Algorithms for 3D Printing and Other Manufacturing Methodologies

Efi Fogel

Tel Aviv University

2D Arrangements
Apr. 24 ${ }^{\text {th }}, 2017$

Outline

(1) 2D Arrangements

- Definitions \& Complexity
- Representation
- Queries
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Outline

(1) 2D Arrangements

- Definitions \& Complexity
- Representation
- Queries
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Two Dimensional Arrangements

Definition (Arrangement)

Given a collection \mathscr{C} of curves on a surface, the arrangement $\mathscr{A}(\mathscr{C})$ is the partition of the surface into vertices, edges and faces induced by the curves of \mathscr{C}.

An arrangement of circles in the the plane. plane.

An arrangement of great-circle arcs on a sphere.

Arrangement Background

- Arrangements have numerous applications
- robot motion planning, computer vision, GIS, optimization, computational molecular biology

A planar map of the Boston area showing the top of the arm of cape cod.
Raw data comes from the US Census 2000 TIGER/line data files

Arrangement 2D Complexity

Definition (Well Behaved Curves)

Curves in a set \mathscr{C} are well behaved, if each pair of curves in \mathscr{C} intersect at most some constant number of times.

Theorem (Arrangement in \mathbb{R}^{2})

The maximum combinatorial complexity of an arrangement of n well-behaved curves in the plane is $\Theta\left(n^{2}\right)$.

The complexity of arrangements induced by n non-parallel lines is $\Omega\left(n^{2}\right)$.

Arrangement dD Complexity

Definition (Hyperplane)

A hyperplane is the set of solutions to a single equation $A X=c$, where A and X are vectors and c is some constant.

A hyperplane is any codimension-1 vector subspace of a vector space.

Definition (Hypersurface)

A hypersurface is the set of solutions to a single equation $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$.

Theorem (Arrangement in \mathbb{R}^{d})

The maximum combinatorial complexity of an arrangement of n well-behaved (hyper)surfaces in \mathbb{R}^{d} is $\Theta\left(n^{d}\right)$.

The complexity of arrangements induced by n non-parallel hyperplanes is $\Omega\left(n^{d}\right)$.

Planar Maps

Definition (Planar Graph)

A planar graph is a graph that can be embedded in the plane.

Definition (Planar Map)

A planar map is the embedding of a planar graph in the plane. It is a subdivision of the plane into vertices, (bounded) edges, and faces.

Theorem (Euler Formula)

Let v, e, and f be the number of vertices, edges, and faces (including the unbounded face) of a planar map, then $v-e+f=2$.

8 circles

vertices - 25
edges - 56
faces - 33 (including the unbounded face).

Surface Maps

Planar maps generalize to surfaces!

Definition (genus)

A topologically invariant property of a surface defined as the largest number of nonintersecting simple closed curves that can be drawn on the surface without separating it.

Theorem (Euler Formula)

Let v, e, and f be the number of vertices, edges, and faces of a map embedded on a surface with genus g, then $v-e+f=2-2 g$.

If each face is incident to at least 3 edges $\Longrightarrow 3 f \leq 2 e$

$$
\begin{aligned}
3 v-3 e+3 f & =6-6 g \leq 3 v-3 e+2 e \\
e & \leq 3 v-6+6 g
\end{aligned}
$$

In a planar triangulation $e=3 v-6, f=2 v-4$

Outline

(1) 2D Arrangements

- Definitions \& Complexity
- Representation
- Queries
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

The CgAL Arrangement_on_surface_2 Package

- Constructs, maintains, modifies, traverses, queries, and presents arrangements on two-dimensional parametric surfaces.
- Complete and Robust
- All inputs are handled correctly (including degenerate input).
- Exact number types are used to achieve robustness.
- Generic - easy to interface, extend, and adapt
- Modular - geometric and topological aspects are separated
- Supports among the others:
- various point location strategies
- zone-construction paradigm
- sweep-line paradigm
\star vertical decomposition
\star overlay computation
\star batched point location
- Part of the Cgal basic library

Arrangement_2<Traits, Dcel $>$

- Is the main component in the 2D Arrangements package.
- An instance of this class template represents 2D arrangements.
- The representation of the arrangements and the various geometric algorithms that operate on them are separated.
- The topological and geometric aspects are separated.
- The Traits template-parameter must be substituted by a model of a geometry-traits concept, e.g., ArrangementBasicTraits_2.
* Defines the type X_monotone_curve_2 that represents x-monotone curves.
* Defines the type Point_2 that represents two-dimensional points.
\star Supports basic geometric predicates on these types.
- The Dcel template-parameter must be substituted by a model of the ArrangementDcel concept, e.g., Arr_default_dcel $<$ Traits $>$.

