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Overview

* basic quality measures

* multi-objective optimization and corridor maps
e path hybridization

 more on optimality of SB planners

Notice: abbreviated bib references, like [CR87], refer to the bibliography in the
chapter Algorithmic Motion Planning by Halperin, Salzman and Sharir, CRC 2018



Basic quality measures



Shortest paths among obstacles in the plane




Shortest paths among obstacles in the plane
[from de Berg et al, Ch. 15]

* first attempt: Dijkstra on the connectivity graph of the trapezoidal map

shortest path in road map



Important test

* does the graph on which we are searching for the best paths contain
the (almost) best paths?



Properties of the shortest path

 a polygonal line whose vertices are the start and goal configurations
and vertices of the obstacles

short cut




Computing a shortest path

Algorithm SHORTESTPATH(S, pPstart, Pgoal)

Input. A set § of disjoint polygonal obstacles, and two points pgpn and pgoa in the free space.
Output. The shortest collision-free path connecting psiar and pogar.

1. Gyis — VISIBILITYGRAPH(S U { pstart, Pacal })

2. Assigneach arc (v,w) in G;; a weight, which is the Euclidean length of the segment 7.
3. Use Dijkstra’s algorithm to compute a shortest path between pgian and pogar in Gyis.



Computing the visibility graph

Algorithm VISIBILITYGRAPH(S)

Input. A set § of disjoint polygonal obstacles.

Output. The visibility graph G,is(S).

1. Initialize a graph G = (V.E) where V is the set of all vertices of the polygons in § and
E=0.

2. for all verticesv eV

3 do W — VISIBLEVERTICES(v. S)

4. For every vertex w € W, add the arc (v,w) to E.

5. return §



Computing shortest paths in the plane, complexity

* the visibility-graph algorithm takes O(n? log n) time where n is the
number of obstacle vertices

 there are output sensitive algorithms (in the size of the visibility
graph)
* near-optimal O(n log n) algorithm by [HS99]

 the case of a simple polygon (whose complement is the obstacle) is
much simpler, O(n)



Shortest paths among polyhedra in 3-space

* the setting: point robot moving among polyhedra with a total of n
vertices

* the problem is NP-hard [CR87]
* algebraic complexity
e combinatorial complexity




High clearance paths

 VVoronoi diagrams/the medial axis

)

[ www.cs.wustl.edu] [commons.wikimedia.org]



http://awalinnabila.blogspot.co.il/2008/10/voronoi-diagram.html
http://awalinnabila.blogspot.co.il/2008/10/voronoi-diagram.html

High clearance paths, cont’d

 VVoronoi diagrams/the medial axis
* the Voronoi diagram of line segments, and the retraction method for

a disc [O’'Dunlaing-Yap] )
| /WBH
* short paths along the diagram /\Q |

[Rohnert-Schirra]

* VVoronoi diagrams in higher dimensions are non-trivial to compute in
practice but various approximations exist



Other quality measures

* other L, metrics, e.g., Manhattan (L,)
* link number

* number of reverse movements

* low energy

* weighted regions

* many more

* multiple objective optimal paths



Multi-objective optimization

Corridor maps



Multi-objective optimization

e scalarization
* linear
* non linear

e Pareto optimal solutions

A solution (path) is called Pareto optimal if no
other solution (path) has a better value for one
criterion without having a worse value for
another criterion



Clearance-length combination

* non-linear scalariztion and corridors
* Pareto optimal solutions (partial set): the visibility Voronoi complex

e corridor maps



Optimizing a combined measure

non-linear scalarization [WBHO08]
1 %)
’ , \e(y ()

* In the plane we let § = 1, then we integrate over the inverse of the
clearance

* Weighing length and clearance

* examples:
* the optimal path in the presence of a point obstacle



Optimal path for a point robot in the presence of a
point obstacle for the combined measure
* input: s starting point, g goal

