
Sampling-based motion planning under
kinodynamic constraints

December, 2019

Tel Aviv University



Basic definitions: Configuration space

The d-dimensional space C containing all possible configurations of
the robot is called the configuration space (C-space).
A subset F ⊂ C of all the collision-free configurations is called the
free space.
The C-obstacles, defined as Cforb = C \ F , are rarely represented
exactly (may have a complex mathematical representation).

Figures from [Lynch and Park, 16]
1



An alternative formulation of the motion-planning problem

Given:

• A point robot
• A d-dimensional configuration space C (C-space)
• C-obstacles (often not explicitly given) Cforb

• Free space F = C \ Cforb

• Initial and final configurations

Goal:

• Plan a continuous path in the free space from the initial
configuration to the final configuration

2



An alternative formulation of the motion-planning problem

Figures from [Lynch and Park, 16]

2



Path planning vs. Motion planning

• Path planning is a sub-problem of motion planning
• Path planning is purely geometric
• Motion planning also deals with the dynamics, the duration of

motion, or constraints on the motion

3



(non geometric) motion planning

• Suppose that C ⊂ Rn

• U ⊂ Rm is the set of control inputs (e.g., steering angle,
accelerations) available to drive the robot

• The state of the robot is a generalization of the robot’s
configuration

• Each state should incorporate the dynamic state of the robot
• Xfree is the free state space

4



Working in state space

• Allows the planner to incorporate dynamics constraints on the
returned paths

• The dimension of the state space is typically d = 2n
• For a configuration of a steerable car represented by (x , y , θ),

the corresponding state incorporating the dynamics can be
represented by (x , y , θ, ẋ , ẏ , θ̇)

• Planning in state space means solving a higher dimensional
problem

5



Motion equation

Motion equation: ẋ = f (x , u), where x is a state and u is a control

or in integral form, x(T ) = x(0) +
∫ T

0 f (x(t), u(t))dt

6



Example 1: simple (kinematic) car

Each state has (x , y , θ) but m = 2 (signed speed us and steering
angle uφ).

The dynamics of the kinematic car are described as follows:

ẋ = us cos θ,
ẏ = us sin θ,
θ̇ = us

L tan uφ,

where L is the distance between the front
and rear axle of the car

L

uφ

(x, y)

θ

7



Example 1: simple (kinematic) car

There could be collision-free paths that the car is incapable of
following (e.g., slide directly sideways into a parking space)

Figure from [Lynch and Park, 16]

7



Controllable degrees of freedom

• Sometimes not all degrees of freedom are controllable
• An example: a steerable car (an even simpler model than the

kinematic car)
• It has 3 degrees of freedom (x , y , θ)
• Only one controllable dof (=the steering angle)

• Nonholonomic systems:
• When #controllable dofs < #dofs
• Cannot execute an arbitrary path (could be problematic for

PRM)

8



Example 2: second-order (dynamic) car

• Each state keeps (x , y , θ, v , φ), where v is the speed and φ is
the steering angle

• m = 2: (uv , uφ) control the rate of change of v and φ

The dynamics of the second-order car are described as follows:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = vM
L tanφ,

v̇ = uv , φ̇ = uφ,

where M is the mass of the car, and L is the distance between the
front and rear axle of the car.

9



Steering functions

• Returns a trajectory between two states
• Corresponds to solving the Two-point boundary value problem

(BVP) in the state space
• For many models of robots it is impractical to generate a BVP

solver!
• There are no steering functions available for such robots

• Certain planners (like PRM) require a steering function

10



Kinematic vs. kinodynamic constraints

• Kinematic constraints consider only the current position of the
robot

• Kinodynamic constraints take into account the forces that
caused the motion

11



Rapidly exploring random tree (RRT)

• Well suited to complex tasks involving kinodynamic
constraints:
Does not require a steering function

• Probably the most commonly used planner

12



RRT [LaValle and Kuffner, 01]

13



RRT [LaValle and Kuffner, 01]

This variant of RRT uses forward propagation of random controls

u ← Sample(U)

xnew ←
∫ t

0
f (x(T ), u)dT + xinit xinit

xnew

13



RRT: animation

xinit

14



RRT: animation

xinit

xrand

14



RRT: animation

xinit

xrand

xnear

14



RRT: animation

xinit

xnear

PROP(xnear, urand, trand)

xnew

14



RRT: animation

xinit

xnear

xnew

14



RRT: animation

xinit

14



RRT: animation

xinit

xrand

14



RRT: animation

xinit

xrand

xnear

14



RRT: animation

xinit

xnear

PROP(xnear, urand, trand)

xnew

14



RRT: animation

xinit

xnear

PROP(xnear, urand, trand)

xnew

14



RRT: animation

xinit

14



Probabilistic completenesss of RRT

This variant of RRT is proven to be PC assuming that

• the control function is piecewise constant
• the system is Lipschitz continuous: ∃Ku,Kx > 0 s.t.
∀x0, x1 ∈ X , u0, u1 ∈ U
‖f (x0, u0)− f (x0, u1)‖≤ Ku‖u0 − u1‖
‖f (x0, u0)− f (x1, u0)‖≤ Kx‖x0 − x1‖

[K., Solovey, Littlefield, Bekris, Halperin, 19]

15



Proof sketch

x0 = xinit
xm = xgoal

δ
x1

x2 xi
xi+1

πδ
Bδ(x0) Bδ(xm)

xi = πδ(i · τ), where τ ≤ Tprop

16



Transition between Bδ(xi) and Bδ(xi+1)

• Lemma 1: The probability pnear that RRT will grow the tree
from xnear ∈ Bδ(xi ), given that a vertex exists in Bκδ(xi ), is
positive.

• Lemma 2: The probability pprop that the propagation step of
RRT from xnear ∈ Bδ(xi ) ends in xnew ∈ Bκδ(xi+1) is positive.

xi
xi+1

xnear

κδ

δ
κδ

Tκπ

πnew → PROP(urand, trand)

xnew

p = pnear · pprop > 0, and is independent of n

17


