APPLIED aspects of
COMPUTATIONAL GEOMETRY

A Gentle Introduction to {0l

Eric Berberich
School of Computer Science
Tel Aviv University

'Convex Hull

= Input: set of points P (or objects)

= Output: the convex hull, i.e., smallest convex
set S with P being subset of S

= Now: Demo

' Convex Hull in CGAL-C++

#include<CGAL/Exact predicates inexact constructions kernel.h>
#include <CGAL/convex hull _2_h>
#include <vector>

typedef CGAL::Exact predicates inexact constructions kernel K;
typedef K::Point 2 ;
int main() {
std::vector< Point_2 > iIn, out;
in.push_back(); in.push_back(Point _2(2,4));
in.push_back(Point_2(1,3)); in.push_back(Point_2(-3,10));
in.push_back(Point _2(-10,-23)); in.push_back(Point _2(5,-2));

CGAL: :convex_hull_2(in.begin(), in.end(), std::back inserter(out));
return O;

‘ L esson overview

= Example ©
= CGAL

o Overview
o Generic Programming
o More simple examples

s Three showcases:
o Convex Hull - reloaded
o (Delaunay) Triangulation
o Arrangement

m CGAL-Setup + Installation

Schedule:
16:10-17:00
17:10-18:00
18:10-19:00

' CGAL - Goals & Ingredients

= robust geometric computing
o Robust (correctness, degeneracies)
o Efficient (nevertheless: reasonable fast)
o Ease of use (for users)
o Homogeneity

= Implementations of geometric
0 , Kernels
o Algorithms + Data structures

‘ History + Facts

s Started in 1995. CGAL 1.0 in 1997
= Following the generic programming paradigm

s Consortium of research institutes
(TAU, MPI, Inria, ETH,...) + Geometry Factory

m ~20-30 active developers
» Release every 6 months: Newest v3.4

= Licenses: Open source + commercial (if code should
be hidden)

s Editorial Board reviews new software

CGAL 1-2-3

s Geometric , €.9., /
o Points, Lines, Segments, Circles Q
m Geometric e.g

o Orientation of three points

o Point in circle
o Intersections of segments + circle

CGAL 1-2-3

= = (Kernel)
o 2D, 3D, dD
o Exact, Filtered
o Cartesian or homegeneous coordinates
a

Reference counting (actual rep of objects stored
only once, access by light-weight handles)

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/packages.html#part_III

'CGAL 1-2-3 (Alg + DS)

s Combinatorial algorithm & data structures

o Convex Hull, Triangulations, Arrangement, Voronoi,
Meshing, Optimization, Kinetic Data structures

o Execution path/status based on of

o Algorithm/structure expects a certain set of types,

operations: it defines
(more in part on generic programming)

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/packages.html#part_IV

‘ CGAL 1-2-3 (Models)

= |nstantiation with a defines behavior:
o Arrangement of
o We usually refer to a for such a model

o Often: Kernel can already serve as parameter

10

‘CGAL ...and 4

= Support library
o STL extensions, Circulators, Generators
o Adapters, e.g., Boost graph
o Sorting + Linear/quadratic programming
= "Math” - for predicates (and constructions)
o Algebraic foundations
Q + Arithmetic
o Polynomials

= |O + Visualization support

11

‘ Number types

= Build-in: int, double, ...
o Fast, but inexact

s CGAL:
o “Exact”: Quotient, MP_Float, Root_of 2
o Lazy_exact_nt<NT> (tries an approximation, first)

s Boost:
o interval

s GMP:
o Gmpz, Gmpq
= LEDA & Core:

o Integer, Rational, “Reals”
s Possible to provide own number types

12

‘ Rationale: Correctness

= Design to deal with all cases

m Robusthess issues

o Exact evaluation (and maybe construction)

= Sign of expression (complicated if close to 0)

= Rounding problems (esp. for real numbers, as sqrt)
o Handling of all combinatorial degeneracies

= Three points on a line
= Several curves running through the same point

13

'Rationale: Flexibility

= Rely on other libraries

s Modular: Separation between
o Geometry
o Topology / Combinatorics

= Possibility to provide own (geometric) types
and operations on them

m Data structures and algorithms are extendible
o own sweep line based algorithm on set of curves