* Lemma 1: the optimal path is smooth

 Lemma 2: obeys Snell’s law of refraction

W9 SIN (v = W1 SIN (v




Optimal path for ... combined measure, cont’d

e assume the obstacle is in the origin

. r9 .
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(]
2 r'1
sin(m — ag) sin 31
o . L :
sinJ; = —sin(m — ag) = —sinag =sinay |
2 2

e the angle between the line from the origin to the point Y(t) on the
curve and the tangent at Y(t) is fixed: Y(t) is a logarithmic spiral



Logarithmic spiral

* first described by Descartes,
studied by Jacob Bernoulli

e appears in relation to motion in nature

[positivelyparkinsons.blogspot.com]



Optimal path for a point robot in the presence of a
line obstacle for the combined measure

e a circular arc

F—-——f—F———"—"—"—"—"—"—"—"—"—"—"=—"——=—\—"=2"7HF-1




Optimal path among polygonal obstacles for the
combined measure

e comprises of logarithmic spirals circular arcs and portions of the
Voronoi diagram: line segments and parabolic arcs

* at most 12n segments, where n is the number of vertices of the

polygons

e approximation algorithms:
 [WBH 08]
* [AFS 16]




Corridors

A corridor C = (p(t),w(f), wmax) In a d-dimensional
workspace (typically d = 2 or 3) 1s defined as the union of
a set of d-dimensional balls whose center points lie along the
backbone path ot the corridor, which 1s given by the continu-
ous function y : [0, L] —> R“. The radii of the balls along
the backbone path are given by the function w : [0, L] —>
(0, wmax]. Both y and w are parameterized by the length of the
backbone path. In the following, we refer to w(r) as the width
of the corridor at point 7. The width 1s positive at any point
along the corridor, and does not exceed w .y, a prescribed de-
sired width of the corridor.

* the interior of the corridor should be disjoint from the interior of the
obstacles



Computing optimal corridors

* It is a variant of optimal paths in the combined measure, with
bounded clearance w,_,

* Example: the case of start and goal far from a point obstacle




and now to something completely different:
Pareto optimal solutions and the length-clearance optimization



The visibility Voronoi diagram (VVD)
[\WBHO7]

 finding the shortest path with a given clearance c, while still allowing
to make significant shortcuts with lesser clearance on the Voronoi
diagram



VWD), = —

blue edges: boundary
of expanded obstacles

black edges: visibility
diagram

red edges: Voronoi
diagram

e




The visibility-Voronoi complex

* the VV!9-diagram interpolates between the visibility graph and the
Voronoi diagram:

c>0 C=w
* the VV-complex encapsulates VV(€-diagrams for all c-values
* O(n?log n) construction time



High-quality

Corridor maps

|Geraerts-Overmars]

* motivated by motion planning in games
 similar to VVD/VVC, augmenting the VD with clearance information

* instead of providing a single solution path, provides a corridor among static
obstacles, where later one can easily maneuver among dynamic obstacles



Path hybridization



Improving quality by path hybridization
[REH 11]

example: move the rod from the bottom
to the top of a 2D grid (rotation +
translation)




3 randomly generated motion paths




H-Graphs: Hybridizing multiple motion paths

( = looking for shortcuts)

T T T




Algorithm 1 Building an Hybridization—Graph
Build-H-Graph(PathsList)

PathsList: a set of [ input solution paths from initial to goal
configuration

G : an output H-Graph

initialize-H-Graph(PathsList)
for all m,,7m2 € PathsList do
potentialBridgeEdges = a list of potential bridging edges
between 71 and 7o
for all e epotentialBridgeEdges do
TMocal = localPlanner(e.from — e.to)
if valid(7ioca1) then
(G.addWeightedEdge(e)
end if
end for
end for
return G



Hybridizing the paths




Length-clearance optimization

* Scalarization, weighted length
* integrated k-inverse clearance, path length weighted by C

* [arge k: more emphasis on clearance



Uniform treatment of general quality criteria

Quality Measure The Input Paths Overlaid Input Paths QOutput Path

Integrated
k-inverse clearance
[k=3]

