Algorithms for 3D Printing and Other Manufacturing Methodologies

Efi Fogel

2D Arrangements Apr. 24th, 2017

Outline

2D Arrangements

- Definitions & Complexity
- Representation
- Queries
 - Vertical Decomposition
 Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Outline

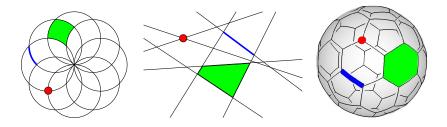
2D Arrangements

- Definitions & Complexity
- Representation
- Queries
 - Vertical Decomposition
 - Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Two Dimensional Arrangements

Definition (Arrangement)

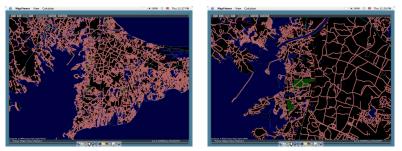
Given a collection \mathscr{C} of curves on a surface, the arrangement $\mathscr{A}(\mathscr{C})$ is the partition of the surface into vertices, edges and faces induced by the curves of \mathscr{C} .



An arrangementAn arrangement of lines in
of circles in the the plane.An arrangement
of great-circle
arcs on a sphere.

Arrangement Background

- Arrangements have numerous applications
 - robot motion planning, computer vision, GIS, optimization, computational molecular biology



A planar map of the Boston area showing the top of the arm of cape cod.

Raw data comes from the US Census 2000 TIGER/line data files

Arrangement 2D Complexity

Definition (Well Behaved Curves)

Curves in a set $\mathscr C$ are well behaved, if each pair of curves in $\mathscr C$ intersect at most some constant number of times.

Theorem (Arrangement in \mathbb{R}^2)

The maximum combinatorial complexity of an arrangement of n well-behaved curves in the plane is $\Theta(n^2)$.

The complexity of arrangements induced by *n* non-parallel lines is $\Omega(n^2)$.

Arrangement dD Complexity

Definition (Hyperplane)

A hyperplane is the set of solutions to a single equation AX = c, where A and X are vectors and c is some constant.

A hyperplane is any codimension-1 vector subspace of a vector space.

Definition (Hypersurface)

A hypersurface is the set of solutions to a single equation $f(x_1, x_2, ..., x_n) = 0.$

Theorem (Arrangement in \mathbb{R}^d)

The maximum combinatorial complexity of an arrangement of n well-behaved (hyper)surfaces in \mathbb{R}^d is $\Theta(n^d)$.

The complexity of arrangements induced by *n* non-parallel hyperplanes is $\Omega(n^d)$.

Planar Maps

Definition (Planar Graph)

A planar graph is a graph that can be embedded in the plane.

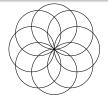
Definition (Planar Map)

A planar map is the embedding of a planar graph in the plane. It is a subdivision of the plane into vertices, (bounded) edges, and faces.

Theorem (Euler Formula)

Let v, e, and f be the number of vertices, edges, and faces (including the unbounded face) of a planar map, then v - e + f = 2.

8 circles



vertices — 25

edges — 56

faces — 33 (including the unbounded face) (

Algorithms for 3D Printing and Other Manufacturing Methodologies

Surface Maps

Planar maps generalize to surfaces!

Definition (genus)

A topologically invariant property of a surface defined as the largest number of nonintersecting simple closed curves that can be drawn on the surface without separating it.

Theorem (Euler Formula)

Let v, e, and f be the number of vertices, edges, and faces of a map embedded on a surface with genus g, then v - e + f = 2 - 2g.

If each face is incident to at least 3 edges \Longrightarrow $3f \leq 2e$

$$3v - 3e + 3f = 6 - 6g \le 3v - 3e + 2e$$

$$e \leq 3v - 6 + 6g$$

In a planar triangulation e = 3v - 6, f = 2v - 4

Outline

2D Arrangements

• Definitions & Complexity

Representation

- Queries
 - Vertical Decomposition
 - Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

The $\rm CGAL$ Arrangement_on_surface_2 Package

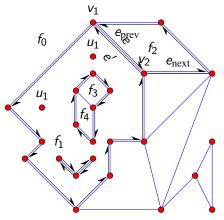
- Constructs, maintains, modifies, traverses, queries, and presents arrangements on two-dimensional parametric surfaces.
- Complete and Robust
 - All inputs are handled correctly (including degenerate input).
 - Exact number types are used to achieve robustness.
- Generic easy to interface, extend, and adapt
- Modular geometric and topological aspects are separated
- Supports among the others:
 - various point location strategies
 - zone-construction paradigm
 - sweep-line paradigm
 - ★ vertical decomposition
 - ★ overlay computation
 - ★ batched point location
- \bullet Part of the CGAL basic library

Arrangement_2<Traits , Dcel>

- Is the main component in the 2D Arrangements package.
- An instance of this class template represents 2D arrangements.
- The representation of the arrangements and the various geometric algorithms that operate on them are separated.
- The topological and geometric aspects are separated.
 - The Traits template-parameter must be substituted by a model of a geometry-traits concept, e.g., *ArrangementBasicTraits_2*.
 - ★ Defines the type X_monotone_curve_2 that represents x-monotone curves.
 - ★ Defines the type Point_2 that represents two-dimensional points.
 - * Supports basic geometric predicates on these types.
 - The Dcel template-parameter must be substituted by a model of the *ArrangementDcel* concept, e.g., Arr_default_dcel<Traits>.

The Doubly-Connected Edge List

- One of a family of combinatorial data-structures called the *halfedge data-structures*.
- Represents each edge using a pair of directed *halfedges*.
- Maintains incidence relations among cells of 0 (vertex), 1 (edge), and 2 (face) dimensions.



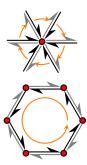
- The target vertex of a halfedge and the halefedge are incident to each other.
- The source and target vertices of a halfedge are adjacent.