14

‘ Rationale: Ease of use

= Manuals

s Examples

x Demos

s Standard-Design: C++, STL, Boost
= Smooth learning curve

= Nemo would say: Templates are your friends

15

‘ Rationale: Efficiency

= Implements state-of-the art algorithms taken
from within academia

n Efficient geometric objects and operations
= Filtering

o Compute first approximate version
o If not sufficient: Exact version

= Polymorphism resolved at compile-time
o no virtual function table overhead

m Select best option (due to flexibility)

16

' Generic Programming

= Generic implementations consists of 2 parts:
o Instructions that determine control-flow or updates

o Set of requirements that determine the properties
the algorithm’s arguments/objects must satisty
= We call such aseta

o It is abstract, i.e., not working without being
instantiated by a that fulfills the concept

17

' Generic Programming

= Example: Car with empty engine-bay
o Supposed to drive,

o Different models available
= Diesel
= Gas engine
= Electrical engine
= Your own engine ... as long at it “fits”:

o Interface:
= drive-axis
= Mount-points
= ... and some more

18

A C++ example

= Swap:

= Argument: type | which must be
o default constructible

0 assignable
m INta=2, b=4; std::swap(a,b);

19

' Two other C++ examples

= Vector + Sort

std::vector< int > v = {3, 4, 2, 1, 5};
std: :sort(v.begin(),v.end());
int 1 =v[2]; // =2

double w[4] = {8.4, 2.1, 4.2, 4.5, 1.1};
std::sort(w,w+4);
double d = w[3]; /7 4.2

s std::vector<T>is a container to store objects of type T

o is a model of Container concept
= Provides random access iterator (“.begin()”, w+4)
= Provides operator|[]

s Sort expects arguments
o to be random access iterator
o The iterator’s value-type is LessThanComparable

20

‘ Sorting again

= Sort with another “Less”
template< class NT >
class MylLess {
bool operator(QQ(NT &a, NT &b) {
return a > b;

}
}

std::vector< int > v = {3,4,2,1,5};
std::sort(v.begin(),v.end(), MyLess<int>());
int 1 =v[2]; // = 4

= Simpler:
std::sort(v.begin(),v.end(), std::greater<int>());

21

' Generic Programming

= GP is widespread:
o STL, Boost, STXXL, CGAL

= Terms to remember:
o Model + Concept, Refinement
o Class + Function Template + Template parameter
o Traits (I'll explained it below)

s STL-Examples of generic algorithms & data structures:
o lterators, Adapters (insert)
o copy, search, reverse, unique, random_shuffle, ...
o list, set, queue, ...
o see

http://www.sgi.com/tech/stl/

' Geometric Programming

= Generic Programming

s Exact Geometric Computing Paradigm (vy Yap)

o All predicates asked by a combinatorial algorithm
compute the correct answer

s Example:

CGAL: zconvex_hull _2(in.begin(), in.end(), std::back inserter(out));

= More examples in this lecture — and now

23

‘ Example: Kernels<NumberType>

s Cartesian< FieldNumberType>
o typedef CGAL::Cartesian< gmpg > K;

o typedef CGAL::Simple _cartesian< double > K;
// no reference-counting, inexact instantiation

= Homogeneous< RingNumberType >
o typdef CGAL::Homogeneous< Core::Biglnt > K;

s d-dimensional Cartesian_d and Homogeneous d
= Types + Operations

o K::Point_2, K::Segment_3

o KiLess_xy 2, K::Construct_bisector_3

24

‘ Predefined Kernels

n 3 pre-defined Cartesian Kernels
o construction of points from double Cartesian coordinates.

o exact geometric predicates.

o They handle geometric constructions differently:

Exact _predicates exact _constructions_kernel

Exact _predicates exacl_constructions_kernel with_saqrt
its number type supports the square root operation exactly

Exact _predicates _inexact_constructions _kerne/
geometric constructions may be inexact due to round-off errors.
It is however enough for most CGAL algorithms, and faster

25

‘ Special Kernels
= Filtered kernels
m Circular kernel 2

m Circular kernel 3

s Refer to CGAL’s manual for more details

26

‘ Example: Orientation of points

= #include <CGAL/MP_Float.h>
#include <CGAL/Homogeneous.h>

typedef CGAL::Homogeneous<CGAL::MP_Float> Kernel;
typedef Kernel::Point_2 Point 2;
typedef Kernel::Orientation 2 Orientation 2;

int main() {
Kernel kernel;

