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Overview

* RRT

* bi-RRT

e Poor quality solution paths
 RRT*

* Variants

* References



Two landmark papers

Steven M. LaValle, James J. Kuffner Jr.:
Randomized Kinodynamic Planning. ICRA 1999: 473-479

Sertac Karaman, Emilio Frazzoli:
Sampling-based algorithms for optimal motion planning.
. J. Robotics Res. 30(7): 846-894 (2011)



The pseudocode (and more) in the following slides is from

Kiril Solovey, Lucas Janson, Edward Schmerling, Emilio Frazzoli, Marco Pavone:
Revisiting the Asymptotic Optimality of RRTXCoRR abs/1909.09688 (2019)



Algorithm 1 RRT (251t i= S, Lgoa1 = L, 1, 1))
V' = { @it }
for ) =1 ton do
Trand — SAMPLE-FREE( )

l:

2:

3

4 Tpear & NEAREST(Z'pang, V)
5: LThew STEER(mnear; Lrand 77)
6

7

8

9:

if COLLISION-FREE(Zpear; Tnew) then
V =V U{Zpew}
E=FEU {(mneara mnew)}
return G = (V. F)

RRT —Rapidly-exploring Random Tree




Voronoi bias

Dispersion definition The dz’spersio of a finite set P’ of samples in a metric
space (X, p) isl]
0(P) = sup { min {p(z,p)}}. (5.19)

zeX =~ PEP

* Reducing the dispersion = reducing the radius of the largest empty
ball

(a) Lo dispersion (b) L dispersion [LaValle’s book]




\Voronoi bias, cont’d

* The exploration strategy of RRT has the Voronoi bias property:

The probability of a node in the tree to be expanded is proportional to
the volume of its Voronoi cell in the Voronoi diagram of the existing
nodes

* The strategy can be viewed (roughly) as aiming to reduce the
dispersion

* To exactly reduce the dispersion we should grow the tree toward the
Voronoi vertex most distant from the tree nodes, from one of its
nearest neighbors

Stephen R. Lindemann, Steven M. LaValle:
Incrementally Reducing Dispersion by Increasing Voronoi Bias in RRTs. ICRA 2004: 3251-3257

animation



https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree

BiRRT — Bidirectional RRT

* One can grow two trees T,, T, from start and target
* |n every iteration select one of the trees for expansion

* Force the trees to meet:
* Every once in a while attempt to extend both trees toward the same sample

e Approach is helpful when one of the sides is harder than the other




RRT, path quality

* RRT is probabilistically complete
* But can produce arbitrarily bad paths

Oren Nechushtan, Barak Raveh, Dan Halperin:
Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners. WAFR
2010: 285-301



Experiments (l)

Type—"':A

*49.4% of paths are over three times worse than optimal (even after smoothing)

*much larger than the theoretical bound




Experiments (1) — Close-By Start and Goal
Configurations

» 5.9% of paths are over 140 times worse than optimal (even after smoothing)

» Conclusion: visibility blocking may be as important as narrow passages




Experiments with
3D Cube-Within-Cube

* 97.3% (!) of paths are over 1.2 times worse than optimal
after smoothing
* Typically much more




RRT™

Enter Karaman and Frazzoli, 2011



Algorithm 2 RRT* (2ipi+ 1= 5, g0a1 i= ., 12,7, 7))

.V = {:I‘-ini[}

2: for j =1 ton do

3 Xpand ¢ SAMPLE-FREE( )

4 Tpear ¢ NEAREST(Zang, V')

5: Tpew < STEER(Znear, Trand, 77)

6:  If COLLISION-FREE(Zear. Tnew) then

7: Xpear = NEAR(Zpey, V., min{r(|V]),n})

8: V=V U {Zpew}

o: Lmin = Lnear

10: Cmin = COST (511-near) + ”511-|1ew — 511-near”

K for rpey € Xpear do

12: if COLLISION-FREE(Zpear, Tnew) then

13: if COST(Tear) + || Tnew — Tnear|]| < Cmin then

14: Lmin = Lnear

15: Cmin — COST(mnear) + ”:r-new - 511-11ear”

