
Applied Computational Geometry — Spring 2009 — Dan Halperin

Assignment no. 4

due: Thursday, June 11th, 2009

This assignment has been prepared by Efi Fogel, efif@post.tau.ac.il. Feel free to contact Efi for
advice and assistance.

The topic of this assignment is Minkowski sums of polytopes. For two polytopes P and Q in R
3, their

Minkowski sum denoted P ⊕ Q is the set {p + q | p ∈ P, q ∈ Q}.

Exercise 4.1: Width of polytopes (50 points)
Let P be a set of point in R

3. The width of P is the minimal distance between a pair of parallel planes
such that the closed region between the planes contains P .
Develop code that computes the squared width of a polytope using three different methods described
below. Compare the performance of the different methods on various input polytopes. Could you
explain the source of the differences?
The three methods are:

1. Computing the width directly using CGAL::Width 3.
2. Computing the width using Minkowski sums, where Minkowski sums are computed using convex

hulls (CGAL::convex hull 3).
3. Computing the width using Minkowski sums, where Minkowski sums are computed using (spher-

ical) Gaussian maps (CGAL::Arr polyhedral sgm).
Implement an application called width that accepts a name of a file as a single argument in the
command line. The input file describes a polytope in a format very similar to Vrml, but you really
don’t have to bother with details. The application parses the input file, applies the methods above
sequentially, verifies that the computed values are identical, and prints out the results.
Assuming a file called tetrahedron.wrl resides in the current directory, typing

width tetrahedron.wrl

should result with:

tetrahedron sd t1 t2 t3

where sd is the squared width of the polytope described by the input file tetrahedron.wrl, and t1,
t2, and t3 are the number of seconds it took to compute the squared width using the three methods
above, respectively. All numbers are real.

Facilitating the parsing of input files

Use the lexical and syntactical parsers provided as part of the viewer application presented below
to parse files that describe polytopes. Additional information regarding compilation instructions and
input files is provided in the course web-page.



Exercise 4.2: Morphing between two polytopes (50 points)
Develop an application that morphs between two given polytopes P0 and P1 in R

3. The intermediate
shape M(t) for t ∈ [0, 1] is defined as M(t) = (1 − t)P0 ⊕ tP1, where tP = {tp | p ∈ P} is the result of
scaling P . Clearly, M(0) = P0 and M(1) = P1.
The key idea behind an efficient procedure for this type of morphing is exploiting the structure of
the family of polytopes {M(t) | t ∈ (0, 1)}. Recall that (i) the Gaussian map (also referred to as the
normal diagram) of the Minkowski sum of two polytopes is the overlay of the Gaussian maps of the
two summands, and (ii) the combinatorial structure of the Gaussian maps of the two summands does
not change under scaling.
Implement a function object called Morph polytope. Its constructor accepts references to three poly-
topes P0, P1, and M , where M is a placeholder for the Minkowski sum P0 ⊕ P1. Each call to the
member function operator()(t) of Morph polytope should result with M(t). Plug the function ob-
ject Morph polytope in the viewer application described below.

A Ready-Made Viewer

An application that allows you to view multiple polyhedra was created for your convenience. Use this
ready-made viewer to produce an animation that shows all the morphs in succession. The application
details follow.
The application parses multiple files provided in the command line. Each file describes a polytope in
a format very similar to Vrml. It opens a window, creates a graphics context, computes the viewing
parameters so that all the polytopes are visible, and renders them into the window.
The application uses a class called Polyhedron viewer. It contains a data member of type Cgal

Polyhedron 3 that represents a polytope, and a few other functions, for example:
• parse(char * filename) — parses the given file.
• draw() — draws the polytope.
• update() — updates the Polyhedron 3 internal structure.

For each input file the application creates an instance of Polyhedron viewer and pushes it into a global
container of Polyhedron viewer’s called s polyhedra. Then, the application computes the bounding
sphere of all polyhedra stored in this container, and uses it to compute the point-of-view and viewing
frustum of the graphic context. Finally, it renders all the polytopes stored in the container s polyhedra

onto the window, and is suspended, unless the ‘-m 1’ option is provided on the command line. In this
case, the application is not suspended. Instead, the function ‘idle’ is invoked in a cycle. Use it to apply
the morphing on the polyhedra. Additional information regarding compilation instructions and input
files is provided in the course web-page.

Exercise 4.3: Gaussian maps, optional (20 points)
(a) Show that not every convex subdivision on a sphere induced by geodesic arcs of length strictly less
than 180◦ degrees is a valid Gaussian map.
(b) Consider the cubical Gaussian map data structure.

• How many planar maps (of the 6) at most contain faces which are the mapping of a single vertex
of a polytope? Show an example.

• How many planar maps (of the 6) at most contain edges which are the mapping of a single edge
of a polytope? Show an example.