// option 1:
Orientation_2 orientation =
Kernel .orientation_2 object();
Point 2 p(1,1), q(10,3), r(12,19);
1T (orientation(q,p,r) == CGAL::LEFT _TURN) {

// option 2:
it (CGAL::orrentation(p,r,Point(0,0)) return 1;

return O;

}

= Similar for other (kernel) predicates

27

‘ Example: Intersection of lines

= Given two lines, compute intersections

| |
using CGAL; //

int main() {
Kernel kernel;

1T (do_intersect(ll, 12))
CGAL:: obj = intersection(ll1, 12);
iIT (const Point_2 *point = CGAL:: <Point_2>(&obj)) {
/* do something with *point */
} else if (const Segment 2 *segment = <Segment_2>(&obj)) {
/* do something with *segment */
+
+

return O;

}

28

‘ Break 1

m Lecture continues at 17:10 ... then:
o Convex hull reloaded
o Triangulation

29

'Convex Hull

= Demo: CGAL::convex_hull_2
= But several other algorithms exists:

#include <CGAL/Exact predicates inexact constructions kernel_.h>
#include <CGAL/ch_graham_andrew.h>
typedef CGAL::Exact predlcates Inexact constructions _kernel K;
typedef K::Point 2 ;
int main() {
CGAL::set_ascii_mode (std::cin);
CGAL::set_ascii_mode (std::cout);
std::istream _iterator< Point 2 > iIn_start(std::cin);
std::istream_iterator< Point_2 > In_end;
std: :ostream_iterator< Point 2 > out(std::cout, "\n");

// nice way to read and write to std::io ©
CGAL::ch _graham andrew(in_start, in_end, out);
return O;

30

'Beyond CGAL::convex_hull_2

= Given n points and h extreme points ()
o CGAL::ch_akl_toussaint O(n log n)

o CGAL::ch_bykat O(nh)

o CGAL:ch_eddy O(nh)

o CGAL..ch_graham_andrew O(n log n)

o CGAL:..ch jarvis O(nh)

o CGAL:..ch_melkman O(n) (simple polygon)

= All define the same concept:
ConvexHullTraits 2

31

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/Convex_hull_2/Chapter_main.html#Section_11.2

‘ ConvexHullTraits 2

m template <class Inputlterator, class Outputlterator> Outputlterator
convex_hull_2(Inputlterator first, Inputlterator beyond,
Outputlterator result,
Traits ch_traits = Default_traits)

m Default_traits is the kernel in which the type /nputlterator::value_type is defined
m [ype:
s Operations on n points as functors

o n=2:
o n=3:
(see manual for later two)
s Misc:

o CopyConstructor for traits class
o traits.equal_2 object(), ...

32

‘ Models for ConvexHullTraits 2

m Kernel 2 ©
s Convex hull traits 2<R>

= Convex_hull_constructive_traits_2<R>
o avoids repeated constructions (e.g., determinants)
s Convex_hull_projective_xy_traits_2<Point_3>

o used to compute the convex hull of a set of 3D
points projected onto the x)~plane
(7.e., by ignoring the z coordinate).

o similar for xz and yz

33

‘ CH-Substructures

s CGAL:lower_hull_2, CGAL::upper_hull_2

o Computation of extreme points of proper hull in CCW order.

o Andrew's variant of Graham's scan algorithm, O(n log n)

s CGAL:.ch_jarvis_march

o sorted sequence of extreme points on the convex hull
between start and stop point

s CGAL:.ch_graham_andrew_scan
o sorted sequence of extreme points not left to a given line

34

'CH Misc - /algorithm?

