Path Quality

Spring 2012
Software Workshop:
High-Quality Motion Paths for Robots (and Other Creatures)

Dan Halperin School of Computer Science
 Tel Aviv University

Today's lesson

- shortest paths
- high clearance paths
- other quality measures
- combined quality criteria and corridor maps
- path quality in sampling-based planners

Shortest paths among obstacles in the plane

Shortest paths among obstacles in the plane [from de Berg et al, Ch. 15]

- first attempt: Dijkstra on the connectivity graph of the trapezoidal map

lesson
- does the graph on which we are searching for the best paths contain the best paths?

properties of the shortest path

a polygonal line whose vertices are the start and goal configurations and vertices of the obstacles

Computing a shortest path

Algorithm SHORTESTPATH $\left(S, p_{\text {start }}, p_{\text {goal }}\right)$
Input. A set S of disjoint polygonal obstacles, and two points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space. Output. The shortest collision-free path connecting $p_{\text {start }}$ and $p_{\text {goal }}$ -

1. $\mathcal{G}_{\text {vis }} \leftarrow{\operatorname{VISIBILITYGRAPH}\left(S \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right) ~}_{\text {I }}$)
2. Assign each arc (v, w) in $\mathcal{G}_{\text {vis }}$ a weight, which is the Euclidean length of the segment $\overline{\nu w}$.
3. Use Dijkstra's algorithm to compute a shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ in $\mathcal{G}_{\text {vis }}$.

Shortest paths in the plane, complexity

- the visibility-graph algorithm takes $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ time where n is the number of obstacle vertices
- there are output sensitive algorithms (in the size of the visibility graph)
- near-optimal O(n log n) algorithm by Hershberger and Suri
- the case of a simple polygon (whose complement is the obstacle) is much simpler

Shortest paths among polyhedra in 3space

- the setting: point robot moving among polyhedra with a total of n vertices
- the problem is NP-hard [Canny-Reif]
\square algebraic complexity
- combinatorial complexity

High clearance paths

- Voronoi diagrams/the medial axis
- the Voronoi diagram of line segments, and the retraction method for a disc [O'DunlaingYap]

- video [Schirra/Rohnert]

Other quality measures

- other L_{p} metrics, e.g., Manhattan $\left(L_{1}\right)$
- link number
- number of reverse movements
- low energy
- weighted regions
- many more
- multiple criterion optimal paths

Combined quality criteria and corridor maps

- a path is called Pareto optimal if no other path has a better value for one criterion without having a worse value for another criterion
- multiple criterion optimization is often hard

Clearance-length combination

- combined measure
- relaxed combination: the visibility Voronoi complex
- corridor maps
- corridor trees in the complement of molecules

Optimizing a combined measure

 [Wein-van den Berg-H]$$
L^{*}(C)=\int_{\gamma}\left(\frac{w_{\max }}{w(t)}\right)^{d-1} d t
$$

- examples:
- the optimal path in the presence of a point obstacle is a logarithmic spiral
- the optimal path in the presence of a segment obstacle is a circular arc
- approximation algorithms for the general polygonal case

The visibility Voronoi diagram (VVD)

 [Wein-van den Berg-H]

- finding the shortest path with a given clearance c, while still allowing to make significant shortcuts with lesser clearance on the Voronoi diagram

The visibility Voronoi complex

- implicitly encodes the VVD for any clearance c
- interpolates between the visibility diagram(c=0) and the Voronoi diagram (c=infinity)
- $O\left(n^{2} \log n\right)$ construction time

Corridor maps [Geraerts-Overmars]

- motivated by motion planning in games
- similar to VVD/VVC, augmenting the VD with clearance information
- instead of providing a single solution path, provides a corridor among static obstacles, where later one can easily maneuver among dynamic obstacles

Path quality in sampling-based planners

- the typical process: building a roadmap graph and running Dijkstra or similar
- recall our earlier test: does the graph on which we are searching for the best paths contain the best paths?
- path quality can be very low
- example: path length in BiRRT

Bi-RRT reminder: Growing two-trees

[Kuffner and LaValle '00]

- maintain two trees rooted at source \& goal
- construction step sample configurations and expand either tree as in RRT
- merging step connect configurations from both trees

Example (I) - in OOPSMP

- 49.4\% of paths are over three times worse than optimal (even after smoothing) \square much larger than the theoretical bound

Example (II) - close-by start and goal configurations

5.9\% of paths are over 140 times worse than optimal (even after smoothing)
\square importance of visibility blocking - narrow passages not the only king (theoretical motivation for Visibility PRM, Laumond et al. '00)

How low can path quality get?

