C++ Software Tools
for Cutting and Packing Workshop

Ophir Setter
Tel Aviv University

May 26, 2008

C++ Software Tools - @ - w & m %

Generic Algorithms

m Generic algorithms are written over unknown types that are
then somehow instantiated later by the compiler

m A generic algorithm has two parts:
e The actual instructions that describe the steps of the
algorithm
e A set of requirements that specify which properties its
argument types must satisfy — aka Concept

http://en.wikipedia.org/wiki/Generic_programming
http://www.boost.org/community/generic_programming.html#concept

A Basic Example: swap()

= Generic programming in C++ = templates (TAVNIOT)
m When the function call is compiled, it is instantiated with a
data type

m This data type must have an assignment operator (copy
constructor)

= This defines the concept of our algorithm.

= |n this example, the int data type is a model of our concept
commonly called assignable (copy constructable)

template <typename T>
void swap(T& a, T& b) // int x, y;
{ // swap(x, y);
T tmp = a; a = b; b = tmp; // swap(const int, const int) is an error
}

A Simple Example: Version 1 — Standard C++

A program that reads integers, sorts them, and prints them out
cons: flexibility, lack of compile-time check, a lot of code

int cmp(const void * a, const void * b) {
int aa = *(int *)a; int bb = *(int *)b;
return (aa < bb) ? -1 : (aa > bb) 7 1 : 0;

}

int main(int argc, int * argv[]) {
int array[1000]; int n = 0;
while (std::cin >> arrayl[n++]);
n--; // it got incremented once too many times
gsort(array, n, sizeof(int), cmp);
for (int i = 0; i < n; ++i)
std::cout << array[i] << std::endl;
return O;

C++ Software Tools - @ = = & m 7 %

STL — Standard Template Library

m Software library partially included in the C++ standard
library

m Uses the generic programming paradigm through the use of
C++ templates

m Provides containers, iterators, algorithms and functors

m Containers — represent objects that contain other objects.
STL includes (but not only):
vector — a random-access dynamic container
list — a doubly linked list
set — no 2 elements are the same
map — associates objects of one type (Key) with objects of

another type (Data)

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/set.html
http://www.sgi.com/tech/stl/Map.html

A Simple Example: Version 2 — Containers,
Iterators, Algorithms

Using STL vector container

#include <algorithm>
#include <vector>
#include <iostream>
int main(int argc, int * argv[]){
int input; std::vector<int> v;// create an empty vector of integers
while (std::cin >> input) // while not end of file
v.push_back(input) ; // append to vector
std::sort(v.begin(), v.end()); // sort using < operator
int n = v.size();
for (int i = 0; i < n; ++i)
std::cout << v[i] << std::endl;
return O;

C++ Software Tools - @ = = & m 7 %

Iterators

= Provide a way of specifying a position in a container (like
pointers)

m Can be dereferenced with * operator

= Two iterators can be compared

m Refined iterator concepts — Some can be
incremented /decremented /indexed (++/——/[|
operators)

m There is a special iterator value called “past-the-end”

m c.begin() and c.end() return the first and
“past-the-end” iterators of the container c

http://www.sgi.com/tech/stl/Iterators.html

Iterators — cont.

vector<int> v;
vector<int>::iterator i2 = v.end();
for (vector<int>::iterator il = v.begin(); il != i2; ++il)

{
L

C++ Software Tools - e

@ m 7 %

Iterator Types

m There are several different ways of generalizing pointers.
Each is a refined concept of the Trivial lterator concept:

e Input Iterator *it+—+;
e QOutput Iterator *it++ = t;
e Forward lterator it++;
e Bidirectional Iterator it+-+; it——;
e Random Access Iterator it+4; it——; it[n]; it + n;

C++ Software Tools - @ = = & m 7 %

http://www.sgi.com/tech/stl/trivial.html
http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/OutputIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/BidirectionalIterator.html
http://www.sgi.com/tech/stl/RandomAccessIterator.html

