
Computational Geometry — Spring 2020 — Dan Halperin

Assignment no. 4

due: June 1st, 2020

Exercise 4.1 Let L be a set of n lines in the plane. Give an O(n log n) time algorithm to compute
an axis-parallel rectangle that contains all the vertices of the arrangement A(L) in its interior.

Exercise 4.2 Hopcroft’s problem is to decide, given n lines and n points in the plane, whether any
point is contained in any line. Give an O(n3/2 log n) time algorithm to solve Hopcroft’s problem. Hint:
Give an O(n log n) time algorithm to decide, given n lines and

√
n points in the plane, whether any

point is contained in any line.

Exercise 4.3 Let S be a set of n segments in the plane. A line ` that intersects all the segments of
S is called a transversal or stabber for S.
(a) Give an O(n2) algorithm to decide if a stabber exists for S.
(b) Now assume that all segments are vertical. Give a randomized algorithm with O(n) expected
running time that decides if a stabber exists for S. (CGAA Ex. 8.16)

Exercise 4.4 Give an example of a set of n points in the plane, and a query rectangle for which the
number of “grey” nodes of the kd-tree visited is Ω(

√
n), namely the overhead term in the query time

is Ω(
√
n).

Exercise 4.5 The algorithm we saw in class for searching in a kd-tree (where the search is guided
by comparing the region of a node with the query region) can also be used when querying with ranges
other than rectangles. For example, a query is answered correctly if the range is a triangle.
(a) Show that the query time for range queries with triangles is linear in the worst case, even if no
points are reported at all. Hint: Choose all the input points to lie on the line y = x.
(b) Suppose that a data structure is needed that can answer triangular range queries but only for
triangles whose edges are horizontal, vertical or have slope +1 or −1. Devise a linear-size data structure
that answers such queries in O(n3/4 + k) time, where k is the number of points to be reported. Hint:
Choose 4 coordinate axes in the plane and use a “4-dimensional” kd-tree.
(c) Improve the query time to O(n2/3 + k).


