid in the search structure.
Obtain the cell containing the trapezoid.
O(logn) expected time (if the segments were processed in random
order).

Algorithms for 3D Printing and Other Manufacturing Methodologies 50

Trapezoidal Map
Randomized Incremental-Construction

A — an arrangement.
Preprocess

For each segment in random order.
F Update the trapezoidal map.
F Insert the new trapezoid into a search structure.

O(n logn) time, O(n) space.
Answer query

Given a query point q
Search the trapezoid in the search structure.

Obtain the cell containing the trapezoid.
O(logn) expected time (if the segments were processed in random
order).

Algorithms for 3D Printing and Other Manufacturing Methodologies 51

Trapezoidal Map
Randomized Incremental-Construction

A — an arrangement.
Preprocess

For each segment in random order.
F Update the trapezoidal map.
F Insert the new trapezoid into a search structure.

O(n logn) time, O(n) space.
Answer query

Given a query point q
Search the trapezoid in the search structure.
Obtain the cell containing the trapezoid.
O(logn) expected time (if the segments were processed in random
order).

Algorithms for 3D Printing and Other Manufacturing Methodologies 52

Point Location Complexity

Requirements:
Fast query processing.
Reasonably fast preprocessing.
Small space data structure.

Naive Walk RIC Landmarks Triangulat PST
Preprocess time none none O(n logn) O(k logk) O(n logn) O(n logn)
Memory space none none O(n) O(k) O(n) O(n logn)(∗)

Query time bad reasonable good good quite good good
Code simple quite simple complicated quite simple modular complicated
Walk — Walk along a line RIC — Random Incremental Construction based on trapezoidal decomposition
Triangulat — Triangulation PST — Persistent Search Tree
k — number of landmarks
(*) Can be reduced to O(n)

Algorithms for 3D Printing and Other Manufacturing Methodologies 53

Point Location: Print
Print a polymorphic object.� �
t emp la t e <typename Arrangement_>
vo i d p r i n t_p o i n t_ l o c a t i o n (con s t typename Arrangement_ : : Point_2& q ,

CGAL : : A r r_po i n t_ l o c a t i o n_ r e s u l t <Arrangement_ >: : Type& ob j)
{

t y p ed e f Arrangement_ Arrangement
t y p ed e f typename Arrangement : : Ver tex_cons t_hand le Ver tex_cons t_hand le ;
t y p ed e f typename Arrangement : : Ha l f edge_cons t_hand l e Ha l f edge_cons t_hand l e ;
t y p ed e f typename Arrangement : : Face_const_handle Face_const_handle ;

con s t Ver tex_cons t_hand le ∗ v ;
con s t Ha l f edge_cons t_hand l e ∗ e ;
con s t Face_const_handle ∗ f ;

s t d : : cout << "The␣ po i n t ␣ (" << q << ") ␣ i s ␣ l o c a t e d ␣" ;
i f ((f = boos t : : get<Face_const_handle >(&ob j))) // l o c a t e d i n s i d e a f a c e

s td : : cout << " i n s i d e ␣"
<< (((∗ f)−>is_unbounded ()) ? " the ␣unbounded " : " a␣bounded ")
<< "␣ f a c e . " << s td : : e nd l ;

e l s e i f ((e = boos t : : get<Hal fedge_const_hand le >(&ob j))) // l o c a t e d on an edge
s td : : cout << "on␣an␣ edge : ␣" << (∗ e)−>curve () << s td : : e nd l ;

e l s e i f ((v = boos t : : get<Vertex_const_hand le >(&ob j))) // l o c a t e d on a v e r t e x
s td : : cout << "on␣" << (((∗ v)−> i s _ i s o l a t e d ()) ? " an␣ i s o l a t e d " : " a ")

<< "␣ v e r t e x : ␣" << (∗ v)−>po i n t () << s td : : e nd l ;
e l s e CGAL_error_msg (" I n v a l i d ␣ o b j e c t . ") ; // t h i s shou l d neve r happen

