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Minkowski Sum Definition

Definition (Minkowski sum)

Let P and Q be two point sets in R
d . The Minkowski sum of P and Q,

denoted as P ⊕ Q, is the point set {p + q |p ∈ P, q ∈ Q}.

Applies to every dimension d .
Today we concentrate at the case d = 3.

Applies to arbitrary point sets.
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Polytope Definition

Definition (convex polyhedron)

A convex set Q ⊆ R
d given as an intersection of finite number of

closed half-spaces H = {h ∈ R
d |Ah ≤ B} is called convex polyhedron.

Definition (polytope)

A bounded convex polyhedron P ⊂ R
d is called polytope.

The 5 Platonic polytopes:
tetrahedron cube icosahedron octahedron dodecahedron

dioctagonal
pyramid

dioctagonal
dipyramid

truncated icosi-
dodecahedron

pentagonal
hexecontahe-
dron

geodesic
sphere level 4

ellipsoid
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Hyperplanes

Definition (supporting hyperplane)

A hyperplane h supports a set P ⊂ R
d (at c) if P intersects h (at c) and

is contained in one of the closed halfspaces bounded by h.

If p is a boundary point of a polytope P, then there exists a
supporting hyperplane at p.

If p is contained in a facet, there exists a single supporting
hyperplane at p.
If p lies in an edge or coincides with a vertex, there are many
supporting hyperplane at p.
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Minkowski Sum Examples in R
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Minkowski Sum Examples in R
3

1

1All figures taken from [VM06].
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Minkowski Sum Properties
The Minkowski sum of two (non-parallel) line segments in R

2 is a
convex polygon.

The Minkowski sum of two (non-parallel) polygons in R
3 is a

convex polyhedron.

P = P ⊕ {o}, where o is the origin.

If P and Q are convex, then P ⊕ Q is convex.

P ⊕ Q = Q ⊕ P.

λ(P ⊕ Q) = λP ⊕ λQ, where λP = {λp |p ∈ P}.

2P ⊆ P ⊕ P, 3P ⊆ P ⊕ P ⊕ P, etc.

P ⊕ (Q ∪ R) = (P ⊕ Q) ∪ (P ⊕ R).
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Convex Hull

Definition (convex hull)

The convex hull of a set of points P ⊆ R
d , denoted as conv(P), is the

smallest (inclusionwise) convex set containing P.

When an elastic band stretched
open to encompass the input
points is released, it assumes the
shape of the convex hull.

n — the number of input points.
h — the number of points in the hull.

Time complexities of convex hull computation:
Optimal, output sensitive: O(n log h). [Chan06]
QuickHull (expected): O(n log n). [BDH96]
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Minkowski-Sum Construction: Convex Hull

Observation
The Minkowski sum of two polytopes P and Q is the convex hull of the
pairwise sums of vertices of P and Q, respectively.

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

std::vector<Point> in1, in2, points;
// Process input ...
points.resize(in1.size() * in2.size());
std::vector<Point>::const_iterator it1, it2;
std::vector<Point>::iterator it3 = points.begin();
for (it1 = in1.begin(); it1 != in1.end(); ++it1) {

Vector v(CGAL::ORIGIN, *it1);
for (it2 = in2.begin(); it2 != in2.end(); ++it2) *it3++ = (*it2) + v;

}
Polyhedron polyhedron;
CGAL::convex_hull_3(points.begin(), points.end(), polyhedron);

CGAL::convex_hull_3 implements QuickHull.
Time complexities of Minkowski-sum constr. using convex hull:

Using CGAL::convex_hull_3 (expected): O(nm log mn). code

Optimal: O(nm log h).
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Arrangements on Surfaces in R
3

Definition (arrangement)

Given a collection C of curves on a surface, the arrangement A(C) is
the partition of the surface into vertices, edges and faces induced by
the curves of C.

An arrangement
of circles in the
plane

An arrangement of lines
in the plane

An arrangement
of great-circle
arcs on a sphere
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Map Overlay

Definition (map overlay)
The map overlay of two planar subdivisions S1 and S2, denoted as
overlay(S1,S1), is a planar subdivision S, such that there is a face f in
S if and only if there are faces f1 and f2 in S1 and S2 respectively, such
that f is a maximal connected subset of f1 ∩ f2.