The Doubly-Connected Edge List

- One of a family of combinatorial data-structures called the halfedge data-structures.
- Represents each edge using a pair of directed halfedges.
- Maintains incidence relations among cells of 0 (vertex), 1 (edge), and 2 (face) dimensions.

- The target vertex of a halfedge and the halefedge are incident to each other.
- The source and target vertices of a halfedge are adjacent.

The Doubly-Connected Edge List Components

- Vertex
- An incident halfedge pointing at the vertex.
- Halfedge
- The opposite halfedge.
- The previous halfedge in the component boundary.
- The next halfedge in the component boundary.
- The target vertex of the halfedge.
- The incident face.
- Face
- An incident halfedge on the outer Ссв.
- An incident halfedge on each inner CcB.
- Connected component of the boundary (ССв)
- The circular chains of halfedges around faces.

Arrangement Representation

- The halfedges incident to a vertex form a circular list.
- The halfedges are clockwise oriented around the vertex.

- The halfedges around faces form circular chains.
- All halfedges of a chain are incident to the same face.
- The halfedges are counterclockwise oriented along the boundary.

- Geometric interpretation is added by classes built on top of the halfedge data-structure.

Modifying the Arrangement

Inserting a curve from an existing vertex u that corresponds to one of its endpoints, insert_from_left_vertex (c, v) , insert_from_right_vertex (c,v).

Inserting an x-monotone curve, the endpoints of which correspond to existing vertices v_{1} and v_{2}, insert_at_vertices (c,v1, v2).

- The new pair of halfedges close a new face f^{\prime}.
- The hole h_{1}, which belonged to f before the insertion, becomes a hole in this new face.

Application: Obtaining Silhouettes of Polytopes

Application

Given a convex polytope P obtain the outline of the shadow of P cast on the xy-plane, where the scene is illuminated by a light source at infinity directed along the negative z-axis.

- The silhouette is represented as an arrangement with two faces:
- an unbounded face and
- a single hole inside the unbounded face.

An icosahedron and its silhouette.

Application: Obtaining Silhouettes of Polytopes: Insertion

- Insert an edge into the arrangement only once to avoid overlaps.
- Maintain a set of handles to polytope edges the projection of which have already been inserted into the arrangement.
- Implemented with the std :: set data-structure.
\star Requires the provision of a model of the StrictWeakOrdering.
* A functor that compares handles:

```
struct Less_than_handle {
    template <typename Type>
    bool operator()(Type s1, Type s2) const { return (&(*s1)< < &(*s2)); }
};
```

std : : set<Polyhedron_halfedge_const_handle, Less_than_handle $>$ \}

- Determine the appropriate insertion routines.
- Maintain a map that maps polyhedron vertices to corresponding arrangement vertices.
- Implemented with the std :: map data-structure.

```
std ::map<typename Polyhedron:: Vertex_const_handle,
    typename Arrangement:: Vertex_handle, Less_than_handle>
```


Application: Obtaining Silhouettes of Polytopes: Construction

Obtain the arrangement \mathscr{A} that represents the silhouette of a Convex Polytope P

1. Construct the input convex polytope P.
2. Compute the normals to all facets of P.
3. for each facet f of P
4. if f is facing upwards (has a positive z component)
5. for each edge e on the boundary of f
6.

if the projection of e hasn't been inserted yet into \mathscr{A}
7. Insert the projection of e into \mathscr{A}.

Computes the normal to a facet.

```
struct Normal_equation {
    template <typename Facet> typename Facet:: Plane_3 operator()(Facet& f) {
        typename Facet:: Halfedge_handle h = f.halfedge();
        return CGAL::cross_product(h->next() ->vertex() -> point() -
            h->vertex()->point(),
                                h->next() -> next() ->vertex() -> point() -
                                h->next()->vertex()->point ());
    }
};
```


Traversing the Halfedges Incident to an Arrangement Vertex

Print all the halfedges incident to a vertex.

```
template <typename Arrangement>
void print_incident_halfedges(typename Arrangement::Vertex_const_handle v)
{
    if (v->is_isolated ()) {
```



```
        return;
    }
```



```
    typename Arrangement:: Halfedge_around_vertex_const_circulator first, curr;
    first = curr = v->incident_halfedges();
    do std::cout << "н(" << curr->source()->point() << ")";
    while (++curr != first);
    std::cout << std::endl;
}
```


Traversing the Halfedges of an Arrangement CcB

Print all x-monotone curves along a given CCB

```
template <typename Arrangement>
void print_ccb(typename Arrangement:: Ccb_halfedge_const_circulator circ)
{
    std::cout << "(" << circ->source()->point() << ")";
    typename Arrangement::Ccb_halfedge_const_circulator curr = circ;
    do {
            typename Arrangement:: Halfedge_const_handle he = curr;
            std::cout << "ทธธ[" << he->curve() << "] ]பபь"
            << "பபப[" << he->curve() << "] பபப" " " ";
    } while (++curr != circ);
    std::cout << std:: endl;
}
```

- he->curve () is equivalent to he->twin()->curve (),
- he $->$ source () is equivalent to he $->$ twin() $->$ target (), and
- he $->$ target () is equivalent to he $->$ twin() $->$ source ().

