Algorithmic Robotics and Motion Planning

Path quality

Dan Halperin
School of Computer Science
Fall 2019-2020

Tel Aviv University

Overview

- basic quality measures
- multi-objective optimization and corridor maps
- path hybridization
- more on optimality of SB planners

Notice: abbreviated bib references, like [CR87], refer to the bibliography in the chapter Algorithmic Motion Planning by Halperin, Salzman and Sharir, CRC 2018

Basic quality measures

Shortest paths among obstacles in the plane

Shortest paths among obstacles in the plane [from de Berg et al, Ch. 15]

- first attempt: Dijkstra on the connectivity graph of the trapezoidal map

Important test

- does the graph on which we are searching for the best paths contain the (almost) best paths?

Properties of the shortest path

- a polygonal line whose vertices are the start and goal configurations and vertices of the obstacles

Computing a shortest path

Algorithm SHORTESTPATH $\left(S, p_{\text {start }}, p_{\text {goal }}\right)$

Input. A set S of disjoint polygonal obstacles, and two points $p_{\text {start }}$ and $p_{\text {goal }}$ in the free space. Output. The shortest collision-free path connecting $p_{\text {start }}$ and $p_{\text {goal }}$ -

1. $\mathcal{G}_{\text {vis }} \leftarrow \mathrm{VISIBILITYGRAPH}\left(~ \cup\left\{p_{\text {start }}, p_{\text {goal }}\right\}\right)$
2. Assign each arc (v, w) in $\mathcal{G}_{\text {vis }}$ a weight, which is the Euclidean length of the segment $\overline{v w}$.
3. Use Dijkstra's algorithm to compute a shortest path between $p_{\text {start }}$ and $p_{\text {goal }}$ in $\mathcal{G}_{\text {vis }}$.

Computing the visibility graph

Algorithm VisibilityGraph(S)

Input. A set S of disjoint polygonal obstacles.
Output. The visibility graph $\mathcal{G}_{\text {vis }}(S)$.

1. Initialize a graph $\mathcal{G}=(V, E)$ where V is the set of all vertices of the polygons in S and $E=\emptyset$.
2. for all vertices $v \in V$
3. do $W \leftarrow$ VisibleVertices (v, S)
4. \quad For every vertex $w \in W$, add the arc (v, w) to E.
5. return \mathcal{G}

Computing shortest paths in the plane, complexity

- the visibility-graph algorithm takes $O\left(n^{2} \log n\right)$ time where n is the number of obstacle vertices
- there are output sensitive algorithms (in the size of the visibility graph)
- near-optimal $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm by [HS99]
- the case of a simple polygon (whose complement is the obstacle) is much simpler, O(n)

Shortest paths among polyhedra in 3-space

- the setting: point robot moving among polyhedra with a total of n vertices
- the problem is NP-hard [CR87]
- algebraic complexity
- combinatorial complexity

High clearance paths

- Voronoi diagrams/the medial axis

[commons.wikimedia.org]

High clearance paths, cont'd

- Voronoi diagrams/the medial axis
- the Voronoi diagram of line segments, and the retraction method for a disc [O'Dunlaing-Yap]
- short paths along the diagram [Rohnert-Schirra]

- Voronoi diagrams in higher dimensions are non-trivial to compute in practice but various approximations exist

Other quality measures

- other L_{p} metrics, e.g., Manhattan (L_{1})
- link number
- number of reverse movements
- low energy
- weighted regions
- many more
- multiple objective optimal paths

Multi-objective optimization

Corridor maps

Multi-objective optimization

- scalarization
- linear
- non linear
- Pareto optimal solutions

A solution (path) is called Pareto optimal if no other solution (path) has a better value for one criterion without having a worse value for another criterion

Clearance-length combination

- non-linear scalariztion and corridors
- Pareto optimal solutions (partial set): the visibility Voronoi complex
- corridor maps

Optimizing a combined measure

non-linear scalarization [WBH08]

- Weighing length and clearance

$$
L_{\delta}^{*}(\gamma)=\int_{\gamma}\left(\frac{1}{c(\gamma(t))}\right)^{\delta} d t
$$

- In the plane we let $\delta=1$, then we integrate over the inverse of the clearance
- examples:
- the optimal path in the presence of a point obstacle

Optimal path for a point robot in the presence of a

 point obstacle for the combined measure- input: s starting point, g goal
- Lemma 1: the optimal path is smooth
- Lemma 2: obeys Snell's law of refraction

$$
w_{2} \sin \alpha_{1}=w_{1} \sin \alpha_{2}
$$

Optimal path for ... combined measure, cont'd

- assume the obstacle is in the origin

$$
\begin{aligned}
& \sin \alpha_{2}=\frac{r_{2}}{r_{1}} \sin \alpha_{1} \\
& \frac{r_{2}}{\sin \left(\pi-\alpha_{2}\right)}=\frac{r_{1}}{\sin \beta_{1}} \\
& \sin \beta_{1}=\frac{r_{1}}{r_{2}} \sin \left(\pi-\alpha_{2}\right)=\frac{r_{1}}{r_{2}} \sin \alpha_{2}=\sin \alpha_{1}
\end{aligned}
$$