The overlay of two subdivisions embedded on a surface in R
3 is

defined similarly.
n1, n2, n — number of vertices in S1, S2, overlay(S1,S2).

Time complexities of the computation of the overlay of 2
subdivisions embedded on surfaces in R

3:
Using sweep-line: O((n) log(n1 + n2)). [BO79]
Using trapezoidal decomposition: O(n). [FH95]

⋆ Precondition: S1 and S2 are simply connected.
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Gasusian Map of Polytopes

Definition (Gasusian map or normal diagram)

The Gaussian map of a polytope P is the decomposition of S
2 into

maximal connected regions so that the extremal point of P is the same
for all directions within one region.

G is a set-valued function from ∂P to S
2.

G(p ∈ ∂P) = the set of outward unit normals to
support planes to P at p.
v , e, f — a vertex, an edge, a facet of P.

G(f ) = outward unit normal to f .

G(e) = geodesic segment.

G(v) = spherical polygon.
Cube tetrahedron
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Gasusian Map of Polytopes (cont.)
G(P) is an arrangement embedded on S

2, where
each face G(v) of the arrangement is extended with v .

G(P) is unique ⇒ G−1(G(P)) = P.
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Minkowski-Sums Construction: Gaussian Map

Observation
The overlay of the Gaussian maps of two polytopes P and Q is the
Gaussian map of the Minkowski sum of P and Q.

overlay(G(P), G(Q)) = G(P ⊕ Q)

The overlay identifies all the pairs
of features of P and Q
respectively that have common
supporting planes.

These common features occupy
the same space on S

2.

They identify the paiwise features
that contribute to ∂(P ⊕ Q). Cube Minkowski sum tetrahedron
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Parametric Surfaces in IR3

Definition (parametric surface)
A parametric surface S of two parameters is a surface defined by
parametric equations involving two parameters u and v :

fS(u, v) = (x(u, v), y(u, v), z(u, v))

Thus, fS : IP −→ IR3 and S = fS(IP), where IP is a continuous and
simply connected two-dimensional parameter space

We deal with orientable parametric surfaces
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The CGAL Arrangement_on_surface_2 Package
Constructs, maintains, modifies, traverses, queries, and presents
arrangements on two-dimensional parametric surfaces in R

3.
Robust and exact

All inputs are handled correctly (including degenerate input).
Exact number types are used to achieve exact results.

Generic – easy to interface, extend, and adapt.

Modular – geometric and topological aspects are separated.
Supports among the others:

various point location strategies.
zone-construction paradigm.
sweep-line paradigm.
overlay computation.

Part of the CGAL basic library. [WFZH08]

Minkowski Sum of Convex Polyhedra 17



Minkowski-Sums Construction: Gaussian Map
m, n, k — number of facets in P, Q, P ⊕ Q.

Overlay of CGAL is based on sweep-line.

G(P) is a simply connected convex subdivision.
Time complexities of Minkowski-sum constr. using Gaussian map:

Using CGAL::overlay: O(k log(m + n)).
Optimal: O(k).
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Map Overlay of CGAL
template <class GeomTraitsRed,

class GeomTraitsBlue,
class GeomTraitsRes,
class TopTraitsRed,
class TopTraitsBlue,
class TopTraitsRes,
class OverlayTraits>

void overlay (const Arrangement_on_surface_2<GeomTraitsRed, TopTraitsRed> & arr1,
const Arrangement_on_surface_2<GeomTraitsBlue, TopTraitsBlue> & arr2,
Arrangement_on_surface_2<GeomTraitsRes, TopTraitsRes> & arr_res,
OverlayTraits & ovl_tr)

The concept OverlayTraits requires the provision of ten functions that
handle all possible cases as follows:

1 A new vertex v is induced by coinciding vertices vr and vb .
2 A new vertex v is induced by a vertex vr that lies on an edge eb.
3 An analogous case of a vertex vb that lies on an edge er .
4 A new vertex v is induced by a vertex vr that is contained in a face fb .
5 An analogous case of a vertex vb contained in a face fr .
6 A new vertex v is induced by the intersection of two edges er and eb.
7 A new edge e is induced by the overlap of two edges er and eb.
8 A new edge e is induced by the an edge er that is contained in a face fb .
9 An analogous case of an edge eb contained in a face fr .