I

Integrated
k-inverse clearance
[k=0.25]

Path Length




Rod-in-Grid scene: 3 dof

Path length for Rod-in-Grid Scence (3 DoFs)

(%]
)

w e~
| 1

Path Length
[arbitrary units]

Implemented in the OOPSMP package
(Plaku, Moll and Kavraki), collision
detection — PQP (Lin and Manocha)




Double-Wrench: 12 dof

Switching the two wrenches (rotation + translation x 2)

Double-Wrench Scene (12 DoFs)
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H-Graphs become particularly useful for high-dimensional problems (at least in
this example)

Scene adapted from Nieuwenhuisen et al., ICRA 04’




Running-time bottleneck for hybridization:
Trying to connect nodes from different paths

in a naive implementation: T M T3
O(n?) potential edges needto G-

be tested 2
a ‘ !

Simple Heuristic — “Neighborhood E
H-Graphs”: compare only to nodes
in local neighborhood — but can we
do better?

we assu
paths is




Edit-distance string matching
=» Linear alighment of motion paths

Comparing “This dog” and “That Dodge” with insertion / deletions /
replacement:

THI -S DO-G-
THAT—- DODGE

dynamic-programming algorithm:

— insertion

t h i s
0 —1 —2 — 3 — 4
l deletion h i\f&*\i\%
a |NINENLENUL
\ replacement 2>2>2>2>3
s INUININ LN
3 —43—3 —3—2




Algorithm 2 Dvnamic—Program for Matching Two Paths

MatchPaths(p,qg)
' a cost matrix £ R®"E"

{Fori =0 o0r j =0, we define C;; = oc}
T'B: a symbolic trace-back matnx

for i=1 o m do
for j=1 to n do
Matche Cioy ;-1 + Alpi,gs)
Up<= {-:-'1_1“1: + GhPem
Left+« G{_j_1 + GAP.
(;,j <= min (Match, Up, Left,0)
AT for Match
TB,; ; < { N for Up
""" for Left
end for
end for

return  matrices O and T'B

* GAP, ;. (omitted above) vs GAP,,,



Alignment length is linear
Now testing only O(n) edges along the alignment




Comparison of running times

* hybridizing five motion paths in a 2-D maze:

e from 3.52 seconds to 0.83 seconds on average (75% decrease), with
comparable path quality

100% |
75% -
50% -
25% -

0%
k-Inverse Clearance

AN

Running Thme ‘\

H-Graphs Edit Distance
H-Graphs



IMPROVING THE QUALITY OF NON-HOLONOMIC MOTION

BY HYBRIDIZING C-PRM PATHS

ITAMAR BERGER | BOSMAT ELDAR | GAL ZOHAR | BARAK RAVEH | DAN HALPERIN

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

applied to car-like motion

Sampling-based motion planners are an effective means for generat-
ing collision-free motion paths. However, the quality of these motion
paths, with respect to different quality measures such as path length,
clearance, smoothness or energy, is often notoriously low. This prob-
lem is accentuated in the case of non-holonomic sampling-based
motion planning, in which the space of feasible motion trajectories is
restricted. In this study, we combine the C-PRM algorithm by Song
and Amato with our recently introduced path-hybridization approach
(H-Graphs), for creating high quality non-holonomic motion paths,
with combinations of several different quality measures such as path
length, smoothness or clearance, as well as the number of reverse car

motions.

We have recently introduced the path-hybridization approach
12, 3], in which an arbitrary number of input motion paths are
hybridized to an output path of superior quality, for a range of
path-quality criteria. The approach is based on the observa-
tion that the quality of certain sub-paths within each solution
may be higher than the quality of the entire path. Specifically,
we run an arbitrary motion planner k times (typically k=5-6),
resulting in k intermediate solution paths to the motion plan-
ning query. From the union of all the edges and vertices in the
intermediate paths we create a single weighted graph, with
edge weights set according to the desired quality criterion.
We then try to.
merge the in-
termediate
paths into a
single  high-
quality path, by
connecting
nodes from dif-
ferent  paths
with the local

running C-PRM Path Hybridization, The left
planner, and mdamm 'mu_-‘wummup
“The right panelshows the hybridzaton o thesepaths b the path ybridization

giving the ap- s e et o s S s
propriate weights to the new edges. Dijkstra’s algorithm is
used to find the highest-quality path in the resulting Hybrid-
ization-Graph (H- Graph).

