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A robot

A mechanical device, equipped with actuators and sensors, that is
controlled by a computing system
Operates in a real-world workspace, populated by physical objects
Performs tasks by executing motions in the workspace
An autonomous robot is required to plan its own motions
automatically in order to achieve a given task
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Some examples
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Some examples

In the context of COVID-19
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The motion-planning problem

Given:
A robot R
A workspace W (with obstacles)
Initial and final positions

Goal:
Plan a collision-free continuous path for
the robot from the initial position to the
final position
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A configuration of the robot
A configuration of the robot is represented by a set of parameters, e.g.,
(x , y ,Θ1,Θ2,Θ3)
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The dimension
The dimension of the motion-planning problem is defined by the length of
each configuration
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The configuration space
The d-dimensional space C containing all possible configurations of the
robot is called the configuration space (C-space).
A subset F ⊂ C of all the collision-free configurations is called the free
space.
The C-obstacles, defined as Cforb = C \ F , are rarely represented exactly
(may have a complex mathematical representation).

Figures from [Lynch and Park, 16]
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An alternative formulation of the MP problem

Given:
A point robot
A d-dimensional configuration space C (C-space)
C-obstacles (often not explicitly given) Cforb

Free space F = C \ Cforb

Initial and final configurations
Goal:

Plan a continuous path in the free space from the initial configuration
to the final configuration
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An alternative formulation of the MP problem

Figures from [Lynch and Park, 16]
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Challenges

High-dimensional problems are “hard” to
solve
Finding an optimal path is harder than
finding a path

I minimal path length
I maximal distance from obstacles
I smoothness
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Sampling-based methods for solving the problem

Attempt to capture the structure of the C-space by constructing a
graph (called a roadmap)

I The nodes are collision-free configurations sampled at random
I Two nearby nodes are connected by an edge if the path between them

(usually a straight line) is collision-free
Are often probabilistically complete
Novel methods also ensure asymptotic optimality
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Primitive operations in sampling-based methods

Collision detection (CD)
I Determines whether a configuration or a C-space path between two

configurations is collision-free. The latter is termed local planning (LP)
I Complexity usually depends on both the complexity of the workspace

obstacles and the complexity of the robot
Nearest-neighbor search (NN)

I Returns the nearest neighbor (or neighbors) of a given configuration
I Complexity depends on the number n of nodes and the dimension d

The main practical computational bottleneck is typically considered to be
CD (including LP)
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Query: Givenstart and goal configurations, find the shortest path between
the two configurations
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The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves CD operation
Query: Given configurations, find the shortest path h
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

r

Involves NN operation (r -nearest neighbors or k-nearest neighbors)
rPRM∗ (n) = 2

[(
1 + 1

d

)
·
(
µ(Cfree)
ζd

)
·
(

log n
n

)]1/d
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

k = O(log n)

Involves NN operation (r -nearest neighbors or k-nearest neighbors)
kPRM∗(n) = 2e log n
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves CD operation (as an LP sub-procedure)
Query: Given configurations, find the shortest path h

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 12 / 23



An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves CD operation (as an LP sub-procedure)
Query: Given configurations, find the shortest path h

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 12 / 23



An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Query: Givenstart and goal configurations, find the shortest path between
the two configurations

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 12 / 23



An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Query: Givenstart and goal configurations, find the shortest path between
the two configurations

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 12 / 23



An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Query: Given start and goal configurations, find the shortest path between
the two configurations

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 12 / 23



An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Query: Given start and goal configurations, find the shortest path between
the two configurations

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 12 / 23



Sampling-based planners

single-robot planners

LBT-RRT MPLB

FMT*RRG

PRM

BTT

dRRT dRRT*M*

multi-robot planners

length cost

bottleneck
cost

BFMT*

SPARS2RSEC
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Our results [K., Salzman and Halperin ’15, ’16]

We formally prove that the complexity of NN search dominates the
asymptotic running time of several AO algorithms

We characterize settings in which the role of NN is far from negligible
and show experimentally that NN may dominate CD after finite time

We use an efficient, specifically-tailored NN data structure in such
settings to reduce the overall time of motion-planning algorithms
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NN-sensitive settings

Can be of the following types:
Algorithms: Planners that algorithmically shift some of the
computational weight from CD to NN
Scenarios: Scenarios in which the computational cost of certain
planners is mostly due to NN search
Parameters: Parameters’ values for which the computational cost of
certain planners is mostly due to NN search
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NN-sensitive algorithms
We measure the ratio χALG(N) between the overall time spent on NN and
the time spent on CD, after N configurations were sampled, when
algorithm ALG is used
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Using NN-sensitive algorithms (e.g., Lazy-PRM* [Hauser ’15],
MPLB [Salzman and Halperin ’15] etc.), the ratio χALG(N) significantly
increases as a function of N, obtaining values greater than 1, namely, NN
takes more time than CD
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NN-sensitive scenarios