Traversing the CcBs of an Arrangement Face

Print the outer and inner boundaries of a face.

```
template <typename Arrangement>
void print_face(typename Arrangement:: Face_const_handle f)
{
    // Print the outer boundary.
    if (f->is_unbounded()) std:: cout << "Unbounded\face.u" << std::endl;
    else {
        std::cout << "Outeruboundary:ь";
        print_ccb<Arrangement >(f->outer_ccb());
    }
    // Print the boundary of each of the holes.
    size_t index = 1;
    typename Arrangement:: Hole_const_iterator hole;
    for (hole = f->holes_begin(); hole != f->holes_end(); ++hole, +Hindex) {
        std::cout << " чьььHoleь#" << index << ":ч";
        print_ccb<Arrangement > (*hole);
    }
    // Print the isolated vertices.
    typename Arrangement::Isolated_vertex_const_iterator iv;
    for (iv = f->isolated__vertices__begin(), index = 1;
            iv != f->isolated__vertices__end (); ++iv, ++index)
        std:: cout << " பப\sqcup\sqcuplsolated\sqcupvertex\sqcup#" << index << ":ப"
                        << "(" << iv->point() << ")" << std:: endl;
}
```


Traversing an Arrangement

Print all the cells of an arrangement.

```
template <typename Arrangement>
void print_arrangement(const Arrangement& arr)
{
    CGAL_precondition(arr.is_valid());
    // Print the arrangement vertices
    typename Arrangement:: Vertex_const_iterator vit;
    std::cout << arr.number_of_vertices() << "uvertices:" << std::endl;
    for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {
        std::cout << "(" << vit ->point() << ")";
        if (vit->is_isolated()) std::cout << "u-ulsolated." << std::endl;
        else std::cout << "U-பdegree\sqcup" << vit->degree() << std::endl;
    }
    // Print the arrangement edges.
    typename Arrangement::Edge_const_iterator eit;
    std::cout << arr.number_of_edges() << "uedges:" << std::endl;
    for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit)
        std::cout << "[" << eit ->curve() << "]" << std::endl;
    // Print the arrangement faces.
    typename Arrangement:: Face_const_iterator fit;
    std::cout << arr.number_of_faces() << "ufaces:" << std::endl;
    for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit)
        print_face<Arrangement>(fit);
}
```


Outline

(1) 2D Arrangements

- Definitions \& Complexity
- Representation
- Queries
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Vertical Decomposition

- Is a refinement of the original subdivision \mathscr{A} of n edges.
- In the plane
- Contains $O(n)$ pseudo trapezoids (triangles and trapezoids).
- A pseudo trapezoid is determined by
$\star 2$ vertices left (Δ) and $\operatorname{right}(\Delta)$, and

$\star 2$ segments top (Δ) and bottom (Δ).
- Generalizes to higher dimensions and arrangements induces by well behaved objects.

Vertical Decomposition Complexity

- R-a bounding rectangle
- S-a set of n interior disjoint line segments
- $\mathscr{T}(S)$-the trapezoidal map of S
- $\mathscr{T}(S)$ is a planar map with v vertices, e edges, and f faces
- A vertex of $\mathscr{T}(S)$ is either
- a vertex of R,
- an endpoint of a segment in S, or
- the point where the vertical extension hits
- $v \leq 4+2 n+2(2 n)=6 n+4$
- $f \leq 3 n+1$
- The lower left corner of R is left (Δ) of one trapezoid
- The right endpoint of a segment can be left(Δ) of one trapezoid
- The left endpoint of a segment can be $\operatorname{left}(\Delta)$ of two trapezoid

Application: Decomposing an Arrangement of Line Segments

Application

Constructs the vertical decomposition of a given arrangement.