= Special extreme points (?)
o0 CGAL::ch_nswe point (4 at once)
o0 CGAL::ch_ns point, CGAL::ch_we poilnt (2 at once)
o0 CGAL::ch _n point, CGAL::ch_s point,
CGAL::ch_w _point, CGAL::ch_e point (single)
= Convexity

o0 CGAL::i1s_ccw _strongly convex 2 and
CGAL::-1s _cc strongly convex 2
check whether a given sequence of 2D points forms a
(counter)clockwise strongly convex polygon (postcondition)

35

‘ Triangulation r

Given set of points P in the plane

Compute a set T of triangles

o Interior disjoint: two only shares an edge or a vertex
o Adjacent: two triangle share an edge and the induced graph

IS connected

o Union of triangles has no singularity (surrounding
environment is neither a topological ball or disc)

=> Simplicial complex

Now: Demo

NS\
NV

LAY

36

‘ Triangulation: Example

‘ Triangulation: Properties

= Each triangle can have an orientation

o Induces orientation on edges
o Orientation of two adjacent triangles is , If
the shared edge has different orientation in each

= Triangulation is , If orientation of
each triangle can be chosen, such that all
pairs of adjacent triangles are consistent.

38

'Triangulation in CGAL

= Supports any orientable triangulations
o without boundaries
0 possible to embed triangulation geometrically

o Complete, i.e., domain is convex hull © of all
vertices

s Thus, T is a planar partition of the CH
o Complement of CH is not triangular:

o Infinite vertex, to which all vertices
of CH are connected

= =>only triangles:

fite & "infinte’ A Nfs 9 e

‘ Triangulation: First example code

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_2.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_2<K> Triangulation;

typedef Triangulation::Vertex_circulator Vertex_circulator;

typedef Triangulation::Point Point;

int main() {
std::vector< Point > pts =
{ Point(0,0), Point(1,2), Point(3,2), Point(2,2), Point(4,7) };
Triangulation t;
t.insert(pts.begin(), pts.end());

Vertex_circulator vc = t.incident_vertices(t.infinite_vertex()), done(vc);
if (ve 1= 0){
do {
std::cout << vc->point() << std::endl;
} while(++vc != done);

return O;

}

40

'Software Design

= [riangulation_2< >
= parameters (more on next slides)

o Access through iterators and circulators
m See operations below

o Tests for infinity-ness
o Point location
o Maodification: Insert, delete, flipping

41

‘ Triangulation: Geometry Traits

m Three types: Point_2, Segment_2, Triangle 2

s Operations:
o Comparison of points’ x- and y-coordinates
o Orientation test for three points

s Examples:
o Triangulation_euclidean_traits_2<K>

o Triangulation_euclidean_traits_xy_3<K>
= Ignores z-coordinates

= Useful for terrain, e.g.,
in Geographic Information Systems

42

‘ Triangulation data structure

= Container class for vertices and faces
o themselves,
o and their incidences and adjacencies
= Responsible for the of T

o Operations are purely topological
= Insert a vertex in a face/edge
= Flip two edges (one of next slides)

o l.e., do not depend on the geometric embedding
= More detalls

43

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/TDS_2_ref/Concept_TriangulationDataStructure_2.html#Cross_link_anchor_1177

‘ Triangulation: Representation

= Based on vertices and faces, not edges

o Saves storage
o Results in faster algorithms

= Access of triangle neighbor (cw(3))

o Three incident vertices,
indexed 0,1,2 in CCW

o nerghbor (1) is opposite
to vertex(i)

44

‘ Operations: Access

= INt t.dimension()
o Returns the dimension of the convex hull.

m S1ze type t.number_ of vertices()
size type t.number of faces()

o Returns the number of finite vertices/ finite faces

s Face handle t.infinite face()
o a face incident to the infinite vertex

» Vertex handle t.infinite vertex()
o the infinite vertex

= Vertex handle t.finite vertex()
o a vertex distinct from the infinite vertex

45

‘ Triangulation: Traversal

= Via circulators/iterators

o All _face_i1terator, All _edges i1terator,
All vertices iterator

= Similar for finite counterparts only
o Point _iterator

o Vertex circulator, Edge circulator,
Face circulator

= Circulate features around a given vertex

= ... and handles (allow * and ->)
o Vertex _handle, Edge handle, Face handle

46

‘ Operations: Predicates

bool 1s_iInfinite(Vertex _handle v)
o True iff v is infinite

bool 1s edge(Vertex handle va,
Vertex handle vb)

o True iff there is an edge between va and vb as vertices

bool 1s face(Vertex handle va,
Vertex _handle vb, Vertex handle vc)

o True iff there is a face having va, vb and vc as vertices
and more ... read manual