The Doubly-Connected Edge List Components

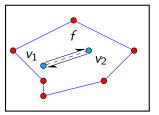
- Vertex
 - An incident halfedge pointing at the vertex.
- Halfedge
 - The opposite halfedge.
 - The previous halfedge in the component boundary.
 - The next halfedge in the component boundary.
 - The target vertex of the halfedge.
 - The incident face.
- Face
 - $\bullet\,$ An incident halfedge on the outer ${\rm CcB}.$
 - $\bullet\,$ An incident halfedge on each inner $\rm CCB.$
- \bullet Connected component of the boundary ($\rm CCB)$
 - The circular chains of halfedges around faces.

Arrangement Representation

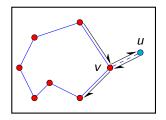
- The halfedges incident to a vertex form a circular list.
- The halfedges are clockwise oriented around the vertex.
- The halfedges around faces form circular chains.
- All halfedges of a chain are incident to the same face.
- The halfedges are counterclockwise oriented along the boundary.
- Geometric interpretation is added by classes built on top of the halfedge data-structure.



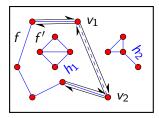
Modifying the Arrangement



Inserting a curve that induces
a new hole inside the face f,
arr.insert_in_face_interior(c,f).



Inserting a curve from an existing vertex u
that corresponds to one of its endpoints,
insert_from_left_vertex(c,v),
insert_from_right_vertex(c,v).



Inserting an x-monotone curve, the endpoints of which correspond to existing vertices v_1 and v_2 , insert_at_vertices(c,v1,v2).

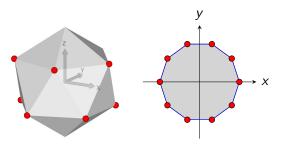
- The new pair of halfedges close a new face f'.
- The hole h_1 , which belonged to f before the insertion, becomes a hole in this new face.

Application: Obtaining Silhouettes of Polytopes

Application

Given a convex polytope P obtain the outline of the shadow of P cast on the xy-plane, where the scene is illuminated by a light source at infinity directed along the negative z-axis.

- The silhouette is represented as an arrangement with two faces:
 - an unbounded face and
 - a single hole inside the unbounded face.



An icosahedron and its silhouette.

Application: Obtaining Silhouettes of Polytopes: Insertion

- Insert an edge into the arrangement only once to avoid overlaps.
 - Maintain a set of handles to polytope edges the projection of which have already been inserted into the arrangement.
 - Implemented with the std :: set data-structure.
 - * Requires the provision of a model of the *StrictWeakOrdering*.
 - ★ A functor that compares handles:

```
struct Less_than_handle {
  template <typename Type>
  bool operator()(Type s1, Type s2) const { return (&(*s1) < &(*s2)); }
};</pre>
```

 ${\tt std}::{\tt set}{\tt <Polyhedron_halfedge_const_handle}\,,\ {\tt Less_than_handle}{\tt >}$

- Determine the appropriate insertion routines.
 - Maintain a map that maps polyhedron vertices to corresponding arrangement vertices.
 - Implemented with the std :: map data-structure.

Application: Obtaining Silhouettes of Polytopes: Construction

Obtain the arrangement $\mathscr A$ that represents the silhouette of a Convex Polytope h
1. Construct the input convex polytope <i>P</i> .
2. Compute the normals to all facets of <i>P</i> .
3. for each facet f of P
4. if <i>f</i> is facing upwards (has a positive <i>z</i> component)
5. for each edge <i>e</i> on the boundary of <i>f</i>
6. if the projection of e hasn't been inserted yet into \mathscr{A}
7. Insert the projection of e into \mathscr{A} .

Computes the normal to a facet.

Traversing the Halfedges Incident to an Arrangement Vertex

Print all the halfedges incident to a vertex.

```
template <typename Arrangement>
void print_incident_halfedges(typename Arrangement::Vertex_const_handle v)
{
    if (v->is_isolated()) {
        std::cout << "The_vertex_u(" << v->point() << ")_uis_uisolated" << std::endl;
        return;
    }
    std::cout << "The_uneighbors_uof_uthe_vertex_u(" << v->point() << ")_uare:";
    typename Arrangement::Halfedge_around_vertex_const_circulator first, curr;
    first = curr = v->incident_halfedges();
    do std::cout << "u(" << curr->source()->point() << ")";
    while (++curr != first);
    std::cout << std::endl;
}</pre>
```


Traversing the Halfedges of an Arrangement CCB

Print all x-monotone curves along a given CCB

- he->curve() is equivalent to he->twin()->curve(),
- he->source() is equivalent to he->twin()->target(), and
- he->target() is equivalent to he->twin()->source().

Traversing the CCBs of an Arrangement Face

Print the outer and inner boundaries of a face.

```
template <typename Arrangement>
void print face(typename Arrangement:: Face const handle f)
 // Print the outer boundary.
  if (f->is unbounded()) std::cout << "Unbounded_face._" << std::endl;
  else {
    std::cout << "Outer_boundary:..":
    print_ccb <Arrangement >(f->outer_ccb());
 // Print the boundary of each of the holes.
  size t index = 1;
 typename Arrangement:: Hole const iterator hole;
  for (hole = f \rightarrow boles begin (); hole != f \rightarrow boles d(); ++hole, ++index) {
    std::cout << "......Hole.#" << index << ":..";
    print ccb<Arrangement>(*hole);
 // Print the isolated vertices.
 typename Arrangement::lsolated_vertex_const_iterator iv;
  for (iv = f->isolated_vertices_begin(), index = 1;
       iv != f->isolated vertices end(); ++iv, ++index)
    std::cout << ".....lsolated.vertex.#" << index << ":..."
              << "(" << iv -> point() << ")" << std :: endl:
```


Traversing an Arrangement

Print all the cells of an arrangement.

```
template <typename Arrangement>
void print arrangement (const Arrangement& arr)
  CGAL precondition(arr.is valid()):
 // Print the arrangement vertices.
 typename Arrangement:: Vertex_const_iterator vit;
  std::cout << arr.number of vertices() << ",,vertices:" << std::endl;
  for (vit = arr.vertices begin(); vit != arr.vertices end(); ++vit) {
    std :: cout << "(" << vit ->point() << ")";</pre>
    if (vit->is isolated()) std::cout << "____lsolated." << std::endl;
    else std::cout << "____degree_" << vit->degree() << std::endl;
 // Print the arrangement edges.
 typename Arrangement :: Edge_const_iterator eit;
  std :: cout << arr.number_of_edges() << "uedges:" << std :: endl;</pre>
  for (eit = arr.edges begin(); eit != arr.edges end(); ++eit)
    std :: cout << "[" << eit ->curve() << "]" << std :: endl;
 // Print the arrangement faces.
 typename Arrangement:: Face const iterator fit;
  std::cout << arr.number of faces() << "__faces:" << std::endl:</pre>
  for (fit = arr.faces begin(); fit != arr.faces end(); ++fit)
    print face < Arrangement > (fit);
```