Output lterators and lterators Adaptors

m \We wish to treat streams as iterators both to read elements
or to write them

m std::cin, std::cout and std: :vector must be
“adapted” to have an iterator interface

using std;

vector<int> v;

istream_iterator<int> start(cin), end; // iterator for reading ints
back_insert_iterator<vector<int> > dest(v);// iterator for adding elements

copy(start, end, dest); // copy(start, end, back_inserter(v));
sort(v.begin(), v.end());

// output using iterators

copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));

C++ Software Tools - @ = = & m 7 %

Typedefs

Shorten the length of type definitions
m Removes definition repetition

Eliminate the extra space needed due to overloading the
<> operators

m [mportant ingredient in writing generic algorithms

map<const string, int>::iterator cur = months.find("june");

VErsus

map<const string, int> Map_monsth_days;
Map_monsth_days::iterator cur = months.find("june");

Boost Library

m |s a free portable C++ source of a collection of libraries
smart pointers — automatic deletion of pointers at the
appropriate time
regex — support of regular expressions
filesystem — directory and file iteration
graph — generic graph components and algorithms
more

m Written in STL style

m Used by many programmers across a broad spectrum of
applications

m Parts will become part of a future C++ Standard soon

http://www.boost.org/
http://www.boost.org/doc/libs/release/libs/smart_ptr
http://www.boost.org/doc/libs/release/libs/regex/
http://www.boost.org/doc/libs/release/libs/filesystem
http://www.boost.org/doc/libs/release/libs/graph

Example: shared_ptr

Automatic deletion of allocated variables

#include <boost/shared_ptr.hpp>
boost: :shared_ptr<Foo> Foo_ptr;
std: :vector<Foo_ptr> foo_vector;

Foo_ptr foo_ptr (new Foo (2));
foo_vector.push_back (foo_ptr);

foo_ptr.reset (new Foo (1));
foo_vector.push_back (foo_ptr);

foo_ptr.reset (new Foo (3));
foo_vector.push_back (foo_ptr);

an - 1 @

The Boost Graph Library (BGL)

= |s a header-only library (not need to be built to use)
e GraphViz input parser is the only exception

= |s generic in three ways (like the STL):
o Algorithm/Data-Structure Interoperability

Single template functions operate on many different classes of containers
e Extension through Function Objects

Algorithms and containers are extensible and adaptable
e Element Type Parameterization

Its containers are parameterized on the element type

http://www.boost.org/libs/graph/doc/read-graphviz.html

The interface of the BGL graph-algorithms

m |s abstract — hides the details of the particular graph
data-structure of the BGL graph-algorithms
m Defined by iterators for data-structure traversal:
e Traversal of all vertices in the graph
e Traversal of all edges in the graph
e Traversal along the adjacency structure of the graph
(from a vertex to each of its neighbors)
= Allows template functions (breadth _first_search()) to
work on a large variety of graph data-structures
e Without copying/placing the data inside adaptor objects
e Custom-made graph structures can be used as-is
+ e.g., CGAL arrangements are custom-made graphs

an - 1 @

http://www.boost.org/libs/graph/doc/breadth_first_search.html

BGL Graph Representation

m “Built-in" graph classes include:
e adjacency_list — each vertex holds an edge list
e adjacency_matrix — each element a;; is a boolean
flag that says whether there is an edge from ¢ to j

e compressed_sparse_row_graph — high-performance,
non-mutable graph

m vertex_descriptor and edge_descriptor to represent
vertex and edge objects in BGL algorithms

// use vectors to hold lists
adjacency_list <vecS, vecS, undirectedS> graph_t;
graph_traits <graph_t>::vertex_descriptor Vertex;
graph_traits <graph_t>::edge_descriptor Edge;

Extension through Visitors

m Are extensible through Visitors — a function object with
multiple methods

m User-defined operations are inserted into “event points”

e particular event points and corresponding visitor
methods depend on the particular algorithm

template <class TimeMap, class TimeT, class Tag>
time_stamper<TimeMap, TimeT, Tag>;

vertex_descriptor dis_time[N];
// Using stamp_times Object Generator for convenience.
stamp_times(dis_time, initial_time, on_discover_vertex());