47

‘ Locate

= Face_handle t.locate(Point q, ...)

o Returns a face (triangle) that contains g in its
interior or its boundary

o Special result if g lies outside T, see

m Similar version that also returns

o enum: VERTEX, EDGE, FACE,
OUTSIDE_CONVEX_HULL,
OUTSIDE_AFFINE_HULL

o if VERTEX or EDGE: index |

48

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/Triangulation_2_ref/Class_Triangulation_2.html#Cross_link_anchor_1166

‘Triangulation: Modifiers |

= Insert

o Vertex _handle t.insert(Point p,..)
= Similar version with previous enum + index

o template< class Inputlter >
int t.insert(Inputlter begin, Inputlter end)

NN

R
] m) e\r/nooivde t.remove(Vertex _handle v) Qv‘%

49

‘Triangulation: Modifiers ||

= Flip

o void t.flip(Face handle T, Int 1)

s Exchanges the edge incident to fand /~>nejghbor{i)
with the other diagonal of the quadrilateral formed by 7
and f->ne/'g/7bor_(/).

cew(i)

50

‘ Triangulation: More operations

= Line walk

s Convex hull traversal
s Circumcenter

= 1O

51

'More Triangulations

Triangulation

‘ Delaunay ’ Constrained

Constrained
Delaunay

b 4
b 4

Regular

52

‘ Delaunay Triangulation

= Fullfilling the

d

o Unique, if point-set contains
not subset of four co-circular
points

o Its dual corresponds to
P’s diagram

53

' Traits concepts for Delaunay

x Geometry traits:
o Add test for side of oriented circle ().

= Delaunay triangulation data structure
o |s based on known one for triangulations

o Overwrites insertion / removal,
respecting now delaunay property

2 New member to access nearest neighbor
2 Provides access to Voronoi diagram

54

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/Triangulation_2_ref/Concept_TriangulationTraits_2.html#Cross_link_anchor_1164

‘ Example: Delaunay for a terrain

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_euclidean_traits_xy_ 3.h>

#include <CGAL/Delaunay_triangulation_2.h>

#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL:: Triangulation_euclidean_traits_xy 3<K> Gt;

typedef CGAL::Delaunay_triangulation_2<Gt> Delaunay;
typedef K::Point_3 Point;

int main() {
std::ifstream in("data/terrain.cin");
std::istream_iterator<Point> begin(in);
std::istream_iterator<Point> end;

Delaunay dt; //

dt.insert(begin, end);

std::cout << dt.number_of_vertices() << std::endl;
return O;

55

‘ Beyond 2D

= [riangulations in 3D

= Periodic Triangulations (upcoming)
= Meshing
= and much more ...

56

‘ Break 2

m Lectures continues at 18:10 ... then:

o All about arrangements
o CGAL-Installation
o Help for upcoming excercise

57

‘ Example: Boolean Set Operations

= Given polygons P, Q ('

s Compute Boolean operations on them

o Intersection ‘
o Union

o (Symmetric) Difference

= Now: Demo in CGAL

‘ Arrangements

= Given set of curves C + isolated points P (2D)
s Compute induced decomposition of plane into

cells of dimension 2,1, and O

= Arrangement_2 package
o Data structure + Algorithm

o General input curves,

Internal x-monotone
o Extensions

59

‘ Arrangements: DCEL

= Arrangement in stored as DCEL
(doubly-connected-edge-list)

o Vertices

o (Half)edges
o Faces fo

o CCB of face

= Cycles of
halfedges

= Outer (CCW)
= Inner (CW)

o Circulators

= Edges around v
= Along CCB

‘ Arrangements: DCEL

= Associations:
o Edge: X_monotone_curve_2

2 Vertex: Point_2
o Faces: implicit

61

‘Arrangement: Define instance

s Arrangement_2< , Dcel >
o recently Dcel has been replaced (omit details here)
s GeometryTraits must be a model of

o Types:
s Curve 2
= X _monotone curve_ 2
= Point 2
o Operations: later, when we introduced some algorithms

o ArrangementTraits_2 is leaf in a refinement tree

s Compare to others: expects most number types + operations
(for all algorithms/structures that we present today)