- the angle between the line from the origin to the point $\Upsilon(t)$ on the curve and the tangent at $\gamma(\mathrm{t})$ is fixed: $\gamma(\mathrm{t})$ is a logarithmic spiral

Logarithmic spiral

- first described by Descartes,
studied by Jacob Bernoulli
- appears in relation to motion in nature

[positivelyparkinsons.blogspot.com]

Optimal path for a point robot in the presence of a line obstacle for the combined measure

- a circular arc

Optimal path among polygonal obstacles for the

 combined measure- comprises of logarithmic spirals circular arcs and portions of the Voronoi diagram: line segments and parabolic arcs
- at most 12 n segments, where n is the number of vertices of the polygons
- approximation algorithms:
- [WBH 08]
- [AFS 16]

Corridors

A corridor $C=\left\langle\gamma(t), w(t), w_{\max }\right\rangle$ in a d-dimensional workspace (typically $d=2$ or 3) is defined as the union of a set of d-dimensional balls whose center points lie along the backbone path of the corridor, which is given by the continuous function $\gamma:[0, L] \longrightarrow \mathbb{R}^{d}$. The radii of the balls along the backbone path are given by the function $w:[0, L] \longrightarrow$ $\left(0, w_{\max }\right]$. Both γ and w are parameterized by the length of the backbone path. In the following, we refer to $w(t)$ as the width of the corridor at point t. The width is positive at any point along the corridor, and does not exceed $w_{\text {max }}$, a prescribed $d e$ sired width of the corridor.

- the interior of the corridor should be disjoint from the interior of the obstacles

Computing optimal corridors

- It is a variant of optimal paths in the combined measure, with bounded clearance $\mathrm{w}_{\text {max }}$
- Example: the case of start and goal far from a point obstacle

and now to something completely different:
Pareto optimal solutions and the length-clearance optimization

The visibility Voronoi diagram (VVD)

 [WBHO7]

- finding the shortest path with a given clearance c , while still allowing to make significant shortcuts with lesser clearance on the Voronoi diagram
$\operatorname{VVD}^{(c)}, c=-$
blue edges: boundary of expanded obstacles
black edges: visibility diagram
red edges: Voronoi diagram

The visibility-Voronoi complex

- the $\mathrm{V} V^{(\mathrm{c})}$-diagram interpolates between the visibility graph and the Voronoi diagram:

- the VV -complex encapsulates $\mathrm{V} V^{(c)}$-diagrams for all c -values
- $O\left(n^{2} \log n\right)$ construction time

Corridor maps

[Geraerts-Overmars]

Path

- motivated by motion planning in games
- similar to VVD/VVC, augmenting the VD with clearance information
- instead of providing a single solution path, provides a corridor among static obstacles, where later one can easily maneuver among dynamic obstacles

Path hybridization

Improving quality by path hybridization [REH 11]
example: move the rod from the bottom to the top of a 2D grid (rotation + translation)

3 randomly generated motion paths

H-Graphs: Hybridizing multiple motion paths (= looking for shortcuts)


```
Algorithm 1 Building an Hybridization-Graph
Build-H-Graph(PathsList)
    PathsList: a set of \(l\) input solution paths from initial to goal
    configuration
    \(G\) : an output H-Graph
    initialize-H-Graph(PathsList)
    for all \(\pi_{1}, \pi_{2} \in\) PathsList do
        potentialBridgeEdges \(=\) a list of potential bridging edges
        between \(\pi_{1}\) and \(\pi_{2}\)
        for all \(e\) epotentialBridgeEdges do
            \(\pi_{\text {local }}=\) localPlanner \((e\). from \(\rightarrow\) e.to \()\)
            if \(\operatorname{valid}\left(\pi_{\text {local }}\right)\) then
                \(G\).addWeightedEdge(e)
            end if
        end for
    end for
    return \(G\)
```

Hybridizing the paths

Length-clearance optimization

- Scalarization, weighted length
- integrated k-inverse clearance, path length weighted by C^{-k}
- large k: more emphasis on clearance

Uniform treatment of general quality criteria

Rod-in-Grid scene: 3 dof

婯

Path length for Rod-in-Grid Scence (3 DoFs)

> Implemented in the OOPSMP package (Plaku, Moll and Kavraki), collision detection - PQP (Lin and Manocha)

Double-Wrench: 12 dof

Switching the two wrenches (rotation + translation $\times 2$)

long runs of PRM same time as total time of HGraphs

Double-Wrench Scene (12 DoFs)
$\square k$-Inverse Clearance

- Succesful Runs \%


```
H-Graphs become particularly useful for high-dimensional problems (at least in
this example)
```


