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Overview

* PRM, preliminaries
* the ingredients of PRM
e probabilistic completeness



PRM, the original article

Lydia E. Kavraki @, Petr Svestka, Jean-Claude Latombe, Mark H. Overmars:
Probabilistic roadmaps for path planning in high-dimensional configuration
spaces. |[EEE Trans. Robotics and Automation 12(4): 566-580 (1996)



PRM = Probabilistic Roadmap

5.6.1 The Basic Method

Once again, let G(V, E') represent a topological graph in which V' is a set of vertices
and £ 1s the set of paths that map mto Cg,e.. Under the multiple-query philosophy:.
motion planning i1s divided into two phases of computation:

Preprocessing Phase: During the preprocessing phase, substantial effort
1s mvested to build G in a way that 1s useful for quickly answering future
queries. For this reason, 1t 1s called a roadmap, which in some sense should
be accessible from every part of Cy,ee.

Query Phase: During the query phase. a pair. ¢; and gg. 1s given. Each
configuration must be connected easily to G using a local planner. Following
this, a discrete search is performed using any of the algorithms in Section
2.2 to obtain a sequence of edges that forms a path from ¢; to ¢g.

[LaValle’s Planning Algorithms]



























PRM), the basic method

BUILD_ROADMAP
I Gamt(); i — 0;

2 whilez < N

3 if a(2) € Cfree then

4 G.add_vertex(a(z)); 2 — 72 + 1;

5 for each ¢ € NEIGHBORHOOD(«(7).G)

6 if (I(not G.same_component(a(z), ¢) | and CONNECT(a(7),q)) then
i G.add_edge(a(z), q): e

[CHECK | DON’T CHECK]

Figure 5.25: The basic construction algorithm for sampling-based roadmaps. Note

that 7 i1s not incremented if a(z) 1s in collision. This forces 7 to correctly count the
number of vertices in the roadmap.

[LaValle’s Planning Algorithms]



PRM works well in settings with many degrees of
freedom

[Latombe]



Preliminary remarks

* PRM is primarily geared toward many start-to-goal queries; later on
we will discuss solutions appropriate for one shot (single query)
problems

* the success of PRM in practice stems from the rarity of pathological
instances; it is easy to cook up examples that will make PRM fail for
any variant of PRM



Ingredients



PRM, building blocks

* sampling strategy

e collision detection

* distance metric

* nearest neighbor search

e connection strategy

* local planner

e query phase: extracting path from roadmap

major computational procedures, will be discussed separately



God is in the details

 Sampling-based planners are typically very simple. However, one
needs to pay attention to the details. A tiny change to one procedure
may result in totally different behavior and results.

* Example |: To which existing nodes (milestones) should we connect a
new sample node

° Example [l: if ((not G.same_component(a(i),q))| and cONNECT(a(i),q)) then

.
-

G.add_edge(al(z).q): [CHECK | DON’T CHECK]




Sampling strategies

* the basic: uniform
* the narrow passage problem

the following slides are taken from Latombe’s

Sampling and Connection Strategies
for PRM Planners



Multi-Stage Strategies

Rationale:

One can use intermediate sampling results to identify
regions of the free space whose connectivity is more
difficult to capture



Two-Stage Sampling
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[Kavraki, 94]



Two-Stage Sampling
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Obstacle-Sensitive Strategies

Rationale:

The connectivity of free space is more difficult to capture
near its boundary than in wide-open area



Obstacle-Sensitive Strategies

>Ray casting from samples in obstacles

[Amato, Overmars]

»Gaussian sampling

[Boor, Overmars, van der Stappen, 99]




Multi-Query PRM
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e Narrow-passage sampling




Narrow-Passage Strategies

Rationale:

Finding the connectivity of the free space through narrow
passage is the only hard problem.



Narrow-Passage Strategies

»Medial-Axis Bias . } R
[Amato, Kavraki] 4 ) ' 4

>Dilatation/contraction of the tree space

[Baginski, 96; Hsu et al, 98]

»Bridge test

[Hsu et al, 02]



Bridge Test




Comparison with Gaussian Strategy

Bridge test

Gaussian



Sampling strategies,
deterministic (quasirandom)

* discrepancy

e dispersion

* \Van der Corput (1D)

* Halton (dD)

e Hammersley, when the number

of samples is known in advance

[LaValle’s Planning Algorithms]



Distance metric

the distance d(c,,c,) between two configurations

should reflect the likelihood that the local planner will fail to connect ¢, and c,

e can have drastic effect on the performance of the planner

embedding to Euclidean space and using the Euclidean distance d(c,,c,)=
d.(emb(c,),emb(c,))

 for rigid motions, separate translation from rotation and combine them with
weights w,, w,
e consider Ex 3.2(c)

e coverage in Kuffner’s ICRA 04 paper “Effective sampling and distance metrics
for 3D rigid body path planning



Coarse Connnections

[Latombe]
Methods:

1. Connect only pairs of milestones that are not too far apart

2. Connect each milestone to at most k other milestones

3. Connect two milestones only if they are in two distinct
components of the current roadmap (= the roadmap is a
collection of acyclic graph)

4. Visibility-based roadmap: Keep a new milestone m if:

a) m cannot be connected to any previous milestone and

b) m can be connected to 2 previous milestones belonging to distinct
components of the roadmap

[Laumond and Simeon, 01] -




Connection strategies, remarks

 using forests only may hamper path quality (will be discussed in
future lesson)

e connecting connected components: as shown earlier in importance
sampling, or by employing strong local planners

* lazy evaluation



Local planner

 when simple, easy to apply many times

* if non-deterministic, needs to be saved with the roadmap edge: a
storage bottleneck

* typically: dense sampling of C-space line segments between
configuration

* two sub-strategies: incremental vs subdivision; none superior in all
settings

* ideally conservative: if connection made, the local path is free



Query phase

e connect s and g to the roadmap

* we assume that the edges of the roadmap are given weights
according to some optimization criterion

 run Dijkstra, A*, or similar: guarantees quality of path in the
graph/roadmap, not necessarily in the free C-space

» perform smoothing/shortcutting
* (we will later see ways to improve path quality)



Analysis



Probabilistic completeness

* A motion planner is said to be complete if the planner in finite time
either produces a solution or correctly reports that there is none.
Most complete algorithms are geometry-based. The performance of a
complete planner is assessed by its computational complexity.

* Probabilistic completeness is the property that as more "work" is
performed, the probability that the planner fails to find a path, if one
exists, asymptotically approaches zero. Several sample-based
methods are probabilistically complete. The performance of a

probabilistically complete planner is measured by the rate of
convergence.

[Wikipedia]



Probabilistic Completeness of the basic PRM

* The C-space is [0,1]¢ in Euclidean space R?
* I: the free space

* s and t: free start and target configurations
e y: free path fromstot

* p: the clearance of y

 1: measure (volume) in R4
* B,(+): the unit ball in R?



Probabilistic Completeness of PRM, cont’d

Theorem:

The probability that s-PRM will find a path between s and t after
generating n milestones is given by

Pri(s, t)SUCCESS] = 1-Pr[(s, t)FAILURE] > 1-cei|ing(%)e—ffpd" ,

pu(B,(-))
24 u(F) -

where g =
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THE END