= More details in CGAL manual

62

‘Arrangement: Available Curves

= In Arrangement_2 package

Q

L U 0O 0O O

Q

Segments
Poly_segments
Linear Objects

Circular Arcs (+ segments)
Arcs of conics (e.g., ellipses, hyberbola, parabola)
Graphs of functions f(x) = p(x)/q(x) R —
Bezier curves

= In CGAL

a
a

Circular Kernel

Algebraic curves of any degree (only internal)
= Now: Online Demo

63

‘ Arrangement of line segments

#include <CGAL/Simple_cartesian.h>
#include <CGAL/ >
#include <CGAL/Arrangement 2.h>

typedef iInt Number_ type;

typedeft CGAL: Slmple cartesian<Number _type> Kernel;
typedeft CGAL: ;
typedef Tralts 2::-Point 2 ;

typedef Traits 2::X_monotone curve_ 2 ;
typedef CGAL::Arrangement 2<Traits 2> Arrangement 2;

typedef Arrangement 2::Vertex handle Vertex_ handle;
typedef Arrangement_2::Halfedge handle Halfedge handle

int main O {
Arrangement_2 arr;
/* more below ...*/

}

64

‘ Basic insertions into DCEL

(a) (b)

= (d) Connecting two compenents
o Merges CCB

= (e) Insert isolated point

‘ Arrangement: Insert curves/points

" int main () {

Arrangement_2 arr;

Segment 2 s1 (Point 2 (1, 3), Point 2 (3, 5));
Segment_2 s2 (Point_2 (3, 5), Point 2 (5, 3));
Segment_2 s3 (Point_2 (5, 3), Point 2 (3, 1));
Segment_2 s4 (Point_ 2 (3, 1), Point 2 (1, 3));
Segment_2 s5 (Point_ 2 (1, 3), Point 2 (5, 3));

Halfedge handle el =

arr.insert_in_Tface_interior (sl, arr.unbounded face());

Vertex_handle vl = el->source();

Vertex_handle v2 = el->target();

Halfedge_handle e2 =
arr._insert_from_left_vertex (s2, v2);

Vertex_handle v3 = e2->target();
Halfedge_handle e3 =
arr.insert_from_right_vertex (s3, v3);

Vertex_handle v4 = e3->target();
Halfedge_handle e4 =
arr.insert_at vertices (s4, v4, vl);

Halfedge_handle e5 =
arr.insert_at vertices (s5, vl, v3);

return O;

There is also CGAL.::insert_vertex(f)

66

‘ Arrangement: Insert curve/point

= Basic insertions are — for a user!
o Needs to split curves to be all interior disjoint
0 ensure proper calls

= Free functions:
o CGAL::insert(arr, pt);
= Basic insert, or split-edge
o CGAL::-i1nsert(arr, Xcv);
m Zone algorithm
o CGAL::insert(arr, cv)

= Split cv into x-monotone pieces + isolated vertices
= Insert each of them (see below)

67

‘ Arrangement: Insert curves/points

= CGAL:insert(arr, xcvs.begin(), xcvs.end())
o similar function for x-monotone curves & points
0 use the sweep-line paradigm

s CGAL::insert(arr, cvs.begin(), cvs.end())

o splits curves into x-monotone subcurves and
Isolated points, before calling previous function

68

‘ Arrangement:. Zone

= Zone:
Cell of an arrangement intersected by a curve

m Locate minimal end of curve
o vertex, edge,face

m [raverse curve to maximal end

m During traversal:
Insert found subcurves with basic insertions

s Example on [JEEIYA

69

‘ Arrangement: Sweep

m Process a set of curves

Q0 . sorted sequence of curves
iIntersecting a vertical line

o Line moves from left to right: sequence changes

= at finite number of events:
0 start- and endpoints of curves
O curves’ intersections

= Processing event:
0 Remove all curves that end
0 Reorder passing curves
0 Insert all curves that start
0 Check adjacent curves for future intersections

‘ Arrangement:

= Split curves into x-monotone curves & isolated points

= Compare X, then y of two points ()
s Determine whether point lies below, above, or on an x-monotone
subcurve ()

= Determine the vertical alignment of two curves to the right of an
intersection (

