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Translation and rotation in the plane

• C-space is three dimensional

• Boundaries of C-obstacles are no longer linear



Today’s lesson

•Preliminaries

•Piano Movers I: The case of a ladder

•The implications of Piano Movers I



Preliminaries



Reminder: The connectivity graph
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[www.seas.upenn.edu/~jwk/motionPlanning] 



Arrangements of critical surfaces, Take I

• arrangements 𝒜(𝒮) are used for exact discretization of 
continuous problems

• a point 𝘱 in configuration space 𝒞 has a property 
П(𝘱)

• if a neighborhood 𝑈 of 𝘱 is not intersected by an object in 𝒮, 
the same property П(𝑞) holds for every point 𝑞∊𝑈
(the same holds when we restrict the configuration space to an 
object in 𝒮)

• the objects in 𝒮 are critical

• the property is invariant in each cell of the arrangement

• examples



The shape of C-obstacles for a polygon translating 
and rotating among polygons in the plane

Configuration space visualization

[Atariah-Rote 2012]

https://www.youtube.com/watch?v=SBFwgR4K1Gk&feature=youtu.be&hd=1


PIANO MOVERS I:
TRANSLATING AND ROTATING A LADDER AMONG 
POLYGONAL OBSTACLES 



The problem

• The robot A is a line segment PQ, rotating and translating in the plane

• Moving among polygonal obstacles B with a total of n vertices

• C-space: using P as a reference point

• We assume general position



Critical curves in the xy-plane

• The projection of the following curves onto the xy-plane

• The boundaries of faces of C-obstacles

• Curves of C-obstacles of vertical tangency: curves on faces of the 
C-obstacles where the tangent plane to the C-obstacles is 
perpendicular to the xy-plane 













Noncritical region

• A position (x,y) is admissible if there is at least on orientation 𝜃 such 
that (x,y,𝜃) is in Cfree

• A noncritical region is a maximal subset of admissible positions of the 
robot, which intersects no critical curve

• An admissible position (x,y) is noncritical iff it lies in a noncritical 
region, otherwise it is critical



Free orientations

• Let (x,y) be a noncritical position

• F(x,y) is the set of all free orientations at (x,y)

• Either all orientations are free, namely F(x,y)=[0,2𝜋), or

• F(x,y) comprises a finite number of open maximal connected intervals

• Each interval endpoint 𝜃𝑐 is such that A(x,y, 𝜃𝑐) touches B’s boundary

• 𝜃𝑐 is called a limit orientation of A at (x,y)



Stops

• Assume F(x,y)≠ [0,2𝜋)

• For each maximal interval (𝜃1, 𝜃2) in F(x,y) let s1 be the vertex or open 
edge of B touched by A(x,y,𝜃2) called clockwise stop, and s2 be the 
vertex or open edge of B touched by A(x,y,𝜃2) called counterclockwise 
stop

• Let 𝜃𝑐 be a limit orientation at a noncritical position (x,y)

• s(x,y,𝜃𝑐) is the unique stop touched by A(x,y,𝜃𝑐)

• 𝜎(x,y) is the ordered list of all pairs [s(x,y,𝜃𝑐),s(x,y,𝜃′𝑐)] of stops of 
F(x,y) 

• If F(x,y)= [0,2𝜋), we let 𝜎(x,y) :={[Ω,Ω]}





Intervals of free orientations at (x,y)

• Given a pair [s1,s2] in 𝜎(x,y) we denote by 𝜆1(x,y,s1) the unique 
orientation such that A(x,y, 𝜆1(x,y,s1)) touches the clockwise stop s1

• Similarly, we denote by 𝜆2(x,y,s2) the unique orientation such that 
A(x,y, 𝜆2(x,y,s2)) touches the clockwise stop s2

• If [s1,s2] in 𝜎(x,y) then (𝜆1(x,y,s1), 𝜆2(x,y,s2)) is a maximal connected 
interval in F(x,y)

• Notice that if R is a noncritical region than for every pair of points 
(x,y), (x’,y’) in R it holds that 𝜎(x,y)= 𝜎(x’,y’) 

• We therefore let 𝜎(R):= 𝜎(x,y) for any (x,y) in R



Cells

• R noncritical region, [s1,s2] is a pair in 𝜎(R). The 3D region

cell(R,s1,s2):={((x,y,𝜃) | (x,y) ∈ R and 𝜃 ∈ (𝜆1(x,y,s1), 𝜆2(x,y,s2))}

is called a cell

• cell(R,s1,s2) is an open connected subset of Cfree

• For every cell 𝜅=cell(R,s1,s2) and a point (x,y) ∈ R, we define
• 𝜙𝜅(x,y)= 𝜆1(x,y,s1), and

• 𝜓𝜅(x,y)= 𝜆2(x,y,s2))

• 𝜙𝜅(x,y) and 𝜓𝜅(x,y) are continuous fucntions over R



Union of cells

• The set of all cells cell(R,s1,s2) forms a decomposition of Cfree

• The cells are disjoint and the closure of their union equals the closure 
of Cfree





The connectivity graph

• Each cell is a node

• Connect cell(R,s1,s2) to cell(R’,s1,s2) for each [s1,s2]∈ 𝜎(R)∩ 𝜎(R’), and 
connect each cell(R,s1,s2), [s1,s2] ∈ 𝜎(R) \𝜎(R’), if any, to each 
cell(R’,s’1,s’2), [s’1,s’2] ∈ 𝜎(R’) \𝜎(R), if any







Complexity

• The number of critical curves

• The number of noncritical regions

• The combinatorial complexity of a cylinder above a noncritical region

• The number of vertices and edges in the connectivity graph

• Total : O(n5)

• Can this bound be achieved?

• Can we do better?



From Piano Movers I (rod) to
Piano Movers II (general)

• Ingredient: Combinatorics and algebra

• In PM I we saw both of them

• The algebra aspect: resultants and more

• The combinatorial aspect: arrg of Δs, for example

Solution to general MOP with 2 DOFs using CGAL, following the separation of 
algebra and combinatorics (later)
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THE END