Outline

2D Arrangements

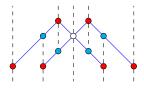
- Definitions & Complexity
- Representation

Queries

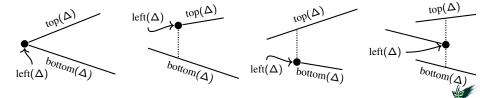
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Vertical Decomposition

- Is a refinement of the original subdivision \mathscr{A} of n edges.
- In the plane
 - Contains *O*(*n*) pseudo trapezoids (triangles and trapezoids).
 - A pseudo trapezoid is determined by
 - * 2 vertices left(Δ) and right(Δ), and
 - * 2 segments top(Δ) and bottom(Δ).



• Generalizes to higher dimensions and arrangements induces by well behaved objects.



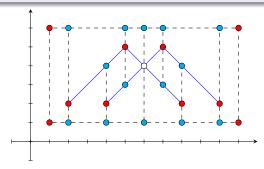
Vertical Decomposition Complexity

- *R*—a bounding rectangle
- S—a set of n interior disjoint line segments
- $\mathcal{T}(S)$ —the trapezoidal map of S
- $\mathcal{T}(S)$ is a planar map with v vertices, e edges, and f faces
- A vertex of $\mathscr{T}(S)$ is either
 - a vertex of R,
 - an endpoint of a segment in S, or
 - the point where the vertical extension hits
- $v \le 4 + 2n + 2(2n) = 6n + 4$
- $f \leq 3n+1$
 - The lower left corner of R is left(Δ) of one trapezoid
 - The right endpoint of a segment can be $left(\Delta)$ of one trapezoid
 - The left endpoint of a segment can be $left(\Delta)$ of two trapezoid

Application: Decomposing an Arrangement of Line Segments

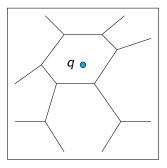
Application

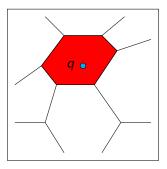
Constructs the vertical decomposition of a given arrangement.



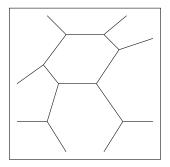
Decomposing an Arrangement of Line Segments: Code

```
template <typename Arrangement, typename Kernel>
void vertical decomposition (Arrangement& arr, Kernel& ker)
  typedef std::pair<typename Arrangement::Vertex_const_handle,
                    std::pair<CGAL::Object. CGAL::Object> > Vd entry:
 // For each vertex in the arrangment, locate the feature that lies
 // directly below it and the feature that lies directly above it.
  std::list <Vd entry> vd list;
 CGAL::decompose(arr, std::back inserter(vd list));
 // Go over the vertices (given in ascending lexicographical xy-order),
  // and add segements to the feautres below and above it.
  const typename Kernel::Equal_2 equal = ker.equal_2_object();
 typename std::list <Vd_entry >::iterator it , prev = vd_list.end();
  for (it = vd list.begin(); it != vd list.end(); ++it) {
   // If the feature above the previous vertex is not the current vertex.
   // Add a vertical segment to the feature below the vertex.
    typename Arrangement:: Vertex const handle v;
    if ((prev == vd list.end())
        !CGAL::assign(v, prev->second.second) ||
        !equal(v->point(), it->first->point()))
      add vertical segment(arr, arr.non const handle(it->first), it->second.first, ker);
   // Add a vertical segment to the feature above the vertex.
    add_vertical_segment(arr, arr.non_const_handle(it->first), it->second.second, ker);
    prev = it;
```

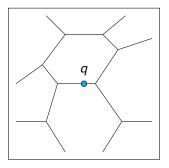





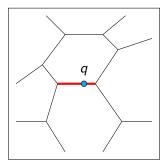
Given a subdivision A of the space into cells and a query point q, find the cell of A containing q.



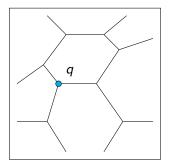
• In degenerate situations the query point can



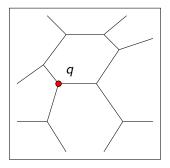
- In degenerate situations the query point can
 - lie on an edge, or



- In degenerate situations the query point can
 - lie on an edge, or



- In degenerate situations the query point can
 - lie on an edge, or
 - coincide with a vertex.



- In degenerate situations the query point can
 - lie on an edge, or
 - coincide with a vertex.

Point Location Algorithms

• Traditional Point Location Strategies

- Hierarchical data structure
- Persistent search trees
- Random Incremental Construction
- Point-location in Triangulations
 - Walk along a line
 - The Delaunay Hierarchy
 - Jump & Walk
- Other algorithms
 - Entropy based algorithms
 - Point location using Grid

[Kir83] [ST86] [Mul91, Sei91]

[DPT02] [Dev02] [DMZ98, DLM99]

> [Ary01] [EKA84]

$\mathrm{C}\mathrm{GAL}$ Point Location Strategies

- Naive
 - Traverse all edges of the arrangement to find the closest.
- Walk along line
 - Walk along a vertical line from infinity.
- Trapezoidal map Randomized Incremental-Construction (RIC)
- Landmark

Walk Along a Line

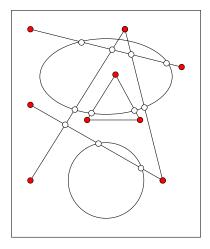
- Start from a known place in the arrangement and walk from there towards the query point through a straight line.
 - No preprocessing performed.
 - No storage space consumed.
- The implementation in CGAL:
 - Start from the unbounded face.
 - Walk down to the point through a vertical line.
 - Asymptotically O(n) time.
 - In practice: quite good, and easy to maintain.