Decomposing an Arrangement of Line Segments: Code

```
template <typename Arrangement, typename Kernel>
void vertical_decomposition(Arrangement& arr, Kernel& ker)
{
    typedef std:: pair<typename Arrangement:: Vertex_const_handle,
                std:: pair<CGAL::Object, CGAL::Object>> Vd_entry;
    // For each vertex in the arrangment, locate the feature that lies
    // directly below it and the feature that lies directly above it.
    std:: list<Vd_entry> vd_list;
    CGAL::decompose(arr, std:: back_inserter(vd_list));
    // Go over the vertices (given in ascending lexicographical xy-order),
    // and add segements to the feautres below and above it.
    const typename Kernel:: Equal_2 equal = ker.equal_2_object();
    typename std:: list<Vd_entry>::iterator it, prev = vd_list.end();
    for (it = vd_list.begin(); it != vd_list.end(); ++it) {
        // If the feature above the previous vertex is not the current vertex,
        // Add a vertical segment to the feature below the vertex.
        typename Arrangement:: Vertex_const_handle v;
        if ((prev = vd_list.end()) ||
            !CGAL:: assign(v, prev ->second.second) ||
            !equal(v->point(), it }->\mathrm{ first }->\mathrm{ point()))
            add_vertical_segment(arr, arr.non_const_handle(it ->first), it }->>\mathrm{ second.first, ker);
        // Add a vertical segment to the feature above the vertex.
        add_vertical_segment(arr, arr.non_const_handle(it ->first), it ->second.second, ker);
        prev = it;
    }
}
```


Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the cell of A containing q.

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the cell of A containing q.

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the cell of A containing q.

- In degenerate situations the query point can

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the cell of A containing q.

- In degenerate situations the query point can
- lie on an edge, or

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the cell of A containing q.

- In degenerate situations the query point can
- lie on an edge, or

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the cell of A containing q.

- In degenerate situations the query point can
- lie on an edge, or
- coincide with a vertex.

Arrangement Point Location

Given a subdivision A of the space into cells and a query point q, find the cell of A containing q.

- In degenerate situations the query point can
- lie on an edge, or
- coincide with a vertex.

Point Location Algorithms

- Traditional Point Location Strategies
- Hierarchical data structure
- Persistent search trees
- Random Incremental Construction
[Mul91, Sei91]
- Point-location in Triangulations
- Walk along a line
- The Delaunay Hierarchy
- Jump \& Walk

```
[DPT02]
[Dev02]
[DMZ98, DLM99]
```

- Other algorithms
- Entropy based algorithms
- Point location using Grid
[Ary01]
[EKA84]

Cgal Point Location Strategies

- Naive
- Traverse all edges of the arrangement to find the closest.
- Walk along line
- Walk along a vertical line from infinity.
- Trapezoidal map Randomized Incremental-Construction (RIC)
- Landmark

Walk Along a Line

- Start from a known place in the arrangement and walk from there towards the query point through a straight line.
- No preprocessing performed.
- No storage space consumed.
- The implementation in Cgal:
- Start from the unbounded face.
- Walk down to the point through a vertical line.
- Asymptotically $O(n)$ time.
- In practice: quite good, and easy to maintain.

Triangulation Point Location

- Preprocessing:
- Triangulate the planar map.
\star Triangles are much simpler than the arbitrary shapes of faces.
$\star O(n \log n)$ time and $O(n)$ space.
\star Retain relations between planar map vertices and triangulation.
- Query:
- Find the triangle P containing the query point q.
\star Walk from an arbitrary vertex.
$\star \quad O(n)$ time in the worst case, but $O(\sqrt{n})$ time on average, if the vertices are distributed uniformly at random.
- Find the face in the arrangement that contains the triangle P.

Landmark Point Location

- Given an arrangement \mathscr{A}

Landmark Point Location

- Given an arrangement \mathscr{A}
- Preprocess
- Choose the landmarks and locate them in \mathscr{A}.

Landmark Point Location

- Given an arrangement \mathscr{A}
- Preprocess
- Choose the landmarks and locate them in \mathscr{A}.
- Store the landmarks in a nearest neighbor search-structure.

Landmark Point Location

- Given an arrangement \mathscr{A}
- Preprocess
- Choose the landmarks and locate them in \mathscr{A}.
- Store the landmarks in a nearest neighbor search-structure.
- Answer query
- Given a query point q

Landmark Point Location

- Given an arrangement \mathscr{A}
- Preprocess
- Choose the landmarks and locate them in \mathscr{A}.
- Store the landmarks in a nearest neighbor search-structure.
- Answer query
- Given a query point q
- Find the landmark ℓ closest to q using the search structure.
\star The landmarks are on a grid \Longrightarrow Nearest grid point found in $O(1)$ time.

Landmark Point Location

- Given an arrangement \mathscr{A}
- Preprocess
- Choose the landmarks and locate them in \mathscr{A}.
- Store the landmarks in a nearest neighbor search-structure.
- Answer query
- Given a query point q
- Find the landmark ℓ closest to q using the search structure.
\star The landmarks are on a grid \Longrightarrow Nearest grid point found in $O(1)$ time.
- "Walk along a line" from ℓ to q.

Trapezoidal Map
 Randomized Incremental-Construction

- \mathscr{A} - an arrangement.

Trapezoidal Map
 Randomized Incremental-Construction

- \mathscr{A} - an arrangement.
- Preprocess
- For each segment in random order.