}� �
Algorithms for 3D Printing and Other Manufacturing Methodologies 54

Point Location: Locate� �
t emp la t e <typename Po in tLoca t i on>
vo i d l o c a t e_po i n t (con s t Po i n tLo ca t i on& pl ,

con s t typename Po i n t_ l o c a t i o n : : Arrangement_2 : : Point_2& q)
{

t y p ed e f Po i n tLo ca t i o n Po i n t_ l o c a t i o n ;
t y p ed e f typename Po i n t_ l o c a t i o n : : Arrangement_2 Arrangement_2 ;
typename CGAL : : A r r_po i n t_ l o c a t i o n_ r e s u l t <Arrangement_2 >: : Type ob j = p l . l o c a t e (q) ;

// P r i n t the r e s u l t .
p r i n t_po i n t_ l o c a t i o n <Arrangement_2>(q , ob j) ;

}� �

q1
q2 q3

q4 q5

q6

Algorithms for 3D Printing and Other Manufacturing Methodologies 55

Point Location: Example� �
// F i l e : e x_po i n t_ l o c a t i o n . cpp

#i n c l u d e <CGAL/ b a s i c . h>
#i n c l u d e <CGAL/ Ar r_na i v e_po i n t_ l o c a t i o n . h>
#i n c l u d e <CGAL/Ar r_ l andmark s_po in t_ loca t i on . h>

#i n c l u d e " a r r_ i n e xa c t_con s t r u c t i o n_s egmen t s . h"
#i n c l u d e " p o i n t _ l o c a t i o n_ u t i l s . h"

t y p ed e f CGAL : : A r r_na i v e_po i n t_ l o ca t i on<Arrangement_2> Naive_p l ;
t y p ed e f CGAL : : Ar r_ landmarks_po in t_ loca t i on<Arrangement_2> Landmarks_pl ;

i n t main ()
{

// Cons t r u c t the ar rangement .
Arrangement_2 a r r ;
con s t ruc t_segment s_a r r (a r r) ;

// Perform some po in t− l o c a t i o n q u e r i e s u s i n g the na i v e s t r a t e g y .
Na ive_p l na i v e_p l (a r r) ;
l o c a t e_po i n t (na i ve_p l , Point_2 (1 , 4)) ; // q1

// Attach the landmarks o b j e c t to the ar rangement and per fo rm q u e r i e s .
Landmarks_pl landmarks_p l ;
l andmarks_p l . a t t a ch (a r r) ;
l o c a t e_po i n t (landmarks_pl , Point_2 (3 , 2)) ; // q4

r e t u r n 0 ;
}� �
Algorithms for 3D Printing and Other Manufacturing Methodologies 56

Outline

1 2D Arrangements
Definitions & Complexity
Representation
Queries

Vertical Decomposition
Point Location Queries

The Zone Computation Algorithmic Framework
The Plane Sweep Algorithmic Framework
Arrangement of Unbounded Curves
Literature

Algorithms for 3D Printing and Other Manufacturing Methodologies 57

The Zone of Curves in Arrangements

Definition (Zone)
Given an arrangement of curves A = A (C) in the plane, the zone of an
additional curve γ /∈ C in A is the union of the features of A , whose
closure is intersected by γ.

γ The zone of a line γ in an arrangement of
lines.

Algorithms for 3D Printing and Other Manufacturing Methodologies 58

The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone
consists of.

Theorem (Zone Complexity)
The complexity of the zone of a line in an arrangement of n lines in the
plane is O(n). It can be computed in O(n) time.

γ Vertices Edges Faces Total
Number 1 6 6 13
Complexity 1 17 41 53

Algorithms for 3D Printing and Other Manufacturing Methodologies 59

The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone
consists of.

Theorem (Zone Complexity)
The complexity of the zone of a line in an arrangement of n lines in the
plane is O(n). It can be computed in O(n) time.

γ Vertices Edges Faces Total
Number 1 6 6 13
Complexity 1 17 41 53

Algorithms for 3D Printing and Other Manufacturing Methodologies 60

The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone
consists of.