Let S = (W,R) denote a scenario, where:
I W denotes the workspace
I R denotes the robot system, which is a set of ` single

constant-description complexity robots operating simultaneously
Let d denote the dimension of S, d = Θ(`)
Let m denote the complexity of the workspace obstacles
Robot-robot collisions should be taken into account as well
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NN-sensitive scenarios - The effect of d
sPRM* example:

When d is gradually increased, the ratio χsPRM*(N):
I Shows an initial increase
I Then shows a possible decrease
I Finally, shows a very slow increase or perhaps even tends to some

constant value

R-NN
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Adapting all-pairs rNN algorithms for sampling-based
motion planning

In several planning algorithms “all-pairs” r -NN are used with a
predefined value r(n) = O(( log n

n )1/d )
Randomly transformed grids (RTG) [Aiger et al., 14] is a novel
method for approximate all-pairs r -NN
We implemented RTG and used it for certain sampling-based
algorithms
We obtain significant speedups improving: the construction time, the
time to find an initial solution, and the time to converge to
high-quality solutions
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Randomly transformed grids (RTG) [Aiger et al., 14]
Given a set P of n points in Rd and a radius r , RTG reports all-pairs
of points p, q ∈ P such that ||p − q||2 ≤ r , with high probability
The algorithm:

1 Place a d-dimensional axis-parallel grid of cell size c with a random
shift (chosen uniformly)

2 The points of P are partitioned into the grid cells
3 The distance ||p − q||2 between every pair of points p, q ∈ P within the

same cell is computed, and the pair is reported if ||p − q||2 ≤ r
4 Repeat steps (1)-(3) m times, producing m distinct grids

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 20 / 23



Randomly transformed grids (RTG) [Aiger et al., 14]
Given a set P of n points in Rd and a radius r , RTG reports all-pairs
of points p, q ∈ P such that ||p − q||2 ≤ r , with high probability
The algorithm:

1 Place a d-dimensional axis-parallel grid of cell size c with a random
shift (chosen uniformly)

2 The points of P are partitioned into the grid cells
3 The distance ||p − q||2 between every pair of points p, q ∈ P within the

same cell is computed, and the pair is reported if ||p − q||2 ≤ r
4 Repeat steps (1)-(3) m times, producing m distinct grids

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 20 / 23



Randomly transformed grids (RTG) [Aiger et al., 14]
Given a set P of n points in Rd and a radius r , RTG reports all-pairs
of points p, q ∈ P such that ||p − q||2 ≤ r , with high probability
The algorithm:

1 Place a d-dimensional axis-parallel grid of cell size c with a random
shift (chosen uniformly)

2 The points of P are partitioned into the grid cells
3 The distance ||p − q||2 between every pair of points p, q ∈ P within the

same cell is computed, and the pair is reported if ||p − q||2 ≤ r
4 Repeat steps (1)-(3) m times, producing m distinct grids

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 20 / 23



Randomly transformed grids (RTG) [Aiger et al., 14]
Given a set P of n points in Rd and a radius r , RTG reports all-pairs
of points p, q ∈ P such that ||p − q||2 ≤ r , with high probability
The algorithm:

1 Place a d-dimensional axis-parallel grid of cell size c with a random
shift (chosen uniformly)

2 The points of P are partitioned into the grid cells
3 The distance ||p − q||2 between every pair of points p, q ∈ P within the

same cell is computed, and the pair is reported if ||p − q||2 ≤ r
4 Repeat steps (1)-(3) m times, producing m distinct grids

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 20 / 23



Randomly transformed grids (RTG) [Aiger et al., 14]
Given a set P of n points in Rd and a radius r , RTG reports all-pairs
of points p, q ∈ P such that ||p − q||2 ≤ r , with high probability
The algorithm:

1 Place a d-dimensional axis-parallel grid of cell size c with a random
shift (chosen uniformly)

2 The points of P are partitioned into the grid cells
3 The distance ||p − q||2 between every pair of points p, q ∈ P within the

same cell is computed, and the pair is reported if ||p − q||2 ≤ r
4 Repeat steps (1)-(3) m times, producing m distinct grids

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 20 / 23



Factors determining the efficiency

1 The number m of grids:
I Increasing m increases the probability of capturing true near neighbors

in the same cell
I Increasing m increases the overall running time

2 The cell size c:
I Large c increases the probability of capturing true near neighbors in the

same cell
I Small c causes the ratio between the overall number of inspected pairs

and the output size to be close to 1 (reduces the portion of irrelevant
checks)

c should be greater than (but very close to) r when a random shift is used
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Experimental results

Improved construction time (3D Euclidean C-space)

In the above scenario for n = 50K we managed to always find a solution.
The number of reported NN pairs was ∼ 400K .
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Experimental results

Faster convergence to high-quality solutions (6D non-Euclidean C-space)

In the above scenario for n = 50K we managed to always find a solution.
The number of reported NN pairs was ∼ 400K .
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Experimental results

Shorter times for finding an initial solution (6D Euclidean C-space)

In the above scenario for n = 50K we managed to always find a solution.
The number of reported NN pairs was ∼ 400K .
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The End
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