Trapezoidal Map
 Randomized Incremental-Construction

- \mathscr{A} - an arrangement.
- Preprocess
- For each segment in random order.
* Update the trapezoidal map.

Trapezoidal Map
 Randomized Incremental-Construction

- \mathscr{A} - an arrangement.
- Preprocess
- For each segment in random order.
* Update the trapezoidal map.
\star Insert the new trapezoid into a search structure.
- $O(n \log n)$ time, $O(n)$ space.

Trapezoidal Map
 Randomized Incremental-Construction

- \mathscr{A} - an arrangement.
- Preprocess
- For each segment in random order.
* Update the trapezoidal map.
\star Insert the new trapezoid into a search structure.
- $O(n \log n)$ time, $O(n)$ space.
- Answer query
- Given a query point q

Trapezoidal Map
 Randomized Incremental-Construction

- \mathscr{A} - an arrangement.
- Preprocess
- For each segment in random order.
* Update the trapezoidal map.
\star Insert the new trapezoid into a search structure.
- $O(n \log n)$ time, $O(n)$ space.
- Answer query
- Given a query point q
- Search the trapezoid in the search structure.

Trapezoidal Map
 Randomized Incremental-Construction

- \mathscr{A} - an arrangement.
- Preprocess
- For each segment in random order.
\star Update the trapezoidal map.
\star Insert the new trapezoid into a search structure.
- $O(n \log n)$ time, $O(n)$ space.
- Answer query
- Given a query point q
- Search the trapezoid in the search structure.
- Obtain the cell containing the trapezoid.
- $O(\log n)$ expected time (if the segments were processed in random order).

Point Location Complexity

Requirements:

- Fast query processing.
- Reasonably fast preprocessing.
- Small space data structure.

Point Location: Print

Print a polymorphic object.

```
template <typename Arrangement_>
void print_point_location(const typename Arrangement_:: Point_2& q,
    CGAL::Arr_point_location_result<Arrangement_ > ::Type& obj)
{
    typedef Arrangement_
    typedef typename Arrangement::Vertex_const_handle Vertex_const_handle;
    typedef typename Arrangement::Halfedge_const_handle Halfedge_const_handle;
    typedef typename Arrangement:: Face_const_handle Face_const_handle;
    const Vertex_const_handle* v;
    const Halfedge_const_handle* e;
    const Face_const_handle* f;
```



```
    if ((f = boost::get<Face_const_handle>(&obj))) // located inside a face
        std::cout << "inside」"
            << (((*f)->is_unbounded()) ? "the
            << "uface." << std::endl;
    else if ((e = boost::get<Halfedge_const_handle>(&obj))) // located on an edge
```



```
    else if ((v = boost::get<Vertex_const_handle>(&obj))) // located on a vertex
        std::cout << "on
            << "\iotavertex:५" << (*v)->point() << std::endl;
    else CGAL_error_msg("Invalid\sqcupobject."); // this should never happen
}
```


Point Location: Locate

```
template <typename PointLocation>
void locate_point(const PointLocation& pl,
    const typename Point_location::Arrangement_2::Point_2& q)
{
    typedef PointLocation Point_location;
    typedef typename Point_location::Arrangement_2 Arrangement_2;
    typename CGAL::Arr_point_location_result<Arrangement_2>::Type obj= = pl.locate(q);
    // Print the result.
    print_point_location<Arrangement_2>(q, obj);
}
```


Point Location: Example

```
// File: ex_point_location.cpp
#include <CGAL/basic.h>
#include <CGAL/Arr_naive_point_location.h>
#include <CGAL/Arr_landmarks_point_location.h>
#include "arr_inexact_construction_segments.h"
#include "point_location_utils.h"
typedef CGAL::Arr_naive_point_location<Arrangement_2> Naive_pl;
typedef CGAL::Arr_landmarks_point_location<Arrangement_2> Landmarks_pl;
int main()
{
    // Construct the arrangement.
    Arrangement_2 arr;
    construct_segments_arr(arr);
    // Perform some point-location queries using the naive strategy.
    Naive_pl naive_pl(arr);
    locate_point(naive_pl, Point_2(1, 4)); // q1
    // Attach the landmarks object to the arrangement and perform queries.
    Landmarks_pl landmarks_pl;
    landmarks_pl.attach(arr);
    locate_point(landmarks_pl, Point_2(3, 2)); // q4
    return 0;
}
```


Outline

(1) 2D Arrangements

- Definitions \& Complexity
- Representation
- Queries
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

The Zone of Curves in Arrangements

Definition (Zone)

Given an arrangement of curves $\mathscr{A}=\mathscr{A}(\mathscr{C})$ in the plane, the zone of an additional curve $\gamma \notin \mathscr{C}$ in \mathscr{A} is the union of the features of \mathscr{A}, whose closure is intersected by γ.