Triangulation Point Location

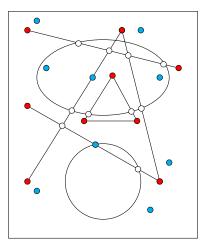
Preprocessing:

- Triangulate the planar map.
 - * Triangles are much simpler than the arbitrary shapes of faces.
 - * $O(n \log n)$ time and O(n) space.
 - * Retain relations between planar map vertices and triangulation.
- Query:
 - Find the triangle *P* containing the query point *q*.
 - ★ Walk from an arbitrary vertex.
 - ★ O(n) time in the worst case, but $O(\sqrt{n})$ time on average, if the vertices are distributed uniformly at random.
 - Find the face in the arrangement that contains the triangle *P*.

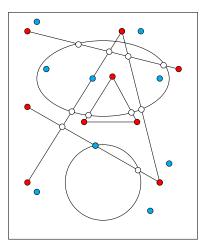
• Given an arrangement \mathscr{A}



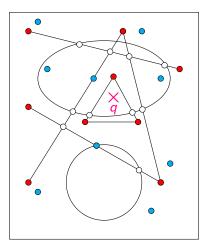
- $\bullet~{\rm Given}$ an arrangement \mathscr{A}
- Preprocess
 - Choose the landmarks and locate them in \mathscr{A} .



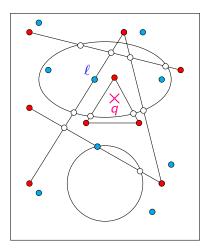
- $\bullet~{\rm Given}$ an arrangement \mathscr{A}
- Preprocess
 - Choose the landmarks and locate them in \mathscr{A} .
 - Store the landmarks in a nearest neighbor search-structure.



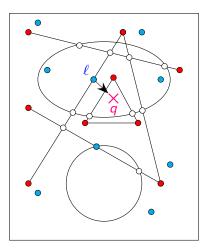
- \bullet Given an arrangement \mathscr{A}
- Preprocess
 - Choose the landmarks and locate them in \mathscr{A} .
 - Store the landmarks in a nearest neighbor search-structure.
- Answer query
 - Given a query point q



- $\bullet~{\rm Given}$ an arrangement \mathscr{A}
- Preprocess
 - Choose the landmarks and locate them in \mathscr{A} .
 - Store the landmarks in a nearest neighbor search-structure.
- Answer query
 - Given a query point q
 - Find the landmark ℓ closest to q using the search structure.
 - * The landmarks are on a grid \implies Nearest grid point found in O(1) time.



- $\bullet~{\rm Given}$ an arrangement \mathscr{A}
- Preprocess
 - Choose the landmarks and locate them in \mathscr{A} .
 - Store the landmarks in a nearest neighbor search-structure.
- Answer query
 - Given a query point q
 - Find the landmark ℓ closest to q using the search structure.
 - ★ The landmarks are on a grid ⇒ Nearest grid point found in O(1) time.
 - "Walk along a line" from ℓ to q.



Trapezoidal Map Randomized Incremental-Construction

• A — an arrangement.

- A an arrangement.
- Preprocess
 - For each segment in random order.

- A an arrangement.
- Preprocess
 - For each segment in random order.
 - ★ Update the trapezoidal map.

- A an arrangement.
- Preprocess
 - For each segment in random order.
 - ★ Update the trapezoidal map.
 - \star Insert the new trapezoid into a search structure.
 - $O(n \log n)$ time, O(n) space.

- A an arrangement.
- Preprocess
 - For each segment in random order.
 - ★ Update the trapezoidal map.
 - $\star\,$ Insert the new trapezoid into a search structure.
 - $O(n \log n)$ time, O(n) space.
- Answer query
 - Given a query point q

- A an arrangement.
- Preprocess
 - For each segment in random order.
 - ★ Update the trapezoidal map.
 - ★ Insert the new trapezoid into a search structure.
 - $O(n \log n)$ time, O(n) space.
- Answer query
 - Given a query point q
 - Search the trapezoid in the search structure.

- A an arrangement.
- Preprocess
 - For each segment in random order.
 - ★ Update the trapezoidal map.
 - ★ Insert the new trapezoid into a search structure.
 - $O(n \log n)$ time, O(n) space.
- Answer query
 - Given a query point q
 - Search the trapezoid in the search structure.
 - Obtain the cell containing the trapezoid.
 - $O(\log n)$ expected time (if the segments were processed in random order).

Point Location Complexity

Requirements:

- Fast query processing.
- Reasonably fast preprocessing.
- Small space data structure.

	Naive	Walk	RIC	Landmarks	Triangulat	PST
Preprocess time	none	none	$O(n \log n)$	$O(k \log k)$	$O(n \log n)$	$O(n \log n)$
Memory space	none	none	<i>O</i> (<i>n</i>)	<i>O</i> (<i>k</i>)	<i>O</i> (<i>n</i>)	$O(n \log n)^{(*)}$
Query time	bad	reasonable	good	good	quite good	good
Code	simple	quite simple	complicated	quite simple	modular	complicated
Walk — Walk along a line RIC — Random Incremental Construction based on trapezoidal decomposition Triangulat — Triangulation PST — Persistent Search Tree & — number of landmarks — — —						

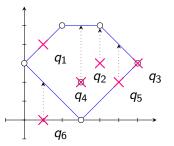
(*) Can be reduced to O(n)