Running-time bottleneck for hybridization:

Trying to connect nodes from different paths

Edit-distance string matching
\rightarrow Linear alignment of motion paths

Comparing "This dog" and "That Dodge" with insertion / deletions / replacement:
THI-S DO-G-
THAT- DODGE
dynamic-programming algorithm:


```
Algorithm 2 Dynamic-Program for Matching Two Paths
MatchPaths \((p, q)\)
    \(C:\) a cost matrix \(\in \Re^{m \times n}\)
            \(\left\{\right.\) For \(i=0\) or \(j=0\), we define \(\left.C_{i, j}=\infty\right\}\)
    TB: a symbolic trace-back matrix
    for \(i=1\) to \(m\) do
        for \(j=1\) to \(n\) do
            Match \(\Leftarrow C_{i-1, j-1}+\Delta\left(p_{i}, q_{j}\right)\)
            \(\mathrm{Up} \Leftarrow C_{i-1, j}+\mathrm{GAP}_{\text {ext }}\)
            Left \(\Leftarrow C_{i, j-1}+\) GAP \(_{\text {ext }}\)
            \(C_{i, j} \Leftarrow \min\) (Match, Up, Left, 0)
            \(T B_{i, j} \Leftarrow \begin{cases}" \uparrow " & \text { for Match } \\ " \leftarrow " & \text { for Up } \\ " \leftarrow " & \text { for Left }\end{cases}\)
        end for
    end for
    return matrices \(C\) and \(T B\)
```


- GAP $P_{\text {init }}$ (omitted above) vs GAP ${ }_{\text {ext }}$

Alignment length is linear

Now testing only $\mathrm{O}(\mathrm{n})$ edges along the alignment

Comparison of running times

- hybridizing five motion paths in a 2-D maze:
- from 3.52 seconds to 0.83 seconds on average (75% decrease), with comparable path quality

Luna et al, ICRA13

Fig. 5: Manipulator scenes for the 7-DOF arm of the PR2. The start pose is shown in green, and the goal pose is orange.

(a) Post: SBL/RRT*

(b) Table: KPIECE/RRT*

(c) Clutter: RRT-Connect/RRT*

Fig. 7: The percentage of experiments that failed to find any solution to the given query within the given time budget. Values are out of 25 possible attempts.

In experiments in higher dimensions alternating Hgraphs+shortcut beat RRT* given the same amount of running time

Why do Hgraphs work?

\rightarrow wrong decision can be taken at every step
\rightarrow can be solved by path-hybridization

More on optimization in SB planners

Remark: $\operatorname{RRG}_{[k F 11]}$

- like the RRT* algorithm, but we simply make all the valid (collision free) connections between $\mathrm{x}_{\text {new }}$ and the nodes in $\mathrm{X}_{\text {near }}$, with two edges in opposite direction for each node in $\mathrm{X}_{\text {near }}$
- the RRT* tree is a subgraph of RRG
- RRG requires more storage space and is practically more time consuming than RRT*

Tradeoff (speed vs. quality): LBT-RRT

[SH14,16]

- Lower-bound RRT:

- Guarantees convergence to ($1+\varepsilon$)OPT
- When $\varepsilon=0$ behaves like RRG
- When $\varepsilon=\infty$ behaves like RRT
- An edge ($\mathrm{v}, \mathrm{v}^{\prime}$) is collision checked only if it can potentially improve the cost of any vertex on the shortest-path tree rooted in v^{\prime} by at least $1+\varepsilon$

References

References

- Shortest Path and Networks, J.S.B. Mitchell, Chapter 31 of the Handbook on DCG, Goodman-O'Rourke-Toth (eds)
- Visibility Graphs, Chapter 15 of the Computational Geometry book by de Berg et al
- Ron Wein, Jur P. van den Berg, Dan Halperin:

The visibility-Voronoi complex and its applications. Comput. Geom. 36(1): 6687 (2007)

- Ron Wein, Jur P. van den Berg, Dan Halperin:

Planning High-quality Paths and Corridors Amidst Obstacles. I. J. Robotics Res. 27(11-12): 1213-1231 (2008)

References, cont'd

(suitable for the final project)

- Barak Raveh, Angela Enosh, Dan Halperin:

A Little More, a Lot Better: Improving Path Quality by a Path-Merging Algorithm. IEEE Trans. Robotics 27(2): 365-371 (2011)

- Ryan Luna, Ioan Alexandru Sucan, Mark Moll, Lydia E. Kavraki, Anytime solution optimization for sampling-based motion planning. ICRA 2013: 5068-5074
- Oren Salzman, Dan Halperin:

Asymptotically Near-Optimal RRT for Fast, High-Quality Motion Planning. IEEE Trans. Robotics 32(3): 473-483 (2016)

THE END