The zone of a line γ in an arrangement of lines.

The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone consists of.

Theorem (Zone Complexity)

The complexity of the zone of a line in an arrangement of n lines in the plane is $O(n)$. It can be computed in $O(n)$ time.

	Vertices	Edges	Faces	Total
Number	1	6	6	13
Complexity	1	17	41	53

The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone consists of.

Theorem (Zone Complexity)

The complexity of the zone of a line in an arrangement of n lines in the plane is $O(n)$. It can be computed in $O(n)$ time.

	Vertices	Edges	Faces	Total
Number	1	6	6	13
Complexity	1	17	41	53

The Zone of lines in an arrangement of Lines

The complexity of a zone is the total complexity of all features the zone consists of.

Theorem (Zone Complexity)

The complexity of the zone of a line in an arrangement of n lines in the plane is $O(n)$. It can be computed in $O(n)$ time.

	Vertices	Edges	Faces	Total
Number	1	7	7	15
Complexity	1	21	53	68

The Zone of lines in arrangement of Lines Complexity

- The number of left bounding edges of the faces in the zone of γ is $\leq 3 n$
- By symmetry, the number of right bounding edges is $\leq 3 n$ as well
- Proof by induction on n
- ℓ is the line that has the rightmost intersection with γ
- uw is a new left bounding edge-this adds 1
- ℓ splits a left bounding edge at u and w-this adds ≤ 2

- The proof assumes general position
- It can be extended to handle degeneracies.

The Zone of lines in arrangement of Lines Complexity

- The number of left bounding edges of the faces in the zone of γ is $\leq 3 n$
- By symmetry, the number of right bounding edges is $\leq 3 n$ as well
- Proof by induction on n
- ℓ is the line that has the rightmost intersection with γ
- uw is a new left bounding edge-this adds 1
- ℓ splits a left bounding edge at u and w-this adds ≤ 2

- The proof assumes general position
- It can be extended to handle degeneracies.

The Zone of lines in arrangement of Lines Complexity

- The number of left bounding edges of the faces in the zone of γ is $\leq 3 n$
- By symmetry, the number of right bounding edges is $\leq 3 n$ as well
- Proof by induction on n
- ℓ is the line that has the rightmost intersection with γ
- uw is a new left bounding edge-this adds 1
- ℓ splits a left bounding edge at u and w-this adds ≤ 2

- The proof assumes general position
- It can be extended to handle degeneracies.

Zone Application: Incremental Insertion

Definition (Incremental Insertion)

Given an x-monotone curve γ and an arrangement \mathscr{A} induced by a set of curves \mathscr{C}, where all curves in $\{\gamma\} \cup \mathscr{C}$ are well behaved, insert γ into \mathscr{A}.

- Find the location of one endpoint of the curve γ in \mathscr{A}.
- Traverse the zone of the curve γ.
- Each time γ crosses an existing vertex v split γ at v into subcurves.
- Each time γ crosses an existing edge e split γ and e into subcurves, respectively.

The Zone Computation Algorithmic Framework

Arrangement_zone_2 class template

- Computes the zone of an arrangement.
- Is part of 2D Arrangements package.
- Is parameterized with a zone visitor
- Models the concept ZoneVisitor_2
- Serves as the foundation of a family of concrete operations
- Inserting a single curve into an arrangement
\star The visitor modifies the arrangement operand as the computation progresses.
- Determining whether a query curve intersects with the curves of an arrangement.
- Determining whether a query curve passes through an existing arrangement vertex.
* If the answer is positive, the process can terminate as soon as the vertex is located.

Incremental Insertion

```
// File: ex_incremental_insertion.cpp
#include <CGAL/basic.h>
#include <CGAL/Arr_naive_point_location.h>
#include "arr_exact_construction_segments.h"
#include "arr_print.h"
int main()
{
    // Construct the arrangement of five line segments.
    Arrangement_2 arr;
    Naive_pl pl(arr);
    CGAL:: insert__non_intersecting_curve(arr, Segment_2(Point_2(1, 0), Point_2(2, 4)), pl);
    CGAL:: insert_non_intersecting_curve(arr , Segment_2(Point_2(5, 0), Point_2(5, 5)));
    CGAL:: insert(arr, Segment_2(Point_2(1, 0), Point_2(5, 3)), pl);
    CGAL:: insert(arr, Segment_2(Point_2(0, 2), Point_2(6, 0)));
    CGAL:: insert(arr, Segment_2(Point_2(3, 0), Point_2(5, 5)), pl);
    print_arrangement_size(arr);
    return 0;
}
```


Outline

(1) 2D Arrangements

- Definitions \& Complexity
- Representation
- Queries
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

The Plane Sweep Algorithmic Framework

- Initialize an event queue with all endpoints sorted lexicographically
- While the queue is not empty, extract and process an event
- Remove all x-monotone curves to the left of the current event point from a sorted container of curves
- Insert all x-monotone curves to the right of the current event point into the curve container
- Compute intersections between existing curves and newly inserted curves, and insert them into the event queue

Plane Sweep: Event Queue

- Implemented as a balanced binary search tree (say red-black tree)
- Operations, m-number of events.
- Fetching the next event- $O(\log m)$ amortized time.
- Testing whether an event exists- $(O(\log m)$ amortized time.
\star Cannot use a heap!
- Inserting an event- $O(\log m)$ amortized time.