)

s Compute all intersections ()
= Others: Split and merge curves

m All expected by ArrangementTraits_Z2 concept

71

‘ Arrangement: Point location

= Given a point locate which face/edges/vertex contains it, e.g., at the beginning of zone
s typedef CGAL::Arr_naive_point_location<Arrangement_2> Naive pl;

Arrangement_2 arr;
/* .. Insertions */

Naive pl naive pl (arr);

Point 2
CGAL: :Object obj = naive_pl.location()s

typename Arrangement _on _surface 2::Face const_handle T;
iIT (CGAL::assign (f, obj)) {

// g 1s located inside a face:
it (f->1s_unbounded())

Istd::cout << "inside the unbounded face." << std::endl;
else

std::cout << "iInside a bounded face." << std::endl;

/* ... and similar for edges and vertices */

= Other point location strageties:
Walk along a line, landmarks, trapedoizal decomposition

72

'Extending the DCEL

n Possible to maintain auxiliary data attached to each vertex, edge, face

s #include <CGAL/ -h>
enum Color {BLUE, RED, WHITE};

typedef CGAL: :Arr_segment_traits_2<Kernel>
typedef CGAL::Arr_extended dcel<Traits 2, > :
typedef CGAL: :Arrangement 2<Traits_2, > Arrangement_2;

for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {
it (vit->degree() ==
vit-> (BLUE); // IlIsolated vertex.

else 1If (vit->degree() <= 2)
vit->set data (RED); // Vertex represents an endpoint.

else
vit->set data (WHITE); // Vertex represents an intersection
+
= Color vertex _color = vit-> O:;

= Similar for edges + faces

73

‘ Arrangement: Overlay

Given two arrangements, overlay them
o Introduces new intersections

/* .. */

#include <CGAL/Arr _overlay 2_h>

#include <CGAL/Arr _default overlay traits.h>

typedef CGAL: Arr default_overlay_ traits<Arrangement_ 2>

Arrangement_2 red, blue;
/* .. Insert curves .. /*

Arrangement_2 overlay;

Overlay_traits overlay_ traits;
CGAL: -overlay

Uses sweep line paradigm

o To assign (new) data to “purple faces, edges, vertices”

74

'Boolean Set Operations

= Extend each vertex, edge, face with °
o true iff cell belongs to point set
O Implements Boolean
operation
o Union, Difference, ... or:
o Intersection:
= Red true face, blue true face => purple true face
= Red false edge, blue false face => purple false edge
= Red false edge, blue true vertex => purple ?

= Operations:

2 Remove low-dimensional cells,
as “antennas” and isolated points

o Efficient Implementation available in CGAL (recall demo)

75

‘and much more ...

= Removal of features

= Vertical ray shooting

= Vertical decomposition

= Notifications

= Curve history

= |O

= Adapting Arrangements to Boost Graphs
= (Arrangements on surfaces ...)

76

It's your ...

Q/?\f £
B i
B
o
xl |
D (O
5 e | S
L : 7&7;:

7

' CGAL: Setup

= Various supported platforms:
Windows, Linux, MacOS

= Prequisities:

o Compiler (g++ > 4.1, MS Visual C++ 9.0)
cmake (> 2.4.8)
boost (> 1.33.1)

Number types (some are provided, like gmp)
Qt (for visualization, e.qg., 4.5), libGLViewer

'CGAL: Installation

= Download CGAL from
s Full installation details on

or
= More details/options for Boost, Qt, provided (next slide)
cd CGAL-3.4 go to CGAL directory
cmake configure CGAL
make build the CGAL libraries

cd examples/Convex_hull 2
cmake -DCGAL_DIR=/pathto/CGAL-3.4 .

make

go to an example directory
configure the examples

H OH T K R HE

burld the examples

= similar for demos and under linux (let’s poll)

http://www.cgal.org/
http://www.cgal.org/Manual/3.4/doc_html/installation_manual/contents.html
http://www.cgal.org/Manual/3.4/doc_html/installation_manual/contents.html
http://tinyurl.com/CGAL-install

' CGAL-Installations

= Bring USB-Stick to grab Win32-downloads

= @TAU: installation on the NetApp
0 Set CGAL_DIR to /nome/cgal/home/cgal/<CGAL>

m Different installations

» Debian-Packages

'Your own programs

Two options:
s Copy-and-adapt CGAL examples/demos
o use cmake-mechanism to update build-environment

