Algorithmic Robotics and Motion Planning

The Roomba in the café
Combinatorics and algorithms

Fall 2019-2020
Dan Halperin
School of Computer Science
Tel Aviv University

Moving a disc among discs

Outline

- the C-space
- combinatorial complexity
- representation
- algorithm
- algebra

Moving a disc among discs: C-obstacles

Arrangements (take I)

Definition (Arrangement)

Given a collection \mathscr{C} of curves on a surface, the arrangement $\mathscr{A}(\mathscr{C})$ is the partition of the surface into vertices, edges and faces induced by the curves of \mathscr{C}.

An arrangement of circles in the plane.

An arrangement of lines in the plane. .

An arrangement of great-circle arcs on a sphere.

Arrangement of circles: how complex?

Arrangement of circles: how complex?

Arrangement of circles: TMI. Why?

Arrangement of circles: TMI. Why?

Combinatorial analysis

- n - the number of obstacle discs
- arrangement of n circles
- the union of n discs
- the lifting transform
- the complexity of a 3-poytope

Combinatorial analysis, lower bound

Algorithms for computing the union of discs

- representation: DCEL
- Algorithm I: divide and conquer using plane sweep in the merge step
- Algorithm II: mimicking the proof of the combinatorial bound

Algorithms for solving the Roomba MP problem

- augment the DCEL with vertical decomposition
- build a connectivity graph (CG) over the augmented DCEL:
- a node for every free trapezoid
- an edge between two trapezoids that share a vertical all
- find the cells that contain the start and goal positions
- search in the CG for a path between the nodes corresponding to the cells of the previous stage
- transform the path in the graph into a collision-free path in the plane

Reference

- Writeup on the course's website

The next step

THE END