Point Location: Print

Print a polymorphic object.

```
template <typename Arrangement_>
void print point location (const typename Arrangement :: Point 2& g,
                            CGAL:: Arr point location result < Arrangement >:: Type& obj)
  typedef Arrangement
                                                           Arrangement
  typedef typename Arrangement::Vertex_const_handle
                                                           Vertex const handle;
  typedef typename Arrangement:: Halfedge_const_handle Halfedge_const_handle;
  typedef typename Arrangement :: Face_const_handle
                                                           Face const handle:
  const Vertex_const_handle*
                                  v :
  const Halfedge_const_handle* e;
  const Face const handle*
                                f :
  std :: cout << "Theupointu(" << q << ")uisulocatedu";</pre>
  if ((f = boost::get<Face const handle>(&obj)))
                                                               // located inside a face
    std :: cout << "inside..."
              << (((*f)->is unbounded()) ? "the unbounded" : "aubounded")
              << "_____face." << std::endl:
  else if ((e = boost::get<Halfedge const handle>(&obj))) // located on an edge
    std::cout \ll "on_{\sqcup}an_{\sqcup}edge:_{\sqcup}" \ll (*e) \rightarrow curve() \ll std::endl;
  else if ((v = boost::get<Vertex_const_handle>(&obj))) // located on a vertex
    std::cout \ll "on<sub>1</sub>" \ll (((*v)->is isolated()) ? "an<sub>1</sub>isolated" : "a")
              << "__vertex:__" << (*v)->point() << std::endl;</pre>
  else CGAL error msg("Invalid_object."):
                                                               // this should never happen
```


Point Location: Locate



Point Location: Example

```
// File: ex point location.cpp
#include <CGAL/basic.h>
#include <CGAL/Arr_naive_point_location.h>
#include <CGAL/Arr landmarks point location.h>
#include "arr_inexact_construction_segments.h"
#include "point location utils.h"
typedef CGAL:: Arr_naive_point_location < Arrangement_2>
                                                           Naive pl:
typedef CGAL:: Arr landmarks point location < Arrangement 2> Landmarks pl;
int main()
  // Construct the arrangement.
  Arrangement_2 arr;
  construct_segments_arr(arr);
  // Perform some point-location queries using the naive strategy.
  Naive pl naive pl(arr):
  locate point(naive pl, Point 2(1, 4)); // q1
  // Attach the landmarks object to the arrangement and perform queries.
  Landmarks_pl landmarks_pl;
  landmarks pl.attach(arr);
  locate_point(landmarks_pl, Point_2(3, 2)); // q4
  return 0;
```

Outline

2D Arrangements

- Definitions & Complexity
- Representation
- Queries
 - Vertical Decomposition
 - Point Location Queries

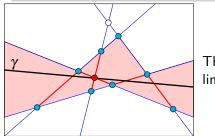
• The Zone Computation Algorithmic Framework

- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

The Zone of Curves in Arrangements

Definition (Zone)

Given an arrangement of curves $\mathscr{A} = \mathscr{A}(\mathscr{C})$ in the plane, the zone of an additional curve $\gamma \notin \mathscr{C}$ in \mathscr{A} is the union of the features of \mathscr{A} , whose closure is intersected by γ .



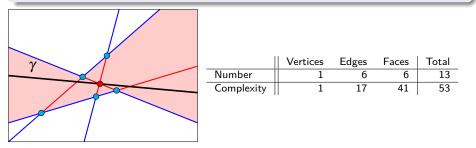
The zone of a line γ in an arrangement of lines.

The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone consists of.

Theorem (Zone Complexity)

The complexity of the zone of a line in an arrangement of n lines in the plane is O(n). It can be computed in O(n) time.

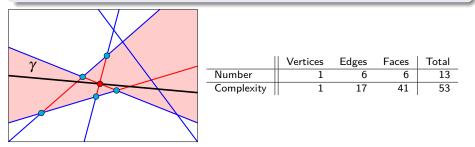


The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone consists of.

Theorem (Zone Complexity)

The complexity of the zone of a line in an arrangement of n lines in the plane is O(n). It can be computed in O(n) time.

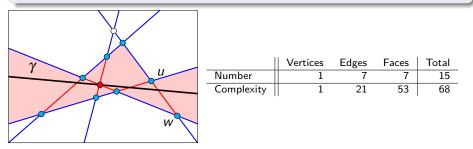


The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone consists of.

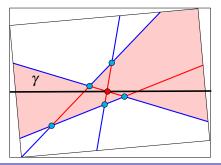
Theorem (Zone Complexity)

The complexity of the zone of a line in an arrangement of n lines in the plane is O(n). It can be computed in O(n) time.



The Zone of lines in arrangement of Lines Complexity

- The number of left bounding edges of the faces in the zone of γ is $\leq 3n$
- By symmetry, the number of right bounding edges is $\leq 3n$ as well
- Proof by induction on *n*
- $\bullet~\ell$ is the line that has the rightmost intersection with γ
- uw is a new left bounding edge—this adds 1
- ℓ splits a left bounding edge at u and w—this adds ≤ 2

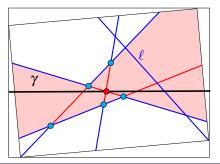


- The proof assumes general position
 - It can be extended to handle degeneracies.

Algorithms for 3D Printing and Other Manufacturing Methodologies

The Zone of lines in arrangement of Lines Complexity

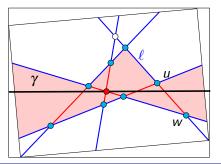
- The number of left bounding edges of the faces in the zone of γ is $\leq 3n$
- By symmetry, the number of right bounding edges is $\leq 3n$ as well
- Proof by induction on *n*
- $\bullet~\ell$ is the line that has the rightmost intersection with γ
- uw is a new left bounding edge—this adds 1
- ℓ splits a left bounding edge at u and w—this adds ≤ 2



- The proof assumes general position
 - It can be extended to handle degeneracies.

The Zone of lines in arrangement of Lines Complexity

- The number of left bounding edges of the faces in the zone of γ is $\leq 3n$
- By symmetry, the number of right bounding edges is $\leq 3n$ as well
- Proof by induction on *n*
- $\bullet~\ell$ is the line that has the rightmost intersection with γ
- uw is a new left bounding edge—this adds 1
- ℓ splits a left bounding edge at u and w—this adds ≤ 2



- The proof assumes general position
 - It can be extended to handle degeneracies.

Zone Application: Incremental Insertion

Definition (Incremental Insertion)

Given an x-monotone curve γ and an arrangement \mathscr{A} induced by a set of curves \mathscr{C} , where all curves in $\{\gamma\} \cup \mathscr{C}$ are well behaved, insert γ into \mathscr{A} .