Plane Sweep: Status Structure

- Is a dynamic one-dimensional arrangement along the sweep line.
- Implemented as a balanced binary search tree
- Interior nodes -- guide the search, store the segment from the rightmost leaf in its left subtree.
- Leaf nodes - segments.
- Operations- $O(\log n)$ amortized time.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.
- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.
- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.
- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.
- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.
- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated.

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves
≤ 2 events are generated. $>$

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves

Plane Sweep Complexity

Theorem

All points of intersection between the curves in \mathscr{C} can be reported in $O((n+k) \log n)$ time and $O(n)$ space.

- \mathscr{C}-a set of $n x$-monotone curves in the plane.
- k-the number of intersection points.
- Constructing the event queue takes $O(n \log n)$ time.
- p-an event
- p is fetched and removed from the event queue.
- p is handled once.
- If p does not have right curves
≤ 1 event is generated.

- If p has right curves

Plane Sweep Space Complexity

- The status-structure size is in $O(n)$
- The event-queue size is definitely at most $2 n+k$
- It can be shown that the event-queue size is in $O\left(n \log ^{2} n\right)$
- The event-queue size can be kept linear.
- Points of intersections between pairs of curves that are not adjacent on the sweep line are deleted from the event queue.
- It increases the time complexity but only by a constant factor

Aggregate Insertion

```
// File: ex_aggregated_insertion.cpp
#include "arr_exact_construction_segments.h"
#include "arr_print.h"
int main()
{
    // Aggregately construct the arrangement of five line segments.
    Segment_2 segments[] = {Segment_2(Point_2(1, 0), Point_2(2, 4)),
        Segment_2(Point_2(5, 0), Point_2(5, 5)),
        Segment_2(Point_2(1, 0), Point_2(5, 3)),
        Segment_2(Point_2(0, 2), Point_2(6, 0)),
        Segment_2(Point_2(3, 0), Point_2(5, 5))};
    Arrangement_2 arr;
    CGAL::insert(arr, segments, segments + sizeof(segments)/sizeof(Segment_2));
    print_arrangement_size(arr);
    return 0;
}
```


Outline

(1) 2D Arrangements

- Definitions \& Complexity
- Representation
- Queries
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Handling Enpoints at Infinity

Clipping the unbounded curves

- Simple, the sweep algorithm is unchanged
- Not online
- The resulting arrangement has a single unbounded face

Using an infimaximal box

- Not simple
- May require large bit-lengths
- Designed for linear objects
- Online (no need for clipping)
- The resulting arrangement has multiple unbounded faces (and a single ficticious face)

Arrangement of (Unbounded) Lines

Vertices of Unbounded Arrangement

There are 4 types of unbounded-arrangement vertices
(1) A "normal" vertex associated with a point in \mathbb{R}^{2}.
(2) A vertex that represents an unbounded end of an x-monotone curve that approaches $x=-\infty$ or $x=\infty$.
(3) A vertex that represents the unbounded end of a vertical line or ray or of a curve with a vertical asymptote (finite x-coordinate and an unbounded y-coordinate).
(9) A fictitious vertices that represents one of 4 corners of the imaginary bounding rectangle.

A vertex at infinity of Type 2 or Type 3 always has three incident edges:

- 1 edge associated with an x-monotone curve, and
- 2 fictitious edges connecting the vertex to its adjacent vertices at infinity or the corners of the bounding rectangle.

Sweeping Unbounded Curves

- Curves may not have finite endpoints
- Initializing the event queue requires special treatment
- Intersection events are associated with finite points

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

The Augmented Sweep Line for Unbounded Curves

- Categorize all curve ends
- Initialize an event queue with all curve ends sorted lex.
- Ends of unbounded curves do not coincide
- Comparison between events are available through the traits
- While the queue is not empty proceed as usual
- No need to look for unbounded events in the status line!