Theorem (Zone Complexity)
The complexity of the zone of a line in an arrangement of n lines in the
plane is O(n). It can be computed in O(n) time.

u

w

γ Vertices Edges Faces Total
Number 1 7 7 15
Complexity 1 21 53 68

Algorithms for 3D Printing and Other Manufacturing Methodologies 61

The Zone of lines in arrangement of Lines Complexity
The number of left bounding edges of the faces in the zone of γ is
≤ 3n
By symmetry, the number of right bounding edges is ≤ 3n as well
Proof by induction on n
` is the line that has the rightmost intersection with γ

uw is a new left bounding edge—this adds 1
` splits a left bounding edge at u and w—this adds ≤ 2

γ

The proof assumes general
position

It can be extended to
handle degeneracies.

Algorithms for 3D Printing and Other Manufacturing Methodologies 62

The Zone of lines in arrangement of Lines Complexity
The number of left bounding edges of the faces in the zone of γ is
≤ 3n
By symmetry, the number of right bounding edges is ≤ 3n as well
Proof by induction on n
` is the line that has the rightmost intersection with γ

uw is a new left bounding edge—this adds 1
` splits a left bounding edge at u and w—this adds ≤ 2

`

γ

The proof assumes general
position

It can be extended to
handle degeneracies.

Algorithms for 3D Printing and Other Manufacturing Methodologies 63

The Zone of lines in arrangement of Lines Complexity
The number of left bounding edges of the faces in the zone of γ is
≤ 3n
By symmetry, the number of right bounding edges is ≤ 3n as well
Proof by induction on n
` is the line that has the rightmost intersection with γ

uw is a new left bounding edge—this adds 1
` splits a left bounding edge at u and w—this adds ≤ 2

`
u

w

γ

The proof assumes general
position

It can be extended to
handle degeneracies.

Algorithms for 3D Printing and Other Manufacturing Methodologies 64

Zone Application: Incremental Insertion

Definition (Incremental Insertion)
Given an x -monotone curve γ and an arrangement A induced by a set of
curves C , where all curves in {γ}∪C are well behaved, insert γ into A .

Find the location of one endpoint of the curve γ in A .
Traverse the zone of the curve γ.

Each time γ crosses an existing vertex v split γ at v into subcurves.
Each time γ crosses an existing edge e split γ and e into subcurves,
respectively.

Algorithms for 3D Printing and Other Manufacturing Methodologies 65

The Zone Computation Algorithmic Framework

Arrangement_zone_2 class template
Computes the zone of an arrangement.
Is part of 2D Arrangements package.
Is parameterized with a zone visitor

Models the concept ZoneV i s i t o r_2
Serves as the foundation of a family of concrete operations

Inserting a single curve into an arrangement
F The visitor modifies the arrangement operand as the computation

progresses.
Determining whether a query curve intersects with the curves of an
arrangement.
Determining whether a query curve passes through an existing
arrangement vertex.

F If the answer is positive, the process can terminate as soon as the
vertex is located.

Algorithms for 3D Printing and Other Manufacturing Methodologies 66

Incremental Insertion� �
// F i l e : e x_ i n c r emen t a l _ i n s e r t i o n . cpp

#i n c l u d e <CGAL/ b a s i c . h>
#i n c l u d e <CGAL/ Ar r_na i v e_po i n t_ l o c a t i o n . h>

#i n c l u d e " a r r_exac t_con s t r u c t i on_segmen t s . h"
#i n c l u d e " a r r _ p r i n t . h"

i n t main ()
{

// Cons t r u c t the ar rangement o f f i v e l i n e segments .
Arrangement_2 a r r ;
Na ive_p l p l (a r r) ;
CGAL : : i n s e r t_non_ i n t e r s e c t i n g_ cu r v e (a r r , Segment_2 (Point_2 (1 , 0) , Point_2 (2 , 4)) , p l) ;
CGAL : : i n s e r t_non_ i n t e r s e c t i n g_ cu r v e (a r r , Segment_2 (Point_2 (5 , 0) , Point_2 (5 , 5))) ;
CGAL : : i n s e r t (a r r , Segment_2 (Point_2 (1 , 0) , Point_2 (5 , 3)) , p l) ;
CGAL : : i n s e r t (a r r , Segment_2 (Point_2 (0 , 2) , Point_2 (6 , 0))) ;
CGAL : : i n s e r t (a r r , Segment_2 (Point_2 (3 , 0) , Point_2 (5 , 5)) , p l) ;
p r i n t_a r r angemen t_s i z e (a r r) ;
r e t u r n 0 ;