10 A new face f is induced by the overlap of two faces fr and fb .
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The Cubical Gaussian Map
The Cubical Gaussian Map (CGM) C of a polytope P ⊂ R

3 is a
set-valued function from ∂P to the six faces of the unit cube whose
edges are parallel to the major axes and are of length two.

A Tetrahedron

The primal The CGM The CGM unfolded
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Minkowski-Sums Construction: Cubical Gaussian Map
The six overlays of the six pairs of the planar maps of the two cubical
Gaussian maps of two polytopes P and Q stiched properly comprise
the cubical Gaussian map of the Minkowski sum of P and Q.

Cube Minkowski sum tetrahedron
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Minkowski-Sum Construction: Results
Time consumption (in seconds) of the Minkowski-sum computation.
CH — the convex-hull method.
SGM — the (spherical) Gaussian map based method. [BFH+09a]
CGM — the cubical Gaussian-map based method. [FH07]
NGM — the Nef based method. [HKM07]
Fuk — Fukuda’s linear-programming based algorithm. [Fuk04]
F1F2

F — the ratio between the product of the number of input facets
and the number of output facets.

Summand 1 Summand 2 SGM CGM NGM Fuk CH F1F2
F

Icosahedron Icosahedron 0.01 0.01 0.12 0.01 0.01 20.0
DP ODP 0.04 0.02 0.33 0.35 0.05 2.2
PH TI 0.13 0.03 0.84 1.55 0.20 10.9
GS4 RGS4 0.71 0.12 6.81 5.80 1.89 163.3
El16 OEl16 1.01 0.14 7.06 13.04 6.91 161.3
DP — dioctagonal pyramid. ODP — orthogonal dioctagonal pyramid.
PH — pentagonal hexecontahedron. TI — truncated icosidodecahedron.
GS4 — geodesic sphere level 4. RGS4 — rotated geodesic sphere level 4.
El16 — ellipsoid. OEl16 — orthogonal ellipsoid.
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Minkowski Sum Application: Collision Detection
P and Q are two polytopes in R

d .

P ∩ Q 6= ∅ collision detection
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Minkowski Sum Application: Collision Detection
P and Q are two polytopes in R

d .

P translated by a vector t is denoted by P t .

P ∩ Q 6= ∅ collision detection

π(P, Q) = min{‖t‖ |P t ∩ Q 6= ∅, t ∈ R
d} separation distance

δ(P, Q) = inf{‖t‖ |P t ∩ Q = ∅, t ∈ R
d} penetration depth

δv (P, Q) = inf{α |Pα~v ∩ Q = ∅, α ∈ R} directional penetration-depth
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Minkowski Sum Application: Collision Detection
P and Q are two polytopes in R

d .

P translated by a vector t is denoted by P t .

Pu ∩ Qw 6= ∅ ⇔ w − u ∈ M = P ⊕ (−Q) collision detection

π(Pu , Qw ) = min{‖t‖ | (w − u + t) ∈ M, t ∈ R
d} separation distance

δ(Pu , Qw ) = inf{‖t‖ | (w − u + t) /∈ M, t ∈ R
d} penetration depth

δv (Pu, Qw ) = inf{α | (w − u + α~v) /∈ M, α ∈ R} directional penetration-depth

⇔

⇔
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Minkowski Sum Application: Width

Definition (point-set width)

The width of a set of points P ⊆ R
d , denoted as width(P), is the

minimum distance between parallel hyperplanes supporting conv(P).

Definition (directional point-set width)
Given a normalized vector v , the directional width, denoted as
widthv (P) is the distance between parallel hyperplanes supporting
conv(P) and orthogonal to v .

width(P) = δ(P, P) = inf{‖t‖ | t /∈ (P ⊕−P), t ∈ R
d}

Time complexities of width computation in R
3:

Applied computation using CGAL Minkowski sum: O(k log n).
Optimal computation using Minkowski sum: O(k).
CGAL::Width_3: O(n2). [FGHHS08]
Width optimal computation complexity: subquadratic.
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Movies
Exact Minkowski sums of convex polyhedra.

Was presented at the 21st ACM Symposium on Computational Geometry, 2005.

Arrangements of Geodesic Arcs on the Sphere
Was presented at the 24th ACM Symposium on Computational Geometry, 2008.
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