16: E=FEU {(:r-min- ilfnew)}

17: for 0. € Xpear do

18: if COLLISION-FREE(Z ey, Thear) then

19: if COST(Znew) + || Tnear — Tnew|| < COST (Zpear)
then

20: Lparent — PARENT(T-near)

21 FE=FU {(ilfnew- ilfnear)} \ {(:r-parent- II]EE]I‘)}

22: return G = (V. F)








































Asymptotic optimality

* A motion planner is asymptotically optimal if the solution returned by
it converges to the optimal solution, as the number of samples tends
to infinity



Robustly feasible motion-planning problem

Definition 2. Let (F.s,t) be a motion-planning problem.
A path o € ¥7, is robust if there exists § > 0 such that
Bs(o) C F. We also say that (F. s.t) is robustly feasible if
there exists such a robust path.

Definition 3. The robust optimum 1s defined as

¢ = inf {c(g)}g c Eii is robust } .

[Solovey et al, 2019]



Asymptotic optimality of RRT*

[Solovey et al, 2019]

Theorem 1. Suppose that (F.s.t) is robustly feasible, fix
n>0,€(0,1).0€ (0,1/4),n > 0, and define the radius
of RRT* to be

r(n) =~ (log ”) o 2)

o (1+¢e/4)c*  |F\ T
e (g w) @

where (4 is the volume of a unit d-dimensional hypersphere,
c* is the robust optimum. Then

lim Prle(o,) < (1+¢e)c*] = 1.

— 00



Variants



Sp@@dup: |nf0rm6d RRT* [Gammell et al., 2014]

* Denote by c, . the length of the shortest path found so far

e Based on this knowledge, how can we speedup the convergence of
the following iterations?



Speedup: Informed RRT*

* Denote by c, .., the length of the shortest path found so far

e Based on this knowledge, how can we speedup the convergence of
the following iterations?

* Observation: any point on a path shorter than c, ., must liein a
hyperellipsoid:




Speedup: Informed RRT*

* [mprovement:

 Maintain an ellipsoid E; initially, it covers the whole space

e Every time an improving solution is found update E

e Generate new samples only from E

Solution Cost

Solution Cost vs. CPU Time

— RRT* j
m== [nformed RRT*|.

Informed RRT*

-1

0.9 seconds; Chest = 0.7



Remal’ki RRG [Karaman-Frazzoli, 2011]

* Like the RRT* algorithm, but we simply make all the valid (collision

free) connections between x_ ., and the nodes in X ., , with two

edges in opposite direction for each node in X, .,
 The RRT* tree is a subgraph of RRG

* RRG requires more storage space and is practically more time
consuming than RRT*



Tradeoff (speed vs. quality): LBT-RRT

[Salzman-Halperin, 2014]

* Lower-bound RRT:
e Guarantees convergence to (1+ €)OPT

* An edge (v,v’) is collision checked only if it can potentially improve the cost of

When £=0 behaves like RRG
When g=c< behaves like RRT

any vertex on the shortest-path tree rooted in v’ by at least 1+ ¢
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Further variants

* RRTH#

* FMT*

* SST

* many more: see the surveys
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Good starting point

Sampling-based algorithms
Chapter 7 of the book
Principles of robot motion:
theory, algorithms, and implementation Principles of
by Choset et al .
The MIT Press '
2005

Robot Motion




the book
Planning Algorithms
PLANNING

By Steven LaValle ALGORITHMS
Camrdige University Press, 2006

in-depth coverage of motion planning
available online for free!
http://planning.cs.uiuc.edu/

online bibliography
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http://planning.cs.uiuc.edu/

More recent surveys

 Sampling-Based Robot Motion Planning, Oren Salzman,
Communications of the ACM, October 2019

* Robotics, Halperin, Kavraki, Solovey, in Handbook of Computational
Geometry, 3rd Edition, 2018

 Sampling-Based Robot Motion Planning: A Review, Elbanhawi and
Simic, IEEE Access, 2014 (free online)


https://cacm.acm.org/magazines/2019/10/239677-sampling-based-robot-motion-planning/abstract
https://www.csun.edu/~ctoth/Handbook/chap51.pdf
https://ieeexplore.ieee.org/document/6722915

THE END