}� �
s1

s2

s3

s4
s5

Algorithms for 3D Printing and Other Manufacturing Methodologies 67

Outline

1 2D Arrangements
Definitions & Complexity
Representation
Queries

Vertical Decomposition
Point Location Queries

The Zone Computation Algorithmic Framework
The Plane Sweep Algorithmic Framework
Arrangement of Unbounded Curves
Literature

Algorithms for 3D Printing and Other Manufacturing Methodologies 68

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 69

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 70

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 71

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 72

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 73

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 74

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 75

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 76

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 77

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 78

The Plane Sweep Algorithmic Framework
[BO79]

Initialize an event queue with all endpoints sorted lexicographically
While the queue is not empty, extract and process an event

Remove all x -monotone curves to the left of the current event point
from a sorted container of curves
Insert all x -monotone curves to the right of the current event point
into the curve container
Compute intersections between existing curves and newly inserted
curves, and insert them into the event queue

Algorithms for 3D Printing and Other Manufacturing Methodologies 79

Plane Sweep: Event Queue

Implemented as a balanced binary search tree (say red-black tree)
Operations, m—number of events.

Fetching the next event—O(logm) amortized time.
Testing whether an event exists—(O(logm) amortized time.

F Cannot use a heap!
Inserting an event—O(logm) amortized time.

Algorithms for 3D Printing and Other Manufacturing Methodologies 80

Plane Sweep: Status Structure

Is a dynamic one-dimensional arrangement along the sweep line.
Implemented as a balanced binary search tree

Interior nodes —- guide the search, store the segment from the
rightmost leaf in its left subtree.
Leaf nodes — segments.

Operations—O(logn) amortized time.

s1

s2

s3
s4

s5
`

s3

s1

s1 s2

s2 s3

s4

s4 s5

Algorithms for 3D Printing and Other Manufacturing Methodologies 81

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 82

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 83

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 84

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 85

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 86

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 87

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 88

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 89

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 90

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 91

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 92

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 93

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 94

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 95

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 96

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 97

Plane Sweep Complexity
Theorem
All points of intersection between the curves in C can be reported in
O((n+k) logn) time and O(n) space.

C—a set of n x -monotone curves in the plane.
k—the number of intersection points.
Constructing the event queue takes O(n logn) time.
p—an event

p is fetched and removed from the event queue.
p is handled once.
If p does not have right curves
≤ 1 event is generated.

If p has right curves
≤ 2 events are generated.

Algorithms for 3D Printing and Other Manufacturing Methodologies 98

Plane Sweep Space Complexity

The status-structure size is in O(n)
The event-queue size is definitely at most 2n+k
It can be shown that the event-queue size is in O(n log2 n)
The event-queue size can be kept linear.

Points of intersections between pairs of curves that are not adjacent on
the sweep line are deleted from the event queue.
It increases the time complexity but only by a constant factor

Algorithms for 3D Printing and Other Manufacturing Methodologies 99

Aggregate Insertion� �
// F i l e : e x_agg r e g a t e d_ i n s e r t i o n . cpp

#i n c l u d e " a r r_exac t_con s t r u c t i on_segmen t s . h"
#i n c l u d e " a r r _ p r i n t . h"

i n t main ()
{

// Agg r ega t e l y c o n s t r u c t the ar rangement o f f i v e l i n e segments .
Segment_2 segments [] = {Segment_2 (Point_2 (1 , 0) , Point_2 (2 , 4)) ,

Segment_2 (Point_2 (5 , 0) , Point_2 (5 , 5)) ,
Segment_2 (Point_2 (1 , 0) , Point_2 (5 , 3)) ,
Segment_2 (Point_2 (0 , 2) , Point_2 (6 , 0)) ,
Segment_2 (Point_2 (3 , 0) , Point_2 (5 , 5)) } ;

Arrangement_2 a r r ;
CGAL : : i n s e r t (a r r , segments , segments + s i z e o f (segments)/ s i z e o f (Segment_2)) ;
p r i n t_a r r angemen t_s i z e (a r r) ;
r e t u r n 0 ;