Outline

(1) 2D Arrangements

- Definitions \& Complexity
- Representation
- Queries
- Vertical Decomposition
- Point Location Queries
- The Zone Computation Algorithmic Framework
- The Plane Sweep Algorithmic Framework
- Arrangement of Unbounded Curves
- Literature

Arrangement Bibliography I

Boris Aronov and Dmitriy Drusvyatskiy
Complexity of a Single Face in an Arrangement of s-Intersecting Curves
arXiv:1108.4336, 2011
Jon Louis Bentley and Thomas Ottmann.
Algorithms for Reporting and Counting Geometric Intersections.
IEEE Transactions on Computers, 28(9): 643-647, 1979.
Eric Berberich, Efi Fogel, Dan Halperin, Michael Kerber, and Ophir Setter.
Arrangements on parametric surfaces ii: Concretizations and applications, 2009.
Mathematics in Computer Science, 4(1):67-91,2010.
Ulrich Finke and Klaus H. Hinrichs.
Overlaying simply connected planar subdivisions in linear time.
In Proceedings of $11^{\text {th }}$ Annual ACM Symposium on Computational Geometry (SoCG), pages 119-126. Association for Computing Machinery (ACM) Press, 1995.

Ron Wein, Efi Fogel, Baruch Zukerman, Dan Halperin, and Eric Berberich.
2D Arrangements.
In Cgal Editorial Board, editor, Cgal User and Reference Manual. 4.4 edition, 2014.
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html\#Pkg: Arrangement2.
David G. Kirkpatrick.
Optimal search in planar subdivisions.
SIAM Journal on Computing. 12(1):28-35,1983.
N. Sarnak and Robert E. Tarjan.

Planar point location using persistent search trees.
Communications of the ACM. 29(7):669-679, 1986.
Kentan Mulmuley.
A fast planar partition algorithm, I.
Journal of Symbolic Computation. 10(3-4):253-280,1990.

Arrangement Bibliography II

Raimund Seidel
A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons.
Computational Geometry: Theory and Applications. 1(1):51-64, 1991.
Olivier Devillers, Sylvain Pion, and Monique Teillaud.
Walking in a triangulation.
International Journal of Foundations of Computer Science. 13:181-199,2002.
Luc Devroye Christophe, Christophe Lemaire, and Jean-Michel Moreau.
Fast Delaunay Point-Location with Search Structures.
In Proceedings of $11^{\text {th }}$ Canadian Conference on Computational Geometry. Pages 136-141, 1999.
Luc Devroye, Ernst Peter Mücke, and Binhai Zhu.
A Note on Point Location in Delaunay Triangulations of Random Points.
Algorithmica. 22:477-482, 1998.
Olivier Devillers.
The Delaunay hierarchy.
International Journal of Foundations of Computer Science. 13:163-180, 2002.
Sunil Arya
A Simple Entropy-Based Algorithm for Planar Point Location.
ACM Transactions on Graphics. 3(2), 2007
Masato Edahiro, Iwao Kokubo, And Takao Asano
A new Point-Location Algorithm and its Practical Efficiency: comparison with existing algorithms ACM Transactions on Graphics. 3(2):86-109, 1984.

Micha Sharir and Pankaj Kumar Agarwal
Davenport-Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, New York, NY, 1995.

Arrangement Bibliography III

Bernard Chazelle, Leonidas J. Guibas, and Der-Tsai Le.
The Power of Geometric Duality.
BIT, 25:76-90, 1985.
Herbert Edelsbrunner,
Algorithms in Combinatorial Geometry,
Springer, Heidelberg, 1987.
Mark de Berg, Mark van Kreveld, Mark H. Overmars, and Otfried Cheong.
Computational Geometry: Algorithms and Applications.
Springer, $3^{\text {rd }}$ edition, 2008.
Herbert Edelsbrunner, Raimund Seidel, and Micha Sharir.
On the Zone Theorem for Hyperplane Arrangements.
SIAM Journal on Computing. 22(2):418-429,1993.
Silvio Micali and Vijay V. Vazirani.
An $O(\sqrt{|V| \mid}|E|)$ Algorithm for Finding Maximum Matching in General Graphs.
Proceedings of $21^{\text {st }}$ Annual IEEE Symposium on the Foundations of Computer Science, pages 17-27, 1980.
Jack Edmonds.
Paths, Trees, and Flowers.
Canadian Journal of Mathematics, 17:449-467,1965.
Robert Endre Tarjan.
Data structures and network algorithms, Society for Industrial and Applied Mathematics (SIAM), 1983.
Marcin Mucha and Piotr Sankowski.
Maximum Matchings via Gaussian Elimination
Proceedings of $45^{\text {th }}$ Annual IEEE Symposium on the Foundations of Computer Science, pages 248-255, 2004.

Arrangement Bibliography IV

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine.
The Boost Graph Library.
Addison-Wesley, 2002

Efi Fogel, Ron Wein, and Dan Halperin.
Cgal Arrangements and Their Applications, A Step-by-Step Guide. Springer, 2012.