Named Parameters

m C++ only supports positional parameters (in function call
parameters are determined by position)

m Used to overcome a long and exhausting list of parameter
some (or all) have defaults

m Don't have to remember the order of the parameters — only
their names

m Periods are used instead of commas

bellman_ford_shortest_paths(g, int(N), weight_map(weight).
distance_map(&distance[0]) .predecessor_map(&parent [0])) ;

Wrapping It All Up Example

adjacency_list <vecS, vecS, undirectedS> graph_t;
enum { r, s, t, u, v, w, x, y, N };
std::pair <int, int> Edge;

Edge edge_array[] = { Edge(r, s), Edge(r, v), Edge(s, w), Edge(w, r),
Edge(w, t), Edge(w, x), Edge(x, t), Edge(t, u), Edge(x, y),
Edge(u, y)};

graph_traits<graph_t>::vertices_size_type v_size_t;
graph_t g(edge_array, edge_array + n_edges, v_size_t(N));

std: :vector<int> p(boost::num_vertices(g));
boost: :graph_traits<graph_t>::vertices_size_type d[N];
std::fill_n(d, size_t(N), 0);

boost: :breadth_first_search (g, s, boost::visitor(boost::make_bfs_visitor
(std: :make_pair(boost: :record_distances(d, boost::on_tree_edge()),
boost: :record_predecessors(&p[0], boost::on_tree_edge())

))));

an - 1 @

CGAL — the Computational Geometry
Algorithm Library

m The goal of the CGAL Open Source Project is to provide
easy access to efficient and reliable geometric algorithms

m Developed in C++ and follows the Generic Programming
paradigm

m Primary design goals: Correctness, Flexibility, Efficiency
and Ease of Use

= Some numbers:
e 600,000 lines of code
e 3,500 manual pages
e 1,000 subscribers for cgal-discuss list

Architecture

m Geometric Kernel
e Constant-size geometric objects (e.g., points, lines,
planes, etc.)
e Predicates and constructors of these objects
m Basic Library — Data structure and algorithms (e.g.,
Triangulations, Polyhedrons, Arrangements, etc.)

m Support Library

Number types

Geometric-object generators

Input/Output

Visualization

e More none geometric types (e.g., Circulators, etc.)

< - 1 @

Geometric Kernels

m Consists of:

Constant-size non-modifiable geometric primitive objects
(e.g., point, vector, direction, line, ray, segment, etc.)
Operations on these objects

m Predefined kernels:

Exact_predicates_inexact_constructions_kernel
Exact_predicates_exact_constructions_kernel
Exact_predicates_exact_constructions_kernel
—with_sqrt

Basic Library

m Basic geometric data structures and algorithms
m Generic data structures are parameterized with Traits

classes
e Separates algorithms and data structures from the

geometric kernel
m Generic algorithms are parameterized with iterator ranges
e Decouples the algorithm from the data structure

2D Polygons

m A polygon is a closed chain of edges

m A simple polygon is a polygon whose edges don't intersect
(except neighboring edges)

» CGAL support algorithms for 2D polygons (Polygon_2
class):

Find the leftmost, rightmost, topmost and bottommost
vertex.

Compute the (signed) area.

Check if a polygon is simple.

Check if a polygon is convex.

Find the orientation (clockwise or counterclockwise)
Check if a point lies inside a polygon.

2D Polygons — Example

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>

CGAL: :Exact_predicates_exact_constructions_kernel K;
K::Point_2 Point;

int main() {
Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
// check if the point is inside the polygon.
if (CGAL: :bounded_side_2(points, points+4, K()) ==
CGAL: : ON_BOUNDED_SIDE) {
std::cout << "The point is inside the polygon." << std::endl;

}

return O;

}

C++ Software Tools - @ = = & m 7 %

Boolean Set-Operations

m Used to perform regularized boolean-set operations on
polygons (and general polygons) in 2D

m Includes intersection predicates, and point containment
m Operations include:
Intersection

predicates z
Join ’]

Difference
Symmetric Difference
Complement x

intersection(A. B) svinmetric-difference(A. B)

C++ Software Tools - @ = = & m 7 %

Boolean Set-Operations — Example

#include <CGAL/Exact_predicates_exact_constructions_
kernel.h>
#include <CGAL/Boolean_set_operations_2.h>

