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Translational motion of a polygon among 
polygons in the plane

• Very well understood and having efficient complete implementation 
(which is not the case for almost any other non-trivial MP problem)

• The structure behind the solutions: Minkowski sums

• A few theoretical problems remain open



Outline

• The combinatorial complexity of polygonal Minkowski sums in the plane

• The connection between motion planning and Minkowski sums

• Algorithms

• Going up to 3D

As time permits:

• More applications of Minkowski sums

• Minkowski average



Polygonal Minkowski sums in the plane
Structure and combinatorial complexity



The Minkowski sum of two sets P and Q 
in Euclidean space is the result of adding 
every point in P to every point in Q

{(𝑥1, 𝑦1)} ⊕ {(𝑥2, 𝑦2)} =  {(𝑥1 + 𝑥2, 𝑦1 + 𝑦2)}

𝑃 ⨁ 𝑄𝑃, 𝑄

1864 - 1909
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Convex polygons

• The farthest point of the sum in any direction is the sum of the farthest points in 
that direction of the summands

• The sum of convex polygons is a convex polygon

• Given polygons with 𝑚 and 𝑛 vertices, the sum has at most 𝑚 + 𝑛 vertices

• Later, an interesting property of sums of convex polygons: pseudodiscs



Non-convex polygons

• Triangulate each polygon, construct the union of sums of 
pairs of triangles

• Arrangements of segments

• Number of segments 𝑂(𝑚𝑛)

• Maximum complexity 𝑂(𝑚2𝑛2)

• The bound is tight



So far

Given two polygons with 𝑚 and 𝑛 vertices

• Convex – convex:                  𝑂(𝑚 + 𝑛)

• Non-convex – non-convex: 𝑂(𝑚2𝑛2)

How about convex – non-convex?

One of the early surprising results in CG



Reminder: The union of discs

• Given 𝑚 > 2 discs in the plane, the boundary of the union of regions that 
they enclose contains at most 6𝑚 – 12 intersection points of the arcs

• This bound is tight



Pseudodiscs



Convex – non-convex, polygons:
The pseudodiscs property



Convex – non-convex, polygons:
The complexity of the sum

Theorem: the complexity of the Minkowski sum of a convex polygon 
with 𝑚 vertices and a simple polygon with 𝑛 vertices is 𝑂(𝑚𝑛)

• The bound is tight



General result: The union of pseudodiscs

• Given 𝑚 simple Jordan curves in the plane, each pair of which 
intersect one another in at most two points, then the boundary 
of the union of regions that they enclose contains at most 
max(2,6𝑚 – 12) intersection points of the curves, and this 
bound cannot be improved

[kedem-Livne-Pach-Sharir ‘86]



Minkowski sums and translational motion planning



Why are Minkowski sums so useful?
Here’s a major reason:

• Claim: Two sets 𝐴 and 𝐵 intersect if and only if the Minkowski sum 
𝐴 ⨁ − 𝐵 contains the origin, where −𝐵 is the set 𝐵 reflected through 
the origin

• More generally: A∩(B ⨁{t}) ≠ ∅ iff t ∈ A⨁−B

In the plane −𝐵 is 𝐵 rotated by π radians around the origin



Example: motion planning (piano movers)

𝑅 - a polygonal object that moves by translation

𝑃 - a set of polygonal obstacles

reference
point

Claim: When translating, 𝑅 intersects 𝑃 iff
ref(𝑅) is inside 𝑃 ⨁ − 𝑅



Algorithms



Algorithms

• Convex - convex

• The general case

• Representation

• Decomposition

• The mystery of the construction time

• Convolution

• The hole filter

• Convex – non-convex



Convex – convex

• Merging of normal diagrams

• O(𝑚 + 𝑛)



The general case
Construction by decomposition

• We alluded to it when we gave the general bound

• Step 1 Decompose 𝑃 and 𝑄 into convex subpolygons 𝑃1, … , 𝑃𝑠 and 
Q1, …, Qt

• Step 2 Compute 𝑅𝑖𝑗: = 𝑃𝑖 ⨁ 𝑄𝑗 for each pair

• Step 3 Construct the union of those subsums



How to represent Minkowski sums?
The language of arrangements

• Much more involved than the convex case

• Should allow for complex topology, holes of any dimension

• Arrangements of curves and surfaces do the job



Representation of the free space
Vertical decomposition + connectivity graph
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[www.seas.upenn.edu/~jwk/motionPlanning] 



Representation of the free space
Example



Constructing the union of the subsums
One possibility: the arrg algorithm

• Let 𝑅 be the set of all 𝑅𝑖𝑗 s

• Add all the edges of 𝑅 into a planar arrangement

• Compute carefully for each face, edge and vertex whether it is inside 
union

• Time: 𝑂((𝐼 + 𝑘) log 𝑘)

𝑂(𝐼 + 𝑘) - traversal

𝑘 - number of edges in 𝑅

𝐼 - number of intersections among edges of 𝑅



The mystery of the construction time



Construction by decomposition, zooming in

• Step 1 Decompose 𝑃 and 𝑄 into convex subparts 𝑃1, … , 𝑃𝑆 and 
Q1, …, Qt

• Step 2 Compute 𝑅𝑖𝑗: = 𝑃𝑖 ⨁ 𝑄𝑗 for each pair

• Step 3 Construct the union of those subsums

For example: 𝑃 and 𝑄 are polygons with 𝑚 + 2 and 𝑛 + 2 vertices resp.