}� �
s1

s2

s3

s4
s5

Algorithms for 3D Printing and Other Manufacturing Methodologies 100

Outline

1 2D Arrangements
Definitions & Complexity
Representation
Queries

Vertical Decomposition
Point Location Queries

The Zone Computation Algorithmic Framework
The Plane Sweep Algorithmic Framework
Arrangement of Unbounded Curves
Literature

Algorithms for 3D Printing and Other Manufacturing Methodologies 101

Handling Enpoints at Infinity
Clipping the unbounded curves Using an infimaximal box

[Mehlhorn & Seel, 2003]

Simple, the sweep algorithm is
unchanged

Not simple
May require large bit-lengths
Designed for linear objects

Not online Online (no need for clipping)

The resulting arrangement has a
single unbounded face

The resulting arrangement has
multiple unbounded faces (and
a single ficticious face)

Algorithms for 3D Printing and Other Manufacturing Methodologies 102

Arrangement of (Unbounded) Lines

vbl

vtl

vbr

vtr

v1

v8

v2 v7

v3

v6

v4

v5

Algorithms for 3D Printing and Other Manufacturing Methodologies 103

Vertices of Unbounded Arrangement
There are 4 types of unbounded-arrangement vertices

1 A “normal” vertex associated with a point in IR2.
2 A vertex that represents an unbounded end of an x -monotone curve

that approaches x =−∞ or x = ∞.
3 A vertex that represents the unbounded end of a vertical line or ray or

of a curve with a vertical asymptote (finite x -coordinate and an
unbounded y -coordinate).

4 A fictitious vertices that represents one of 4 corners of the imaginary
bounding rectangle.

A vertex at infinity of Type 2 or Type 3 always
has three incident edges:

1 edge associated with an x -monotone curve, and
2 fictitious edges connecting the vertex to its adjacent
vertices at infinity or the corners of the bounding
rectangle.

Algorithms for 3D Printing and Other Manufacturing Methodologies 104

Sweeping Unbounded Curves

Curves may not have finite endpoints
Initializing the event queue requires special treatment

Intersection events are associated with finite points

xy = 1, x = 0, and y = 0

Algorithms for 3D Printing and Other Manufacturing Methodologies 105

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 106

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 107

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 108

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 109

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 110

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 111

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 112

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 113

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 114

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 115

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 116

The Augmented Sweep Line for Unbounded Curves

Categorize all curve ends
Initialize an event queue with all curve ends sorted lex.

Ends of unbounded curves do not coincide
Comparison between events are available through the traits

While the queue is not empty proceed as usual
No need to look for unbounded events in the status line!

Algorithms for 3D Printing and Other Manufacturing Methodologies 117

Outline

1 2D Arrangements
Definitions & Complexity
Representation
Queries

Vertical Decomposition
Point Location Queries

The Zone Computation Algorithmic Framework
The Plane Sweep Algorithmic Framework
Arrangement of Unbounded Curves
Literature

Algorithms for 3D Printing and Other Manufacturing Methodologies 118

Arrangement Bibliography I
Boris Aronov and Dmitriy Drusvyatskiy
Complexity of a Single Face in an Arrangement of s-Intersecting Curves
arXiv:1108.4336, 2011

Jon Louis Bentley and Thomas Ottmann.
Algorithms for Reporting and Counting Geometric Intersections.
IEEE Transactions on Computers, 28(9): 643–647, 1979.

Eric Berberich, Efi Fogel, Dan Halperin, Michael Kerber, and Ophir Setter.
Arrangements on parametric surfaces ii: Concretizations and applications, 2009.
Mathematics in Computer Science, 4(1):67–91,2010.

Ulrich Finke and Klaus H. Hinrichs.
Overlaying simply connected planar subdivisions in linear time.
In Proceedings of 11th Annual ACM Symposium on Computational Geometry (SoCG), pages 119–126. Association for
Computing Machinery (ACM) Press, 1995.