- Find the location of one endpoint of the curve γ in \mathscr{A} .
- Traverse the zone of the curve γ .
 - Each time γ crosses an existing vertex v split γ at v into subcurves.
 - Each time γ crosses an existing edge e split γ and e into subcurves, respectively.

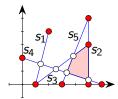
The Zone Computation Algorithmic Framework

Arrangement_zone_2 class template

- Computes the zone of an arrangement.
- Is part of 2D Arrangements package.
- Is parameterized with a zone visitor
 - Models the concept ZoneVisitor_2
- Serves as the foundation of a family of concrete operations
 - Inserting a single curve into an arrangement
 - ★ The visitor modifies the arrangement operand as the computation progresses.
 - Determining whether a query curve intersects with the curves of an arrangement.
 - Determining whether a query curve passes through an existing arrangement vertex.
 - ★ If the answer is positive, the process can terminate as soon as the vertex is located.

Incremental Insertion

```
// File: ex_incremental_insertion.cpp
#include <CGAL/basic.h>
#include <CGAL/Arr_naive_point_location.h>
#include "arr_exact_construction_segments.h"
#include "arr print.h"
int main()
  // Construct the arrangement of five line segments.
  Arrangement_2 arr;
  Naive pl pl(arr);
  CGAL::insert_non_intersecting_curve(arr, Segment_2(Point_2(1, 0), Point_2(2, 4)), pl);
  CGAL::insert_non_intersecting_curve(arr, Segment_2(Point_2(5, 0), Point_2(5, 5)));
  CGAL:: insert (arr, Segment 2(Point 2(1, 0), Point 2(5, 3)), pl);
  CGAL:: insert (arr, Segment 2 (Point 2 (0, 2), Point 2 (6, 0)));
  CGAL:: insert (arr, Segment_2(Point_2(3, 0), Point_2(5, 5)), pl);
  print arrangement size(arr);
  return 0:
```



Outline

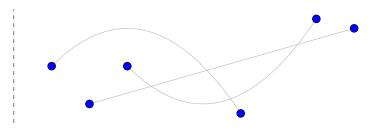
2D Arrangements

- Definitions & Complexity
- Representation
- Queries
 - Vertical Decomposition
 - Point Location Queries
- The Zone Computation Algorithmic Framework

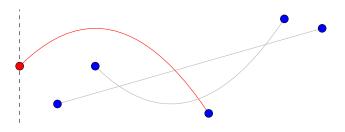
• The Plane Sweep Algorithmic Framework

- Arrangement of Unbounded Curves
- Literature

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



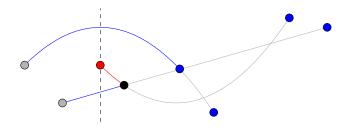
- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



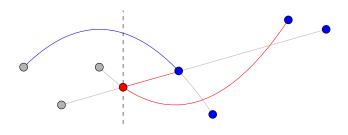
- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



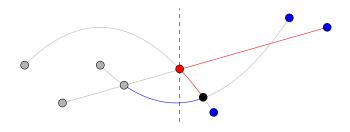
- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



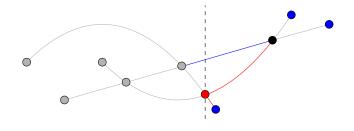
- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



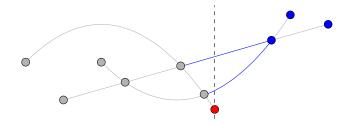
- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



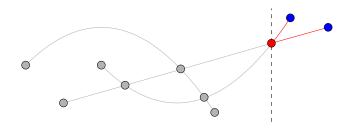
- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



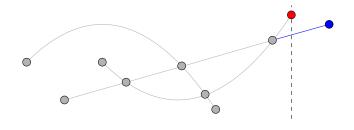
- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



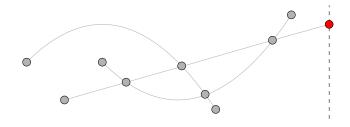
- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue



- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
 - Remove all *x*-monotone curves to the left of the current event point from a sorted container of curves
 - Insert all *x*-monotone curves to the right of the current event point into the curve container
 - Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

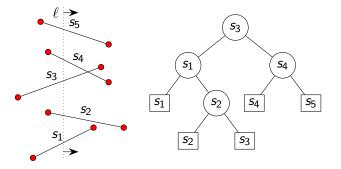


Plane Sweep: Event Queue

- Implemented as a balanced binary search tree (say red-black tree)
- Operations, *m*—number of events.
 - Fetching the next event— $O(\log m)$ amortized time.
 - Testing whether an event exists— $(O(\log m) \text{ amortized time.})$
 - * Cannot use a heap!
 - Inserting an event— $O(\log m)$ amortized time.

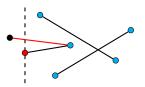
Plane Sweep: Status Structure

- Is a dynamic one-dimensional arrangement along the sweep line.
- Implemented as a balanced binary search tree
 - Interior nodes —- guide the search, store the segment from the rightmost leaf in its left subtree.
 - Leaf nodes segments.
- Operations— $O(\log n)$ amortized time.

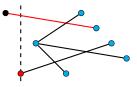


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.

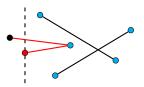


- If p has right curves
 - $\leq~$ 2 events are generated.

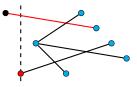


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.

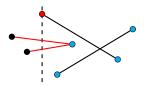


- If p has right curves
 - $\leq~$ 2 events are generated.

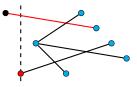


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.

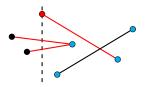


- If p has right curves
 - $\leq~$ 2 events are generated.

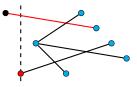


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.

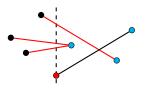


- If p has right curves
 - $\leq~$ 2 events are generated.

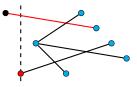


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.

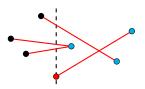


- If p has right curves
 - $\leq~$ 2 events are generated.

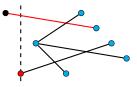


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.

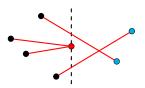


- If p has right curves
 - $\leq~$ 2 events are generated.

