RECITATION 1

Introducing CGAL, OMPL

 Halfplanes' intersection
CGAL

- The Computational Geometry Algorithms Library (CGAL) is an open source C++ library providing implementations for many algorithms and data structures in computational geometry
- Implemented algorithms are efficient and reliable
- Allows for exact computation (avoiding roundoff errors)
- Several packages of CGAL have Python bindings

OMPL

- The Open Motion Planning Library (OMPL) is an open source C++ library providing implementations to many state-of-the-art samplingbased motion planning algorithms.
- OMPL.app builds upon OMPL and specifies geometric representation for the robot and its environment. It makes use of open-source collision checking libraries.
- Has also been integrated with ROS (Robot Operating System), which is a collection of frameworks for robot software development.

-https://ompl.kavrakilab.org/

HALFPLANE (DEFINITION)

- a planar region h consisting of all points on one side of an (infinite) line l
- lower halfplane h is represented as $y \leq a x+b$

HALFPLANE (DEFINITION)

- a planar region h consisting of all points on one side of an (infinite) line l
- lower halfplane h is represented as $y \leq a x+b$
lower halfplane h

HALFPLANE (DEFINITION)

- a planar region h consisting of all points on one side of an (infinite) line l
- upper halfplane h is represented as $y \geq a x+b$

HALFPLANE (DEFINITION)

- a planar region h consisting of all points on one side of an (infinite) line l
- upper halfplane h is represented as $y \geq a x+b$

INTERSECTION OF HALFPLANES

is always convex (why?)

INTERSECTION OF HALFPLANES

can be unbounded

INTERSECTION OF HALFPLANES

can be empty

INTERSECTION OF HALFPLANES

Splitting to upper and lower halfplanes

THE LOWER ENVELOPE OF LINES

Let L be a set of lines
The lower envelope of L is $f(x)=\min _{\ell \in L} \ell(x)$

THE UPPER ENVELOPE OF LINES

The upper envelope is defined similarly

INTERSECTION OF HALFPLANES

The region below the lower envelope of the lower halfplanes and above the upper envelope of the upper halfplanes
(why?)

ALGORITHM FOR COMPUTING THE INTERSECTION

Given a set of halfplanes H

1) Split H into 3 subsets:

- H_{L} the lower halfplanes
- H_{U} the upper halfplanes
- $H_{\text {Vert }}$ the vertical halfplanes

2) Compute the E_{L} - the lower envelope of H_{L}
3) Compute the $E_{U^{-}}$the upper envelope of H_{U}
4) Compute the region bounded between the two envelopes and intersect it with the rightmost right-halfplane and leftmost left-halfplane in $H_{V e r t}$, if such exist

ALGORITHM FOR PART (4): COMPUTING THE BOUNDED REGION

Given two envelopes E_{U}, E_{L} (upper and lower) represented as ordered lists of lines.

The goal is to compute the bounded region below E_{L} and above E_{U}.

The output should be two sub-lists of E_{L} and E_{U}, representing the upper and lower boundary of the region, respectively.

ALGORITHM FOR PART (4): COMPUTING THE BOUNDED REGION

$$
E_{U}=\left[\ell_{a}, \ell_{c}\right] \quad E_{L}=\left[\ell_{3}, \ell_{4}, \ell_{2}\right]
$$

ALGORITHM FOR PART (4): COMPUTING THE BOUNDED REGION

Project E_{U}, E_{L} onto \mathbb{R}

ALGORITHM FOR PART (4): COMPUTING THE BOUNDED REGION

We partition \mathbb{R} into segments and find in linear time the ones where E_{L} lies above E_{U}

COMPUTING THE LOWER ENVELOPE

Divide and Conquer algorithm for a given set of n lines L :

1) Divide L into two subsets A, B of size $n / 2$ each
2) Run the $\mathrm{D} \& \mathrm{C}$ alg on A, B separately returning E^{A} and E^{B}
3) Merge E^{A} and E^{B} into a new lower envelope E
4) Return E

PART (3): MERGING TWO ENVELOPES

Case 1 (simple): the envelopes do not intersect

return the lower one

PART (3): MERGING TWO ENVELOPES

Case 2: the envelopes intersect

Project E_{A}, E_{B} onto \mathbb{R}

PART (3): MERGING TWO ENVELOPES

We partition \mathbb{R} into segments, each segment is defined by two line segments: one from each envelope

PART (3): MERGING TWO ENVELOPES

Two options for segments:

Add ℓ_{2} to the resulting envelope

Add ℓ_{2} to the resulting envelope and then ℓ_{1}

COMPLEXITY

- Merging two envelopes takes $O(n)$ where n is the size of the longer envelope

Note that if the initial set of lines is of size n then the lower envelope is of size $O(n)$ (each line can appear at most once on the envelope)

- Complexity of the D\&C algorithm for computing the lower envelope is $O(n \log n)$
- This is optimal in the worst-case
- Output sensitive algorithms, which may perform better for certain inputs, exist as well
- Complexity of the algorithm for computing the intersection of halfspaces is $O(n \log n)$

