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Translation and rotation in the plane

e C-space is three dimensional
* Boundaries of C-obstacles are no longer linear



Today’s lesson

e Preliminaries
* Piano Movers |: The case of a ladder
* The implications of Piano Movers |



Preliminaries



Reminder: The connectivity graph

[www.seas.upenn.edu/~jwk/motionPlanning]



Arrangements of critical surfaces, Take |

 arrangements A(S) are used for exact discretization of
continuous problems

* a point p in configuration space C has a property
[1(p)

* if a neighborhood U of p is not intersected by an object in 3,
the same property I1(g) holds for every point geU
(the same holds when we restrict the configuration space to an
object in §)

* the objects in & are critical
* the property is invariant in each cell of the arrangement

e examples



The shape of C-obstacles for a polygon translating
and rotating among polygons in the plane

[Atariah-Rote 2012]

Configuration space visualization



https://www.youtube.com/watch?v=SBFwgR4K1Gk&feature=youtu.be&hd=1

PIANO MOVERS I
TRANSLATING AND ROTATING A LADDER AMONG
POLYGONAL OBSTACLES



The problem
* The robot A is a line segment PQ, rotating and translating in the plane
* Moving among polygonal obstacles B with a total of n vertices

e C-space: using P as a reference point

* We assume general position



Critical curves in the xy-plane

* The projection of the following curves onto the xy-plane
* The boundaries of faces of C-obstacles

e Curves of C-obstacles of vertical tangency: curves on faces of the
C-obstacles where the tangent plane to the C-obstacles is
perpendicular to the xy-plane
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Figure 5. This figure illustrates the various types of critical curves other
than the obstacle edges. The critical curves (shown in bold lines) are the set of
positions of A where the structure of the C-obstacle region along the 6 direction
undergoes a qualitative change.




A AN\

Figure 6. A conchoid of Nicomedes (see text) 1s an algebralc curve of degree
4. We have: d> = (y+h)? + (z+k)? and £ = 2. Thus: 22 =y ((y+h)2 —1).
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Figure 7. This figure illustrates the concepts of a critical curve and a non-

critical region in a polygonal workspace. The boundaries of the obstacles are
shown in bold lines. The critical curves of types 1 through 5 are shown in
plain thin lines. A subset of the critical curve (6 is shown in dashed lines and
corresponds to a “redundant” critical curve section. Any open region enclosed
by critical curves, e.g. R, is a noncritical region.
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Figure 8. This figure illustrates the notion of a|redundant critical curve

section in a subset of W that contains two obstacles B; and Bs forming a
“corner”. Two redundant critical curves of type 1, #; and B>, are shown in
dashed lines. B (resp. f2) is the locus of P when @ is in E; (resp. E,) and
PQ is perpendicular to Ej (resp. E3). However, in both cases, PQ intersects
with Bs, implying that #; and 3, are the projections of curves contained in the
C-obstacle CB,.
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Figure 9. This figure illustrates cases where several critical curves coincide
over a section of non-zero length. In our presentation we assume that there is

no such coincidence. JIn theory, a coincidence can be eliminated by changing

the position of an obstacle by an arbitrarily small amount.




Noncritical region

* A position (x,y) is admissible if there is at least on orientation 6 such
that (x,y,0) is in C,.

* A noncritical region is a maximal subset of admissible positions of the
robot, which intersects no critical curve

* An admissible position (x,y) is noncritical iff it lies in a noncritical
region, otherwise it is critical



Free orientations

* Let (x,y) be a noncritical position

* F(x,y) is the set of all free orientations at (x,y)

* Either all orientations are free, namely F(x,y)=[0,2m), or

* F(x,y) comprises a finite number of open maximal connected intervals

* Each interval endpoint 8, is such that A(x,y, 8_.) touches B’s boundary

* 0_is called a limit orientation of A at (x,y)



Stops

e Assume F(x,y)# [O,2m)