Sampling-Diagram Automata: Analysis of path quality in tree planners [Nechushtan-Raveh-Halperin, WAFR 2010]

Improving path quality in sampling-based motion planning, sample work

- Short-cutting heuristics ("path smoothing")
- Retraction towards medial axis
[e.g., Wilmarth et al. '99, Geraerts and Overmars '07]
- Useful Cycles in PRM [Nieuwenhuisen and Overmars '04]
- Biasing tree growth by a cost-function [e.g., Urmson and Simmons ' 03 , Ettlin and Bleuler ' 06 , Jaillet et al. '08, Raveh et al. '09]
- RRT* - a modification of RRT [Karaman and Frazzoli '10] (for more variants, see paper)
\rightarrow the modified RRT* algorithm converges to an optimal path as running time reaches infinity
\rightarrow "Standard"-RRT misses the (precise) optimal path with probability one Still, might be ε-good, or within same homotopy class as optimal path

Improving quality by path hybridization

example: move the rod from the bottom to the top of a 2D grid (rotation + translation)

3 randomly generated motion paths

H-Graphs: Hybridizing multiple motion paths (= looking for shortcuts)

Hybridizing the paths

General quality criteria

Rod-in-Grid scene: 3 dof

Path length for Rod-in-Grid Scence (3 DoFs)

Implemented in the OOPSMP package (Plaku, Moll and Kavraki), collision detection - PQP (Lin and Manocha)

Double-Wrench: 12 dof

Switching the two wrenches (rotation + translation $\times 2$)

H-Graphs become particularly useful for high-dimensional problems (at least in this example)

Running-time bottleneck for hybridization:

 Trying to connect nodes from different pathsin a naïve implementation: $O\left(n^{2}\right)$ potential edges need to be tested

we ass of paths

Simple Heuristic - "Neighborhood H-Graphs": compare only to nodes in local neighborhood - but can we do better?

Edit-distance string matching \rightarrow Linear alignment of motion paths

Comparing "This dog" and "That Dodge" with insertion / deletions / replacement:
THI-S
D O-G-
THAT- DODGE
dynamic-programming algorithm:

Alignment length is linear

Now testing only $O(n)$ edges along the alignment

Comparison of running times

- hybridizing five motion paths in a 2-D maze:
- from 3.52 seconds to 0.83 seconds on average (75% decrease), with comparable path quality

IMPROVING THE QUALITY OF NON-HOLONOMIC MOTION
BY HYBRIDIZING C-PRM PATHS
ITAMAR BERGER | BOSMAT ELDAR | GAL ZOHAR | BARAK RAVEH | DAN HALPERIN
School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
INTRODUCTION
Sampling-based motion planners are an effective means for generating collision-free motion paths. However, the quality of these motion paths, with respect to different quality measures such as path length, clearance, smoothness or energy, is often notoriously low. This problem is accentuated in the case of non-holonomic sampling-based motion planning, in which the space of feasible motion trajectories is restricted. In this study, we combine the C-PRM algorithm by Song and Amato with our recently introduced path-hybridization approach (H-Graphs), for creating high quality non-holonomic motion paths, with combinations of severar aififerent quaitity measures such as path length, smoothness or clearance, as well as the number of reverse car
motions.

H-GRAPHS

We have recently introduced the path-hybridization approach [2, 3], in which an arbitrary number of input motion paths are
hybridized to an output path of superior quality, for a range of path-quality criteria. The approach is based on the observation that the quality of certain sub-paths within each solution may be higher than the quality of the entire path. Specifically, we run an arbitrary motion planner k times (typically $k=5-6$),
resulting in k intermediate solution paths to the motion planresulting in kintermediate solution paths to the motion plan-
ning query. From the union of all the edges and vertices in the intermediate paths we create a single weighted graph, with edge weights set according to the desired quality criterion.
We then try to
merge the in-
merge the in-
termediate
paths into a
paths into a
single high-
single high-
quality path, by
connecting
nodes from dif-
ferent \quad paths
ferent paths
with the local

. . . .
planner, and
giving the ap-
propriate weights to the new edges. Dijkstra's algorithm is ization-Graph (H-Graph).

We have implemented the C-PRM algorithm and C-PRM with path hybridization within the framework of the OOPSMP motion planning package. Our implementation supports the combination of a wide range of path quality criteria (length
smoothness, clearance, number of reverse car motions).

C-PRM WITH PATH HYBRIDIZATION While the path hybridization approach has been successfully tested over a range of holonomic motion planning problems with many degrees of freedom, its application to non- holonomic motion planning is not trivial.
In particular, whereas sit it easy to con-
nect two nearby configurations in the
case of holonomic motion,
eral impossible io io inearly ingen-
between two states of non-holopolate
motion planning, due to the restrictic
on the set of possible paths. However,
we observed that we can simply re-

C-PRM + H-GRAPHS

holonomic problems.

REFERENCES

(11) G. Song and N. M. Amato, "Randomized motion planning for car-like robots with (C-CRMM) in IEEE Int. Conf. on Intelligent Robots and Systems, 20001, pp. 37-42. [2] B. Raveh, A. Enosh, and D. Halperin, "A little more, a lot better: Improving path
quality by a simple path merging algorithm, Arxiv e-prints, vol, abs $/ 1001.2391$, 2010. [3] A. Enosh, B. Raveh, O. Furman-Schueler, D. Halperin, and N. Ben-TTa, "Generation,
comparison and merging of pathways between protein conformations: Gating in

applied to car-like motion with various quality criteria: length, smoothness, clearance, number of reverse vehicle motions

C-PRM

RRT

Why do Hgraphs work?

\rightarrow wrong decision can be taken at every step
\rightarrow can be solved by path-hybridization

References

- Shortest Path and Networks, J.S.B. Mitchell, Chapter 27 ot the Handbook on DCG, Goodman-O'Rourke (eds)
- Visibility Graphs, Chapter 15 of the Computational Geometry book by de Berg et al
- more details, more experiments:
- http://acg.cs.tau.ac.il/projects
- A Little More, A Lot Better: Improving Path Quality by a Path-Merging Algorithm [Raveh-Enosh-Halperin] IEEE Trans. on Robotics, 2011

THE END

