Algorithmic Robotics and Motion Planning

Motion planning and arrangements I: General considerations

Dan Halperin School of Computer Science

Overview

- Arrangements, reminder
- Arrangements and configuration spaces
- Examples
- General exact algorithms for motion planning

Reminder

What are arrangements?

Example: an arrangement of lines
vertex

edge
face

What are arrangements, cont'd

- an arrangement of a set S of geometric objects is the subdivision of space where the objects reside induced by S
- possibly non-linear objects (parabolas), bounded objects (segments, circles), higher dimensional (planes, simplices)
- numerous applications in robotics, molecular biology, vision, graphics, CAD/CAM, statistics, GIS
- have been studied for decades, originally mostly combinatorics nowadays mainly studied in combinatorial and computational geometry

Arrangements of lines: Combinatorics

the complexity of an arrangement is the overall number of cells of all dimensions comprising the arrangement for planar arrangements we count: vertices, edges, and faces
the general position assumption: two lines meet in a single point, three lines have no point in common

In an arrangements of n lines

number of vertices: $n(n-1) / 2$
number of edges: n^{2}
number of faces:
using Euler's formula $|V|-|E|+|F|=2$ we get $n^{2}+n^{2} / 2+1$

Basic theorem of arrangement complexity

the maximum combinatorial complexity of an arrangement of n well-behaved curves in the plane is $O\left(n^{2}\right)$; there are such arrangements whose complexity is $\Omega\left(n^{2}\right)$
more generally
the maximum combinatorial complexity of an arrangement of n well-behaved (hyper)surfaces in \mathbb{R}^{d} for a fixed d is $O\left(n^{d}\right)$; there are such arrangements whose complexity is $\Omega\left(n^{d}\right)$

Configuration spaces

- arrangements $\mathcal{A}(\mathcal{S})$ are used for exact discretization of continuous problems
- a point p in configuration space \mathcal{C} has a property П(p)
- if a neighborhood U of p is not intersected by an object in S, the same property $\Pi(q)$ holds for every point $q \in U$ (the same holds when we restrict the configuration space to an object in \mathcal{S})
- the objects in \mathcal{S} are critical
- the property is invariant in each cell of the arrangement

Configuration space for translational motion planning

the rod is translating in the room

- the reference point: the lower end-point of the rod
- the configuration space is 2 dimensional

Configuration space obstacles

the robot has shrunk to a point
\Rightarrow
the obstacles are accordingly expanded

Critical curves in configuration space

the locus of semi-free placements

Making the connection:
The arrangement of critical curves in configuration space

Solving a motion-planning problem

 a general framework- what are the critical curves
- how complex is the arrangement of the critical curves
- constructing the arrangement and filtering out the forbidden cells
- what is the complexity of the free space
- can we compute the free space efficiently
- do we need to compute the entire free space?

Example: a disc moving among discs

- the critical curves are circles
- how complex is the arrangement of the circles?
- what is the complexity of the free space?
- can we compute the free space efficiently?
- do we need to compute the entire free space? does it matter?

Example: an L-shaped robot moving among points

- what are the critical curves?
- how complex is the arrangement of the critical curves?
- what is the complexity of the free space?
- how to compute the free space efficiently?
- next, we let the L rotate as well
- what are the critical surfaces?
- how complex is the arrangement of the critical surfaces?
- what is the complexity of the free space?

Complete solutions, I

the Piano Movers series [Schwartz-Sharir 83],
cell decomposition: a doubly-exponential solution, $O\left((n d)^{3^{\wedge} k}\right)$ expected time
assuming the robot complexity is constant,
k is the number of degrees of freedom,
n is the complexity of the obstacles and
d is the algebraic complexity of the problem

Complete solutions, II

roadmap [Canny 87]:
a singly exponential solution, $n^{k}(\log n) d^{O\left(k^{\wedge} 2\right)}$ expected time
see also [Basu-Pollack-Roy 06]

Bibliography

References to all the results mentioned in this presentation and more can be found in the following two chapters of the: Handbook of Discrete and Computational Geometry -Third Edition—edited by Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth CRC Press LLC, Boca Raton, FL, 2018

- Chapter 28, Arrangements, Halperin and Sharir
- Chapter 50, Algorithmic Motion Planning, Halperin-SlazmanSharir

THE END