• Step 1 Decompose 𝑃 and 𝑄 into 𝑚 and 𝑛 triangles

• Step 2 Compute the hexagon 𝑅𝑖𝑗: = 𝑃𝑖 ⨁ 𝑄𝑗 for each pair

• Step 3 Construct the union of those 4𝑚𝑛 triangles



Algorithm complexity

• Recall that for arbitrary polygons the maximum complexity is 𝑂(𝑚2𝑛2)

• The output may have size Ω(𝑚2𝑛2)

• We know to approach this running time in the worst case

• Can we have a guaranteed output-sensitive algorithm? 

• Can we efficiently decide if the Minkowski sum has holes?



Hardness in P

• The curious incident of 3-SUM hard problems

• Computing the union of a set of triangles is 3SUM hard

• We need to compute the union of 4𝑚𝑛 triangles

• HOWEVER, our 4𝑚𝑛 triangles are special

• The mystery remains

[Gajentaan-Overmars ’95] , [Grønlund-Pettie ‘14]



The hole filter
in theory and practice



Convolution

[Guibas-Ramshaw-Stolfi ‘83]



Construction by convolution

• Lemma: The boundary of the sum is included in the convolution of 
the boundaries

• Step 1 Track the boundaries simultaneously systematically to create a 
2D arrg

• Step 2 Compute winding numbers of faces in the arrg

• Step 3 Construct the union of positive winding-number faces



Speeding up the convolution algorithm
in practice by filters

• Construct a partial version of the underlying arrangement
• Pro: fewer edges → faster arrangement construction

• Con: we lose the winding number property

• Apply filters; for example, the reflex vertex filter: reflex vertices do 
not contribute to the Minkowski sum boundary [Kaul-O’Connor-Srinivasan ‘91]

• Check for each face in the resulting arrangement whether it is inside 
the sum

[Behar-Lien ‘11]  



The hole filter

Q: Given two polygons-w/h, which holes can you fill up and still get the 
same Minkowski sum?

[poly2tri]



The hole filter

Q: Given two polygons-w/h, which holes can you fill up and still get 
the same Minkowski sum?



The hole filter, cont’d

Theorem: Let H be a hole in P. Then 

P⨁Q≠(P⋃H)⨁Q   iff ∃t ∈ R2 s.t. Q ⨁{t} ⊆ -H.



Easily computable filters

• Check if the hole H in P should be filled up by comparing the axis-
aligned bounding box of H and the axis-aligned bounding box of Q



The hole filter, cont’d

Corollary:

One can fill up all the holes of at least one polygon and still get the 
same Minkowski sum





Hole theorem, proof

• Recall that A∩(B ⨁{t}) ≠ ∅ iff t ∈ A⨁−B

• (∃t ∈ R2…) then

-Q⨁{t} ⊆ H

P∩(-Q ⨁{t})= ∅, (P⋃H) ∩(-Q ⨁{t}) ≠ ∅

t ∉ P⨁Q, t ∈ (P⋃H)⨁Q

• (∄t ∈ R2…) then

∀t, if (-Q ⨁{t})∩H ≠∅ then (-Q ⨁{t})∩∂H ≠ ∅ , namely (-Q ⨁{t})∩P≠ ∅

t ∈ (P⋃H)⨁Q ⇛ t ∈ P⨁Q

Reminder:                                                                                   

Let H be a hole in P. Then 
P⨁Q≠(P⋃H)⨁Q   iff ∃t ∈ R2 s.t. Q ⨁{t} ⊆ -H.

P

H
Q

-Q



Convex - general

• We saw that when the robot is a convex polygon, the complexity of 
the free space (complement of the C-obstacles) is favorable: how 
about algorithms?

• Standard approach: divide-and-conquer, where the merge step uses 
sweep line to compute the union of two subsets of expanded 
obstacles

• More efficient approach using medial axis?