= Build your own makefiles/project

= Reads manuals and check for existing functionality
a
a

Q

http://www.sgi.com/tech/stl/
http://www.boost.org/doc/
http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/contents.html

‘ Help for the exercises

s Timer ()

#include <CGAL/Timer.h>

CGAL::Timer timer;

timer.start();

/* ../

timer.stop();

std::cout << timer.time() << std::endl;

= Drawing with QtGraphicsScene ()
o CGAL-3.4/demo/GraphicsView/min.cpp
o see its “colored” version next slide

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/Miscellany_ref/Class_Timer.html#Cross_link_anchor_1825
http://doc.trolltech.com/4.5/qgraphicsscene.html

‘ Drawing-Example

n #include <iostream>
#include <boost/format.hpp>
#include <QtGui>
#include <CGAL/Qt/GraphicsViewNavigation.h>
#include <QLineF>
#include <QRectF>

int main(int argc, char **argv) {
QApplication app(argc, argv);
QGraphicsScene scene;

scene.setSceneRect(0,0, 100, 100);
scene.addRect(QRectF (0,0, 100, 100), QPen(QColor(255,0,0)));
scene.addLine(QLineF(0,0, 100, 100));
scene.addLine(QLineF(0,100, 100, 0));

QGraphicsView* view = new QGraphicsView(&scene);
CGAL::Qt::GraphicsViewNavigation navigation;

view->installEventFilter(&navigation);
view->viewport()->installEventFilter(&navigation);
view->setRenderHint(QPainter::Antialiasing);
view->show();

return app.exec();

'Now - it's up to you!

= Have fun!
m Discuss!

= Ask questions! Helpdesk:
o Mo, 15-16, R 018, Schreiber basement

x Experiment! Implement variants!
= Read the manual pages!

= Toda raba & layla tov!

http://tinyurl.com/CGAL-manual

	APPLIED aspects of�COMPUTATIONAL GEOMETRY��A Gentle Introduction to
	Convex Hull
	Convex Hull in CGAL-C++
	Lesson overview
	CGAL – Goals & Ingredients
	History + Facts
	CGAL 1-2-3
	CGAL 1-2-3
	CGAL 1-2-3 (Alg + DS)
	CGAL 1-2-3 (Models)
	CGAL … and 4
	Number types
	Rationale: Correctness
	Rationale: Flexibility
	Rationale: Ease of use
	Rationale: Efficiency
	Generic Programming
	Generic Programming
	A C++ example
	Two other C++ examples
	Sorting again
	Generic Programming
	Geometric Programming
	Example: Kernels<NumberType>
	Predefined Kernels
	Special Kernels
	Example: Orientation of points
	Example: Intersection of lines
	Break 1
	Convex Hull
	Beyond CGAL::convex_hull_2
	ConvexHullTraits_2
	Models for ConvexHullTraits_2
	CH-Substructures
	CH Misc - predicate/algorithm?
	Triangulation
	Triangulation: Example
	Triangulation: Properties
	Triangulation in CGAL
	Triangulation: First example code
	Software Design
	Triangulation: Geometry Traits
	Triangulation data structure
	Triangulation: Representation
	Operations: Access
	Triangulation: Traversal
	Operations: Predicates
	Locate
	Triangulation: Modifiers I
	Triangulation: Modifiers II
	Triangulation: More operations
	More Triangulations
	Delaunay Triangulation
	Traits concepts for Delaunay
	Example: Delaunay for a terrain
	Beyond 2D
	Break 2
	Example: Boolean Set Operations
	Arrangements
	Arrangements: DCEL
	Arrangements: DCEL
	Arrangement: Define instance
	Arrangement: Available Curves
	Arrangement of line segments
	Basic insertions into DCEL
	Arrangement: Insert curves/points
	Arrangement: Insert curve/point
	Arrangement: Insert curves/points
	Arrangement: Zone
	Arrangement: Sweep
	Arrangement: Predicates
	Arrangement: Point location
	Extending the DCEL
	Arrangement: Overlay
	Boolean Set Operations
	and much more …
	It’s your …
	CGAL: Setup
	CGAL: Installation
	CGAL-Installations
	Your own programs
	Help for the exercises
	Drawing-Example
	Now - it’s up to you!