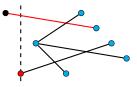


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.

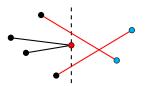


- If p has right curves
 - $\leq~$ 2 events are generated.

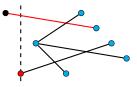


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.



- If p has right curves
 - $\leq~$ 2 events are generated.

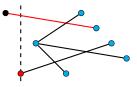


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves

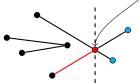


- If p has right curves
 - $\leq~$ 2 events are generated.

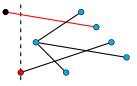


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.₇

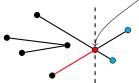


- If p has right curves
 - $\leq~$ 2 events are generated.

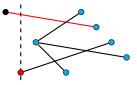


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.₇

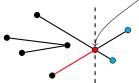


- If p has right curves
 - $\leq~$ 2 events are generated.

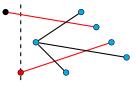


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.₇

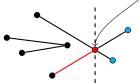


- If p has right curves
 - $\leq~$ 2 events are generated.

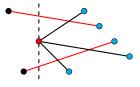


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.₇

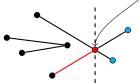


- If p has right curves
 - $\leq~$ 2 events are generated.



Theorem

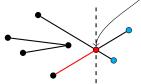
- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.₇



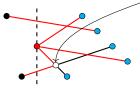
- If p has right curves
 - $\leq~$ 2 events are generated.

Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.₇

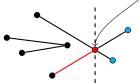


- If p has right curves
 - $\leq~2$ events are generated._>

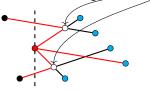


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.₇

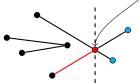


- If p has right curves
 - \leq 2 events are generated.

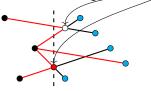


Theorem

- \mathscr{C} —a set of *n* x-monotone curves in the plane.
- *k*—the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- *p*—an event
 - *p* is fetched and removed from the event queue.
 - p is handled once.
 - If p does not have right curves
 - $\leq~1$ event is generated.₇



- If *p* has right curves
 - \leq 2 events are generated.

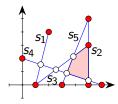


Plane Sweep Space Complexity

- The status-structure size is in O(n)
- The event-queue size is definitely at most 2n + k
- It can be shown that the event-queue size is in $O(n \log^2 n)$
- The event-queue size can be kept linear.
 - Points of intersections between pairs of curves that are not adjacent on the sweep line are deleted from the event queue.
 - It increases the time complexity but only by a constant factor

Aggregate Insertion

```
// File: ex_aggregated_insertion.cpp
#include "arr_exact_construction_segments.h"
#include "arr_print.h"
int main()
{
    // Aggregately construct the arrangement of five line segments.
    Segment_2 (Point_2(1, 0), Point_2(2, 4)),
        Segment_2 (Point_2(5, 0), Point_2(5, 5)),
        Segment_2 (Point_2(1, 0), Point_2(5, 3)),
        Segment_2 (Point_2(0, 2), Point_2(5, 3)),
        Segment_2 (Point_2(3, 0), Point_2(5, 5));
        Arrangement_2 arr;
    CGAL::insert(arr, segments, segments + sizeof(segments)/sizeof(Segment_2));
    print_arrangement_size(arr);
    return 0;
}
```



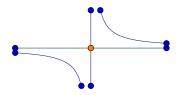
Outline

2D Arrangements

- Definitions & Complexity
- Representation
- Queries
 - Vertical Decomposition
 - Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

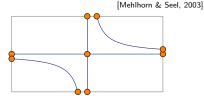
Handling Enpoints at Infinity

Clipping the unbounded curves



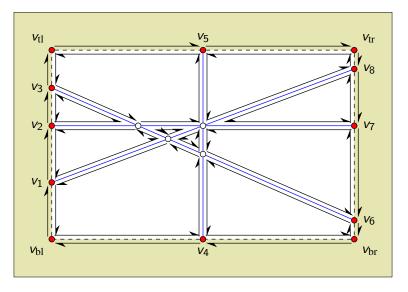
- Simple, the sweep algorithm is unchanged
- Not online
- The resulting arrangement has a single unbounded face

Using an infimaximal box



- Not simple
 - May require large bit-lengths
 - Designed for linear objects
- Online (no need for clipping)
- The resulting arrangement has multiple unbounded faces (and a single ficticious face)

Arrangement of (Unbounded) Lines



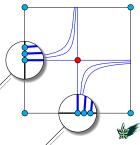
Vertices of Unbounded Arrangement

There are 4 types of unbounded-arrangement vertices

- $\bullet A "normal" vertex associated with a point in <math>{\rm I\!R}^2.$
- A vertex that represents an unbounded end of an *x*-monotone curve that approaches $x = -\infty$ or x = ∞.
- A vertex that represents the unbounded end of a vertical line or ray or of a curve with a vertical asymptote (finite x-coordinate and an unbounded y-coordinate).
- A fictitious vertices that represents one of 4 corners of the imaginary bounding rectangle.

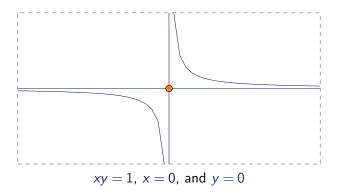
A vertex at infinity of Type 2 or Type 3 always has three incident edges:

- 1 edge associated with an x-monotone curve, and
- 2 fictitious edges connecting the vertex to its adjacent vertices at infinity or the corners of the bounding rectangle.



Sweeping Unbounded Curves

- Curves may not have finite endpoints
 - Initializing the event queue requires special treatment
- Intersection events are associated with finite points



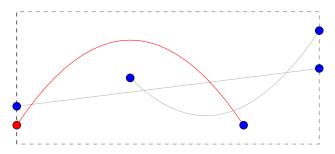
The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



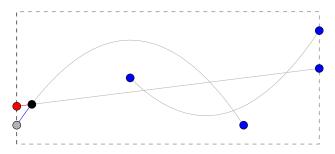
The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!