More on the decomposition approach

• Variations based on 
• Convex decomposition

• Union algorithm



Speeding up the decomposition algorithm
Decomposition length effect: an example

P - fixed size, two types of 
decompositions

Q - fixed decomposition, scaled size

Q
 gro

w
s



Decomposition length effect: results
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Smaller number of intersections of segments

• We want each edge of 𝑅 to intersect as few polygons 
of R as possible

• (𝐿(𝑅𝑖𝑗)) - the standard rigid-motion invariant 
measure of the set of lines intersecting 𝑅𝑖𝑗

• (𝐿(𝑅𝑖𝑗)) is the perimeter of 𝑅𝑖𝑗



Length vs. number of intersections
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Optimizing the mixed objective function

𝑘𝑄(2𝑃 + 𝑃) + 𝑘𝑃(2𝑄 + 𝑄)

𝑘𝑃 - number of subpolygons in the convex decomposition of 𝑃

𝑃 - total length of diagonals in the decomposition of 𝑃

𝑃 - the perimeter of 𝑃

The function measures the overall length of the edges of 𝑅

An 𝑂(𝑛2𝑟𝑃
4 + 𝑚2𝑟𝑄

4)-time decomposition algorithm 
that minimizes this function 

𝑟𝑃 - number of reflex vertices in 𝑃

[Agarwal-Flato-H ‘02]



Implementation



The CGAL Minkowski_sum_2 Package

• Based on the Arrangement_2, Polygon_2, and Partition_2 packages

• Our reduced convolution (RC) includes the recent filters: Holes I (the 
hole theorem) and Holes II (each hole of the sum is part of the 
convolution of one boundary component from each summand)

Legend in the next slide



• The consumption time in seconds as a function of the # of vertices

• MS of pairs of polygons with holes with n vertices and n/10 holes

• More results in the paper

[Baram-Fogel-H-Hemmer-Morr] 

Simple polygons Polygons with holes

RC: our reduced convolution
TD: our triangular decomposition
VD: our vertical decomposition
BL: Behar and Lien’s RC



3D



Convex polytopes 
and spherical arrangements

[Berberich-Fogel-H-Setter]



Convex polytopes

• Recall that for polygons with 𝑚 and 𝑛 vertices, the sum has at most 𝑚
+ 𝑛 vertices

• For polytopes (3D) with 𝑚 and 𝑛 vertices, the sum has 
Θ(𝑚𝑛) vertices; exact numbers [Fogel-H-Weibel ‘09]



Arbitrary polyhedra

• Recall that for polygons with 𝑚 and 𝑛 vertices: 
𝑂(𝑚2𝑛2)

• Polyhedra with 𝑚 and 𝑛 vertices: 𝑂(𝑚3𝑛3)

• These bounds are tight



Minkowski sums, more applications

• Minimum separation distance (penetration depth)

• Placement

• Tolerancing, offsetting

• Nesting

• Cartographic generalization

?



Assembly planning

the splitStar puzzle

projection of Minkowski sums onto 
the sphere

[Fogel-H ‘13]



Standard operations

• Minimum separation distance (penetration depth)

• The Separating Axis Theorem: Given two boxes in 3D (OBBs), one can 
decide if they collide by testing their projection along 15 lines 
[Gottschalk et al. ‘96]

• Which are these 15 lines and why are 15 sufficient?

• Consider the Minkowski sum of the two OBBs



Minkowski average, riddle

Let 𝐴 be a regular polyhedral set in 𝑅𝑑.

Consider the sequence 𝐴, 
𝐴⨁𝐴

2
, 

𝐴⨁𝐴⨁𝐴

3
, … 

What can we say about 
𝐴⨁𝐴⨁…⨁𝐴

𝑘
, where 𝐴 appears 𝑘 times in the 

numerator, as 𝑘 goes to infinity?



Minkowski average, solution

[Shapley-Folkmann-Starr ‘69]



Minkowski average, convergence

Consider the sequence 𝐴, 
𝐴⨁𝐴

2
, 

𝐴⨁𝐴⨁𝐴

3
, …  in 𝑅𝑑.

Does the volume monotonically increase?

For 𝑑 = 1, yes

For 𝑑 ≥ 12, no

For 1 < 𝑑 < 12, ?

[Fradelizi et al, ‘16]



Open problems and challenges
The mystery of the construction time



Challenges

• Quasi output-sensitive algorithms

• More filters: Given 𝑃 and 𝑄, what is the family of 𝑃’s such 
that 𝑃′⨁𝑄=𝑃⨁𝑄



Major engineering challenge:                                        
Exact and efficient implementation                                   
of the general 3D case

• The decomposition method [Hachenberger ‘09]

• 3D arrangements
• Collins decomposition

• Decomposition-sensitive sweep [H-Shaul ‘02]

• Central difficulty: Degeneracies

• Geometric Rounding

• Alternative approaches: Lien et al, Manocha et al



Reference for the convex – non-convex case

• Computational Geometry: Algorithms and Applications, de Berg et al, 
3rd Edition, Springer, 2008

Chapter 13: Robot motion planning



THE END


