Sampling-based motion planning under
kinodynamic constraints

December, 2019

Tel Aviv University

Basic definitions: Configuration space

The d-dimensional space C containing all possible configurations of
the robot is called the configuration space (C-space).

A subset & C C of all the collision-free configurations is called the
free space.

The C-obstacles, defined as Co,1, = C \ F, are rarely represented
exactly (may have a complex mathematical representation).

‘ l EXTIN

X

(a) (b)

Figures from [Lynch and Park, 16]

An alternative formulation of the motion-planning problem

Given:

e A point robot

e A d-dimensional configuration space C (C-space)
e C-obstacles (often not explicitly given) Cropp

e Free space 7 =C \ Ciorp

e Initial and final configurations

Goal:

e Plan a continuous path in the free space from the initial
configuration to the final configuration

An alternative formulation of the motion-planning problem

Figures from [Lynch and Park, 16]

Path planning vs. Motion planning

e Path planning is a sub-problem of motion planning
e Path planning is purely geometric

e Motion planning also deals with the dynamics, the duration of

motion, or constraints on the motion

(non geometric) motion planning

Suppose that C C R”

e U/ C R™ is the set of control inputs (e.g., steering angle,
accelerations) available to drive the robot

The state of the robot is a generalization of the robot's
configuration

Each state should incorporate the dynamic state of the robot

Xireo is the free state space

Working in state space

e Allows the planner to incorporate dynamics constraints on the
returned paths
e The dimension of the state space is typically d = 2n
e For a configuration of a steerable car represented by (x, vy, 0),
the corresponding state incorporating the dynamics can be
represented by (x,y, 6, x,y,0)
e Planning in state space means solving a higher dimensional
problem

Motion equation

Motion equation: x = f(x, u), where x is a state and v is a control

or in integral form, x(T) = x(0) + (]’OT f(x(t), u(t))dt

Example 1: simple (kinematic) car

Each state has (x, y,) but m = 2 (signed speed us and steering
angle uy).

The dynamics of the kinematic car are described as follows:

X = uscosb,
Yy = ussinf,
Us
= —=tanuy,
i ;

where L is the distance between the front

and rear axle of the car

Example 1: simple (kinematic) car

There could be collision-free paths that the car is incapable of
following (e.g., slide directly sideways into a parking space)

Figure from [Lynch and Park, 16]

Controllable degrees of freedom

e Sometimes not all degrees of freedom are controllable

e An example: a steerable car (an even simpler model than the
kinematic car)
e It has 3 degrees of freedom (x, y,0)
e Only one controllable dof (=the steering angle)
e Nonholonomic systems:
e When #controllable dofs < #dofs

e Cannot execute an arbitrary path (could be problematic for
PRM)

Example 2: second-order (dynamic) car

e Each state keeps (x,y.0, v, ®), where v is the speed and ¢ is
the steering angle

e m=2: (uy,uy) control the rate of change of v and ¢
The dynamics of the second-order car are described as follows:
X = vcos, y=vsinf, 0= VTtano,
Vo= u, ¢=u,

where M is the mass of the car, and L is the distance between the
front and rear axle of the car.

Steering functions

Returns a trajectory between two states

Corresponds to solving the Two-point boundary value problem
(BVP) in the state space

e For many models of robots it is impractical to generate a BVP
solver!

e There are no steering functions available for such robots

Certain planners (like PRM) require a steering function

10

Kinematic vs. kinodynamic constraints

e Kinematic constraints consider only the current position of the
robot

e Kinodynamic constraints take into account the forces that
caused the motion

11

Rapidly exploring random tree (RRT)

o Well suited to complex tasks involving kinodynamic
constraints:

Does not require a steering function

e Probably the most commonly used planner

12

Algorithm 2 RRT (Z:ns¢, Agoai, bk, Tprep, U)
1: T.init(.—rmit)
2:. fori=1to k do
3 Trand +— RANDOM_STATE()
4 ZTnear < NEAREST_NEIGHBOR (404, T)
5: t <= SAMPLE_DURATION(0, Tiyop)
6.
7
8
9

u < SAMPLE_CONTROL_INPUT(U)
Tnew < PROPAGATE(Zpear, 1, 1)
if COLLISION_FREE(xpear. Tnew) then
. T .add_vertex(Zpew)
10: T .add_edge(xyear; Thew)

11: return T

13

This variant of RRT uses forward propagation of random controls

u < Sample(Z/{) /—.l?new

Xnew / dT =+ Xinit Tinit

13

RRT: animation

14

RRT: animation

14

RRT: animation

14

RRT: animation

14

RRT: animation

14

RRT: animation

14

RRT: animation

14

RRT: animation

14

: animation

PP{OP($near7 ’urand, t

rand

14

: animation

PP{OP([Enear7 ’urand, t

rand

14

RRT: animation

14

Probabilistic completenesss of RRT

This variant of RRT is proven to be PC assuming that

e the control function is piecewise constant

e the system is Lipschitz continuous: 3K, Ky > 0 s.t.
Vxp,x1 € X, u0,u1 €U
[(x0, uo) — f(x0, u1)[|< Kulluo — us|
[(%0, uo) — f(x1, wo)[|< Kil[xo — x|

[K., Solovey, Littlefield, Bekris, Halperin, 19]

5

Proof sketch

x; = ms(i - 7), where 7 < Thyop

16

Transition between and

e Lemma 1: The probability phear that RRT will grow the tree
from Xnear € Bs(x;), given that a vertex exists in B,s5(x;), is
positive.

e Lemma 2: The probability pyop that the propagation step of
RRT from Xnear € Bs(x;) ends in xqew € Brs(xit1) is positive.

P = Pnear * Pprop > 0, and is independent of n

17

