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• Arrangements, reminder

• Arrangements and configuration spaces

• Examples

• General exact algorithms for motion planning



Reminder
What are arrangements?

Example: an arrangement of lines

vertex

edge

face
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What are arrangements, cont’d

• an arrangement of a set S of geometric objects is the 
subdivision of space where the objects reside induced by S

• possibly non-linear objects (parabolas), bounded objects 
(segments, circles), higher dimensional (planes, simplices)

• numerous applications in robotics, molecular biology, vision, 
graphics, CAD/CAM, statistics, GIS

• have been studied for decades, originally mostly combinatorics
nowadays mainly studied in combinatorial and computational 
geometry
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Arrangements of lines: Combinatorics

the complexity of an arrangement is the overall number 
of cells of all dimensions comprising the arrangement

for planar arrangements we count: vertices, edges, and 
faces

the general position assumption: two lines meet in a 
single point, three lines have no point in common
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In an arrangements of 𝑛 lines

number of vertices: 𝑛(𝑛 − 1)/2

number of edges: 𝑛2

number of faces:

using Euler’s formula |𝑉|−|𝐸|+|𝐹|= 2
we get 𝑛2 + 𝑛2 /2 + 1
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Basic theorem of arrangement complexity

the maximum combinatorial complexity of an arrangement of 
𝑛 well-behaved curves in the plane is 𝑂(𝑛2); there are such 
arrangements whose complexity is Ω(𝑛2)

more generally

the maximum combinatorial complexity of an arrangement of 
𝑛 well-behaved (hyper)surfaces in ℝ𝑑 for a fixed 𝑑 is 𝑂(𝑛𝑑); 
there are such arrangements whose complexity is Ω(𝑛𝑑)
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Configuration spaces

• arrangements 𝒜(𝒮) are used for exact discretization of 
continuous problems

• a point 𝘱 in configuration space 𝒞 has a property 
П(𝘱)

• if a neighborhood 𝑈 of 𝘱 is not intersected by an object in 𝒮, 
the same property П(𝑞) holds for every point 𝑞∊𝑈
(the same holds when we restrict the configuration space to 
an object in 𝒮)

• the objects in 𝒮 are critical

• the property is invariant in each cell of the arrangement
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Configuration space for translational
motion planning

the rod is translating in the room

• the reference point: the lower end-point of the rod 

• the configuration space is 2 dimensional
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Configuration space obstacles

the robot has shrunk to a point
⇒
the obstacles are accordingly expanded
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Critical curves in configuration space

the locus of semi-free placements
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Making the connection:
The arrangement of critical curves in
configuration space
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Solving a motion-planning problem
a general framework

• what are the critical curves

• how complex is the arrangement of the critical curves

• constructing the arrangement and filtering out the forbidden 
cells

• what is the complexity of the free space

• can we compute the free space efficiently

• do we need to compute the entire free space?
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Example: a disc moving among discs

• the critical curves are circles

• how complex is the arrangement of the circles?

• what is the complexity of the free space?

• can we compute the free space efficiently?

• do we need to compute the entire free space? does it 
matter?
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Example: an L-shaped robot moving
among points

• what are the critical curves?

• how complex is the arrangement of the critical curves?

• what is the complexity of the free space?

• how to compute the free space efficiently?

• next, we let the L rotate as well

• what are the critical surfaces?

• how complex is the arrangement of 
the critical surfaces?

• what is the complexity of the free space?
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Complete solutions, I

the Piano Movers series [Schwartz-Sharir 83],

cell decomposition: a doubly-exponential

solution, 𝑂((𝑛𝑑)3^𝑘) expected time

assuming the robot complexity is constant,

𝑘 is the number of degrees of freedom, 

𝑛 is the complexity of the obstacles and 

𝑑 is the algebraic complexity of the problem
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Complete solutions, II

roadmap [Canny 87]:

a singly exponential solution, 

𝑛𝑘(log 𝑛)𝑑𝑂(𝑘^2) expected time

see also [Basu-Pollack-Roy 06] 
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