
RECITATION 1

Introducing CGAL, OMPL

Halfplanes’ intersection

Michal Kleinbort



CGAL

• The Computational Geometry Algorithms Library (CGAL) is an open 
source C++ library providing implementations for many algorithms 
and data structures in computational geometry

• Implemented algorithms are efficient and reliable

• Allows for exact computation (avoiding roundoff errors)

• Several packages of CGAL have Python bindings

https://www.cgal.org/index.html

https://www.cgal.org/index.html


OMPL

• The Open Motion Planning Library (OMPL) is an open source C++ 
library providing implementations to many state-of-the-art sampling-
based motion planning algorithms.

• OMPL.app builds upon OMPL and specifies geometric representation 
for the robot and its environment. It makes use of open-source collision 
checking libraries.

• Has also been integrated with ROS (Robot Operating System), which 
is a collection of frameworks for robot software development.

•https://ompl.kavrakilab.org/

https://ompl.kavrakilab.org/


HALFPLANE (DEFINITION)

▪a planar region ℎ consisting of all points on one side of 
an (infinite) line ℓ

▪ lower halfplane ℎ is represented as 𝑦 ≤ 𝑎𝑥 + 𝑏

ℓ

ℎ



HALFPLANE (DEFINITION)

▪a planar region ℎ consisting of all points on one side of 
an (infinite) line ℓ

▪ lower halfplane ℎ is represented as 𝑦 ≤ 𝑎𝑥 + 𝑏

lower halfplane ℎ



HALFPLANE (DEFINITION)

▪a planar region ℎ consisting of all points on one side of 
an (infinite) line ℓ

▪ upper halfplane ℎ is represented as 𝑦 ≥ 𝑎𝑥 + 𝑏

ℓ
ℎ



HALFPLANE (DEFINITION)

▪a planar region ℎ consisting of all points on one side of 
an (infinite) line ℓ

▪ upper halfplane ℎ is represented as 𝑦 ≥ 𝑎𝑥 + 𝑏

upper halfplane ℎ



INTERSECTION OF HALFPLANES

is always convex (why?)



INTERSECTION OF HALFPLANES

can be unbounded



INTERSECTION OF HALFPLANES

can be empty



INTERSECTION OF HALFPLANES

Splitting to upper and lower halfplanes



THE LOWER ENVELOPE OF LINES

Let L be a set of lines

The lower envelope of L is 𝑓 𝑥 = 𝑚𝑖𝑛ℓ∈𝐿 ℓ(𝑥)



THE UPPER ENVELOPE OF LINES

The upper envelope is defined similarly



INTERSECTION OF HALFPLANES

The region below the lower envelope of the lower halfplanes 
and above the upper envelope of the upper halfplanes 
(why?)



ALGORITHM FOR COMPUTING THE 
INTERSECTION
Given a set of halfplanes 𝐻

1) Split 𝐻 into 3 subsets: 

▪𝐻𝐿 the lower halfplanes

▪𝐻𝑈 the upper halfplanes

▪𝐻𝑉𝑒𝑟𝑡 the vertical halfplanes

2) Compute the 𝐸𝐿 - the lower envelope of 𝐻𝐿

3) Compute the 𝐸𝑈- the upper envelope of 𝐻𝑈

4) Compute the region bounded between the two envelopes 
and intersect it with the rightmost right-halfplane and 
leftmost left-halfplane in 𝐻𝑉𝑒𝑟𝑡, if such exist



ALGORITHM FOR PART (4): COMPUTING 
THE BOUNDED REGION

Given two envelopes 𝐸𝑈 , 𝐸𝐿 (upper and lower) 
represented as ordered lists of lines.

The goal is to compute the bounded region below 𝐸𝐿and 
above 𝐸𝑈.

The output should be two sub-lists of 𝐸𝐿and 𝐸𝑈, 
representing the upper and lower boundary of the region, 
respectively.



ALGORITHM FOR PART (4): COMPUTING 
THE BOUNDED REGION

𝐸𝑈 = ℓ𝑎, ℓ𝑐 𝐸𝐿 = [ℓ3, ℓ4, ℓ2]

ℓ2

ℓ1

ℓ3 ℓ4

ℓ𝑎

ℓ𝑏
ℓ𝑐



ALGORITHM FOR PART (4): COMPUTING 
THE BOUNDED REGION

Project 𝐸𝑈, 𝐸𝐿 onto ℝ ℓ2

ℓ1

ℓ3 ℓ4

ℓ𝑎

ℓ𝑏
ℓ𝑐

ℓ𝑎 ℓ𝑐

ℓ3 ℓ4 ℓ2



ALGORITHM FOR PART (4): COMPUTING 
THE BOUNDED REGION

We partition ℝ into segments and find in linear time the ones where 
𝐸𝐿 lies above 𝐸𝑈

ℓ𝑎 ℓ𝑐

ℓ3 ℓ4 ℓ2

𝐸𝑈

𝐸𝐿



COMPUTING THE LOWER ENVELOPE

Divide and Conquer algorithm for a given set of 𝑛 lines 𝐿:

1) Divide L into two subsets 𝐴, 𝐵 of size 𝑛/2 each

2) Run the D&C alg on 𝐴, 𝐵 separately returning 𝐸𝐴and 𝐸𝐵

3) Merge 𝐸𝐴and 𝐸𝐵 into a new lower envelope 𝐸

4) Return 𝐸



PART (3): MERGING TWO ENVELOPES 

Case 1 (simple): the envelopes do not intersect

return the lower one



PART (3): MERGING TWO ENVELOPES 

Case 2: the envelopes intersect

Project 𝐸𝐴, 𝐸𝐵 onto ℝ



PART (3): MERGING TWO ENVELOPES 

We partition ℝ into segments, each segment is defined by two line 

segments: one from each envelope



PART (3): MERGING TWO ENVELOPES 

Add ℓ2 to the resulting 
envelope

Two options for segments:

ℓ1

ℓ2

Add ℓ2 to the resulting 
envelope and then ℓ1

ℓ1
ℓ2



COMPLEXITY

• Merging two envelopes takes 𝑂(𝑛) where 𝑛 is the size of the longer 
envelope

• Note that if the initial set of lines is of size 𝑛 then the lower envelope 
is of size 𝑂 𝑛 (each line can appear at most once on the envelope)

• Complexity of the D&C algorithm for computing the lower envelope is 
𝑂 𝑛 log 𝑛

▪This is optimal in the worst-case

▪Output sensitive algorithms, which may perform better for certain
inputs, exist as well

• Complexity of the algorithm for computing the intersection of 
halfspaces is 𝑂(𝑛 log 𝑛)