We have implemented the C-PRM algorithm and C-PRM with
path hybridization within the framework of the OOPSMP
motion planning package. Our implementation supports the
combination of a wide range of path quality criteria (length,
smoothness, clearance, number of reverse car motions).

While the path hybridization approach has been successfully tested over a
range of holonomic motion planning problems with many degrees of free-
dom, its application to non- holonomic motion planning is not trivial.

In particular, whereas it is easy to con-
nect two nearby configurations in the
case of holonomic motion, it is in gen-
eral impossible to linearly interpolate
between two states of non-holonomic
motion planning, due to the restriction
on the set of possible paths. However,
we observed that we can simply re-

uarea_anainanr tha arininal annraach

C-PRM + H-GRAPHS

holonomic problems.

[11 G. Song and N. M. Amato, “Randomized motion planning for car-like robots with
{C-PRMY’, in IEEE Int. Conf. on Intelligent Robots and Systems, 2001, pp. 37-42.

[2] B. Raveh, A. Enosh, and D. Halperin, “A little more, a lot better: Improving path
quality by a simple path merging algorithm;” ArXiv e-prints, vol. abs/1001.2391,
2010.

(3] A. Enosh, B. Raveh, O. Furman-Schueler, D. Halperin, and N. Ben-Tal, “Generation,
comparison and merging of pathways between protein conformations: Gating in
k-channels,” Biophysical Journal, vol. 95, no. 8, pp. 3850-3860, 2008.

[4] E. Plaku, K. E. Bekris, and L. E. Kavraki, “OOPS for motion planning: An online
open-source programming system;”in ICRA 07, 2007, pp. 3711-3716.

with various quality
criteria: length,

smoothness, clearance,
number of reverse vehicle

motions




Luna et al, ICRA13

(a) Post (b) Table (¢) Clutter
Fig. 5: Manipulator scenes for the 7-DOF arm of the PR2. The start pose is shown in green, and the goal pose is orange.
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Fig. 7: The percentage of experiments that failed to find any solution to the given query within the given time budget. Values
are out of 25 possible attempts.

In experiments in higher
dimensions alternating
Hgraphs+shortcut

beat RRT* given the
same amount of running
time



Why do Hgraphs work?

/ 1

I

— \ Z

y/

=» wrong decision can be taken at every step
=» can be solved by path-hybridization




More on optimization in SB
planners



Remark: RRG r11;

* like the RRT* algorithm, but we simply make all the valid (collision

free) connections between x_ ., and the nodes in X ., , with two

edges in opposite direction for each node in X,

e the RRT* tree is a subgraph of RRG

* RRG requires more storage space and is practically more time
consuming than RRT*



Tradeoff (speed vs. quality): LBT-RRT

[SH14,16]

 Lower-bound RRT:

e Guarantees convergence to (1+ €)OPT
* When €=0 behaves like RRG
 When g=co behaves like RRT

* An edge (v,Vv’) is collision checked only if it can potentially improve the cost of
any vertex on the shortest-path tree rooted in v’ by at least 1+ ¢

1.0

—©— RRT*
20 g} — A =12
§2: g ! - =14
" E -0 =1.8
3 03 ] —e— RRT

Sy am s = = =====—== ] BRSNS

:
30 60 90 120 150 180 210 240 2700 300 330 360 390 60 9N 120 150 180 210 240 270 300 330 360 390
Time [sec] Time [sec]

Oren Salzman, Dan Halperin:
Asymptotically Near-Optimal RRT for Fast, High-Quality Motion Planning. IEEE Trans. Robotics 32(3): 473-483 (2016)
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THE END