* For each maximal interval (8,, 8,) in F(x,y) let s, be the vertex or open
edge of B touched by A(x,y,0,) called clockwise stop, and s, be the
vertex or open edge of B touched by A(x,y,0,) called counterclockwise
stop

* Let 8, be a limit orientation at a noncritical position (x,y)
* 5(x,y,0.) is the unique stop touched by A(x,y,0)

* g(x,y) is the ordered list of all pairs [s(x,y,0.),s(x,y,0’".)] of stops of
F(x,y)
* If F(x,y)= [0,2m), we let a(x,y) :={[€2,Q]}



Figure 10. A is at a noncritical position (z,y). The obstacle edges and ver-
tices it can touch without intersecting the interior of B when it rotates about
P are called stops. A stop is (counter)clockwise if it can be reached from a
free configuration by a (counter)clockwise rotation. X; and E, are clockwise
stops, while X, and E; are counterclockwise stops. The limit orientations cor-
responding to the stops X1, X5, Fy, and E; are 0y, 05, 03, and 84, respectively.




Intervals of free orientations at (x,y)

* Given a pair [s,,S,] in o(x,y) we denote by 4,(x,y,s,) the unique
orientation such that A(x,y, 4,(x,y,s,)) touches the clockwise stop s,

* Similarly, we denote by 4,(x,y,s,) the unique orientation such that
A(x,y, 1,(x,y,s,)) touches the clockwise stop s,

* If [s4,S,] in a(x,y) then (A,(x,y,s,), 4,(X,y,S,)) is @ maximal connected
interval in F(x,y)

* Notice that if R is a noncritical region than for every pair of points
(x,y), (x,y’) in R it holds that a(x,y)= a(x’,y’)

* We therefore let o(R):= o(x,y) for any (x,y) in R



Cells

* R noncritical region, [s,,s,] is a pair in g(R). The 3D region
cell(R,s,,s,):={((x,y,0) | (x,y) € Rand 8 € (1,(x,y,5,), 1,(X,y,S,))}
is called a cell

* cell(R,s,,s,) is an open connected subset of C;, .

* For every cell k=cell(R,s,,s,) and a point (x,y) € R, we define

¢ ¢K(X,y)= )ll(X,y,Sl), and
* Y. (xy)= 1,(xy,s,))

* ¢.(x,y) and Y, (x,y) are continuous fucntions over R



Union of cells

* The set of all cells cell(R,s,,s,) forms a decomposition of C;,,

* The cells are disjoint and the closure of their union equals the closure
of Cfree
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Figure 11. This figure illustrates the notations used to establish the crossing
rule of a section of critical curve of type 2.
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The connectivity graph

e FEach cell is a node

* Connect cell(R,s,,s,) to cell(R’,s,,s,) for each [s,,s,]€ a(R)n a(R’), and
connect each cell(R,s,,s,), [s1,5,] € o(R) \a(R’), if any, to each
celllR’,s’,,s’,), [s'1,5",] € o(R’) \a(R), if any
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Figure 12. This figure shows the decomposition of a polygonal workspace
into 13 noncritical regions. The robot can move from one end of the “corner”
to the other, but it cannot make a full rotation in the corner. Thus, when
the robot exits from the corner at one end, its orientation is determined by its
orientation when it entered the corner at the other end.
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F igure 13. This figure shows the connectivity graph for the example of
Figure 12. It consists of two connected components, hence verifying the legend
of Figure 12.




Complexity

* The number of critical curves

 The number of noncritical regions

* The combinatorial complexity of a cylinder above a noncritical region
* The number of vertices and edges in the connectivity graph

e Total : O(n>)

e Can this bound be achieved?

e Can we do better?



From Piano Movers | (rod) to
Piano Movers Il (general)

* Ingredient: Combinatorics and algebra
* In PM | we saw both of them
* The algebra aspect: resultants and more

* The combinatorial aspect: arrg of As, for example

Solution to general MOP with 2 DOFs using CGAL, following the separation of
algebra and combinatorics (later)
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THE END