Ron Wein, Efi Fogel, Baruch Zukerman, Dan Halperin, and Eric Berberich.
2D Arrangements.
In Cgal Editorial Board, editor, Cgal User and Reference Manual. 4.4 edition, 2014.
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Arrangement2.

David G. Kirkpatrick.
Optimal search in planar subdivisions.
SIAM Journal on Computing. 12(1):28–35,1983.

N. Sarnak and Robert E. Tarjan.
Planar point location using persistent search trees.
Communications of the ACM. 29(7):669–679, 1986.

Kentan Mulmuley.
A fast planar partition algorithm, I.
Journal of Symbolic Computation. 10(3-4):253–280,1990.

Algorithms for 3D Printing and Other Manufacturing Methodologies 119

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Arrangement2

Arrangement Bibliography II
Raimund Seidel
A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating
Polygons.
Computational Geometry: Theory and Applications. 1(1):51–64, 1991.

Olivier Devillers, Sylvain Pion, and Monique Teillaud.
Walking in a triangulation.
International Journal of Foundations of Computer Science. 13:181–199,2002.

Luc Devroye Christophe, Christophe Lemaire, and Jean-Michel Moreau.
Fast Delaunay Point-Location with Search Structures.
In Proceedings of 11th Canadian Conference on Computational Geometry. Pages 136–141, 1999.

Luc Devroye, Ernst Peter Mücke, and Binhai Zhu.
A Note on Point Location in Delaunay Triangulations of Random Points.
Algorithmica. 22:477–482, 1998.

Olivier Devillers.
The Delaunay hierarchy.
International Journal of Foundations of Computer Science. 13:163-180, 2002.

Sunil Arya
A Simple Entropy-Based Algorithm for Planar Point Location.
ACM Transactions on Graphics. 3(2), 2007

Masato Edahiro, Iwao Kokubo, And Takao Asano
A new Point-Location Algorithm and its Practical Efficiency: comparison with existing algorithms
ACM Transactions on Graphics. 3(2):86–109, 1984.

Micha Sharir and Pankaj Kumar Agarwal
Davenport-Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, New York, NY, 1995.

Algorithms for 3D Printing and Other Manufacturing Methodologies 120

Arrangement Bibliography III

Bernard Chazelle, Leonidas J. Guibas, and Der-Tsai Le.
The Power of Geometric Duality.
BIT, 25:76–90, 1985.

Herbert Edelsbrunner,
Algorithms in Combinatorial Geometry,
Springer, Heidelberg, 1987.

Mark de Berg, Mark van Kreveld, Mark H. Overmars, and Otfried Cheong.
Computational Geometry: Algorithms and Applications.
Springer, 3rd edition, 2008.

Herbert Edelsbrunner, Raimund Seidel, and Micha Sharir.
On the Zone Theorem for Hyperplane Arrangements.
SIAM Journal on Computing. 22(2):418–429,1993.

Silvio Micali and Vijay V. Vazirani.
An O(

√
|V ||E |) Algorithm for Finding Maximum Matching in General Graphs.

Proceedings of 21st Annual IEEE Symposium on the Foundations of Computer Science, pages 17–27, 1980.

Jack Edmonds.
Paths, Trees, and Flowers.
Canadian Journal of Mathematics, 17:449–467,1965.

Robert Endre Tarjan.
Data structures and network algorithms, Society for Industrial and Applied Mathematics (SIAM), 1983.

Marcin Mucha and Piotr Sankowski.
Maximum Matchings via Gaussian Elimination
Proceedings of 45th Annual IEEE Symposium on the Foundations of Computer Science, pages 248–255, 2004.

Algorithms for 3D Printing and Other Manufacturing Methodologies 121

Arrangement Bibliography IV

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine.
The Boost Graph Library.
Addison-Wesley, 2002

Efi Fogel, Ron Wein, and Dan Halperin.
Cgal Arrangements and Their Applications, A Step-by-Step Guide.
Springer, 2012.

Algorithms for 3D Printing and Other Manufacturing Methodologies 122

	2D Arrangements
	Definitions & Complexity
	Representation
	Queries
	The Zone Computation Algorithmic Framework
	The Plane Sweep Algorithmic Framework
	Arrangement of Unbounded Curves
	Literature