CGAL: :Exact_predicates_exact_constructions_
kernel K;

K::Point_2 Point_2;
CGAL: :Polygon_2<K> Polygon_2;
CGAL: :Polygon_with_holes_2<K> Polygon_with_holes_2;

std::list<Polygon_with_holes_2> Pwh_list_2;

void main () {
Point points_p[] = { Point(-1,1), Point(0,-1), Point(1,1)};
Polygon_2 P(points_p, points_p + 3);
Point points_q[] = { Point(-1,-1), Point(1,-1), Point(0,1)};
Polygon_2 Q(points_q, points_q + 3);
Pwh_list_2 R; // intersection is a list of polygons with holes
CGAL: :intersection (P, Q, std::back_inserter(R));

C++ Software Tools - @ = = & m 7 %

2D Minkowski Sums

Example using decomposition method:

CGAL: :Exact_predicates_exact_constructions_kernel K;
CGAL: :Polygon_2<K> Polygon_2;
CGAL: :Polygon_with_holes_2<K> Polygon_with_holes_2;

void main () {

std::ifstream in_file ("polygons.dat");

if (false == in_file.is_open()) {
std::cerr << "Failed to open the input file." << std::endl;
return;

}

Polygon_2 P, Q;

in_file >> P >> Q;

// Compute the Minkowski sum using the decomposition approach.
CGAL: :Small_side_angle_bisector_decomposition_2<K> ssab_decomp;
Polygon_with_holes_2 sum = minkowski_sum_2 (P, Q, ssab_decomp);

an - 1 @

XML - eXtensible Markup Language

m XML is a general-purpose specification for . versionr o

. <quiz>
creating custom markup languages <question>
Who was the forty-second

ident of the U.S.A.7
m Text based g

<answers

m Very convenient for hierarchical (tree-like) lfillien Jefferson Clinton
data model S

<fquiz>

= Can represent common computer science XML
data structures: records, lists and trees

m XML is heavily used as a format for document storage and
processing, both online and off-line

m XML-based formats can be found in in: OpenOffice, RSS,
SOAP protocol, XHTML, Microsoft Office, etc.

eXaMpLe — wikipedia-based

<recipe name="bread" prep_time="5 mins" cook_time="3 hours">
<title>Basic bread</title>
<ingredient amount="3" unit="cups">Flour</ingredient>
<ingredient amount="0.25" unit="ounce">Yeast</ingredient>
<ingredient amount="1.5" unit="cups" state="warm">Water</ingredient>
<ingredient amount="1" unit="teaspoon">Salt</ingredient>
<instructions>
<step>Mix all ingredients together.</step>
<step>Knead thoroughly.</step>
<step>Cover with a cloth, and leave for one hour in warm room.</step>|
<step>Knead again.</step>
<step>Place in a bread baking tin.</step>
<step>Cover with a cloth, and leave for one hour in warm room.</step>|
<step>Bake in the oven at 350(degrees)F for 30 minutes.</step>
</instructions>
</recipe>

C++ Software Tools - @ = = & m 7 %

TOC

Generic Algorithms <
A Basic Example: swap()

A Simple Example: Version 1 —
Standard C++ <

STL — Standard Template Library %

A Simple Example: Version 2 —
Containers, Iterators, Algorithms <

Iterators <

Iterators — cont. <

Iterator Types +¢

Output Iterators and lterators
Adaptors <

Typedefs %

Boost Library «

Example: shared_ptr %

The Boost Graph Library (BGL) %

The interface of the BGL
graph-algorithms <

BGL Graph Representation <
Extension through Visitors «

Named Parameters %

Wrapping It All Up Example <

CGAL - the Computational Geometry
Algorithm Library <

Architecture %

Geometric Kernels <

Basic Library <

2D Polygons <

2D Polygons — Example +

Boolean Set-Operations <

Boolean Set-Operations — Example
2D Minkowski Sums %

XML — eXtensible Markup Language +
eXaMple — wikipedia-based <

C++ Software Tools - @ =« = & m 7 %

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/Iterators.html
http://www.boost.org/