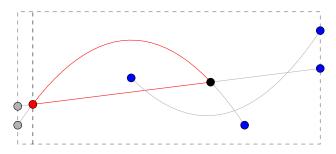


The Augmented Sweep Line for Unbounded Curves

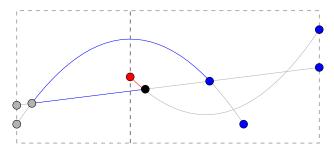
- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



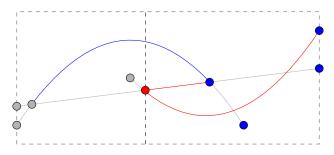
- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



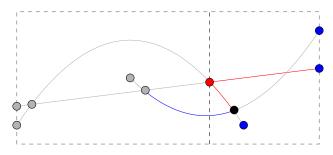
- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



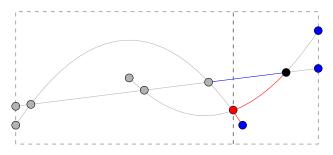
- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



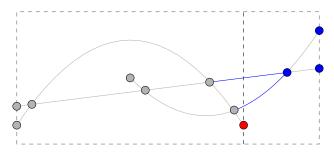
- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



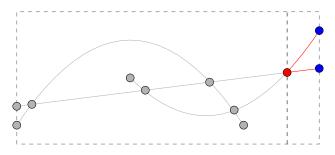
- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



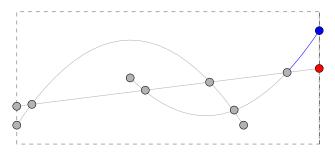
- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



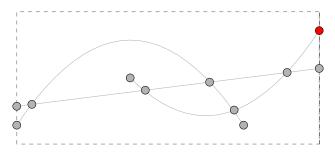
- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
 - Ends of unbounded curves do not coincide
 - Comparison between events are available through the traits
- While the queue is not empty proceed as usual
 - No need to look for unbounded events in the status line!



Outline

2D Arrangements

- Definitions & Complexity
- Representation
- Queries
 - Vertical Decomposition
 - Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Arrangement Bibliography I

Boris Aronov and Dmitriy Drusvyatskiy

Complexity of a Single Face in an Arrangement of s-Intersecting Curves arXiv:1108.4336, 2011

Jon Louis Bentley and Thomas Ottmann. Algorithms for Reporting and Counting Geometric Intersections. *IEEE Transactions on Computers*, 28(9): 643–647, 1979.

Eric Berberich, Efi Fogel, Dan Halperin, Michael Kerber, and Ophir Setter. Arrangements on parametric surfaces ii: Concretizations and applications, 2009. Mathematics in Computer Science, 4(1):67–91,2010.

Ulrich Finke and Klaus H. Hinrichs.

Overlaying simply connected planar subdivisions in linear time.

In Proceedings of 11th Annual ACM Symposium on Computational Geometry (SoCG), pages 119–126. Association for Computing Machinery (ACM) Press, 1995.

Ron Wein, Efi Fogel, Baruch Zukerman, Dan Halperin, and Eric Berberich. 2D Arrangements.

In CGAL Editorial Board, editor, CGAL User and Reference Manual. 4.4 edition, 2014. http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:Arrangement2.

David G. Kirkpatrick.

Optimal search in planar subdivisions. SIAM Journal on Computing, 12(1):28–35,1983.

N. Sarnak and Robert E. Tarjan. Planar point location using persistent search trees. *Communications of the ACM*. 29(7):669–679, 1986.

Kentan Mulmuley. A fast planar partition algorithm, I. Journal of Symbolic Computation. 10(3-4):253–280,1990.

Arrangement Bibliography II

Raimund Seidel

A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons.

Computational Geometry: Theory and Applications. 1(1):51-64, 1991.

Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. International Journal of Foundations of Computer Science. 13:181–199,2002.

Luc Devroye Christophe, Christophe Lemaire, and Jean-Michel Moreau. Fast Delaunay Point-Location with Search Structures. In Proceedings of 11th Canadian Conference on Computational Geometry. Pages 136–141, 1999.

Luc Devroye, Ernst Peter Mücke, and Binhai Zhu. A Note on Point Location in Delaunay Triangulations of Random Points. *Algorithmica*. 22:477–482, 1998.

Olivier Devillers. The Delaunay hierarchy. International Journal of Foundations of Computer Science. 13:163-180, 2002.

Sunil Arya A Simple Entropy-Based Algorithm for Planar Point Location. ACM Transactions on Graphics. 3(2), 2007

Masato Edahiro, Iwao Kokubo, And Takao Asano A new Point-Location Algorithm and its Practical Efficiency: comparison with existing algorithms ACM Transactions on Graphics. 3(2):86–109, 1984.

Micha Sharir and Pankaj Kumar Agarwal Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, NY, 1995.

Arrangement Bibliography III

Bernard Chazelle, Leonidas J. Guibas, and Der-Tsai Le. The Power of Geometric Duality. *BIT*, 25:76–90, 1985.

Herbert Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, Heidelberg, 1987.

Mark de Berg, Mark van Kreveld, Mark H. Overmars, and Otfried Cheong. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

Herbert Edelsbrunner, Raimund Seidel, and Micha Sharir. On the Zone Theorem for Hyperplane Arrangements. *SIAM Journal on Computing*. 22(2):418–429,1993.

Silvio Micali and Vijay V. Vazirani. An $O(\sqrt{|V|}|E|)$ Algorithm for Finding Maximum Matching in General Graphs. Proceedings of 21st Annual IEEE Symposium on the Foundations of Computer Science, pages 17–27, 1980.

Jack Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17:449–467.1965.

Robert Endre Tarjan. Data structures and network algorithms, Society for Industrial and Applied Mathematics (SIAM), 1983.

Marcin Mucha and Piotr Sankowski. Maximum Matchings via Gaussian Elimination Proceedings of 45th Annual IEEE Symposium on the Foundations of Computer Science, pages 248–255, 2004.

Arrangement Bibliography IV

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. *The BOOST Graph Library*. Addison-Wesley, 2002

Efi Fogel, Ron Wein, and Dan Halperin. CGAL Arrangements and Their Applications, A Step-by-Step Guide. Springer, 2012.

