Nearest-neighbor search in robot motion planning

CG Course, Lecture 10

Michal Kleinbort

Tel Aviv University, May 2020

A robot

- A mechanical device, equipped with actuators and sensors, that is controlled by a computing system
- Operates in a real-world workspace, populated by physical objects
- Performs tasks by executing motions in the workspace
- An autonomous robot is required to plan its own motions automatically in order to achieve a given task

Some examples

Some examples

In the context of COVID-19

The motion-planning problem

Given:

- A robot R
- A workspace \mathcal{W} (with obstacles)
- Initial and final positions

Goal:

- Plan a collision-free continuous path for the robot from the initial position to the final position

A configuration of the robot

A configuration of the robot is represented by a set of parameters, e.g., $\left(x, y, \Theta_{1}, \Theta_{2}, \Theta_{3}\right)$

The dimension

The dimension of the motion-planning problem is defined by the length of each configuration

Complex robots

$\left(x, y, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}, \theta_{7}\right)$

Multiple robots

The configuration space

The d-dimensional space \mathcal{C} containing all possible configurations of the robot is called the configuration space (C -space).
A subset $\mathcal{F} \subset \mathcal{C}$ of all the collision-free configurations is called the free space.
The C-obstacles, defined as $\mathcal{C}_{\text {forb }}=\mathcal{C} \backslash \mathcal{F}$, are rarely represented exactly (may have a complex mathematical representation).

Figures from [Lynch and Park, 16]

An alternative formulation of the MP problem

Given:

- A point robot
- A d-dimensional configuration space \mathcal{C} (C-space)
- C-obstacles (often not explicitly given) $\mathcal{C}_{\text {forb }}$
- Free space $\mathcal{F}=\mathcal{C} \backslash \mathcal{C}_{\text {forb }}$
- Initial and final configurations

Goal:

- Plan a continuous path in the free space from the initial configuration to the final configuration

An alternative formulation of the MP problem

Figures from [Lynch and Park, 16]

Challenges

- High-dimensional problems are "hard" to solve
- Finding an optimal path is harder than finding a path
- minimal path length
- maximal distance from obstacles
- smoothness

Sampling-based methods for solving the problem

- Attempt to capture the structure of the C-space by constructing a graph (called a roadmap)
- The nodes are collision-free configurations sampled at random
- Two nearby nodes are connected by an edge if the path between them (usually a straight line) is collision-free
- Are often probabilistically complete
- Novel methods also ensure asymptotic optimality

Primitive operations in sampling-based methods

- Collision detection (CD)
- Determines whether a configuration or a C-space path between two configurations is collision-free. The latter is termed local planning (LP)
- Complexity usually depends on both the complexity of the workspace obstacles and the complexity of the robot
- Nearest-neighbor search (NN)
- Returns the nearest neighbor (or neighbors) of a given configuration
- Complexity depends on the number n of nodes and the dimension d

The main practical computational bottleneck is typically considered to be CD (including LP)

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves CD operation

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves NN operation (r-nearest neighbors or k-nearest neighbors)

$$
\mathrm{r}_{\text {PRM }}^{*}(n)=2\left[\left(1+\frac{1}{d}\right) \cdot\left(\frac{\mu\left(C_{\text {freee }}\right)}{c_{d}}\right) \cdot\left(\frac{\log n}{n}\right)\right]^{1 / d}
$$

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves NN operation (r-nearest neighbors or k-nearest neighbors) $k_{\text {PRM }}(n)=2 e \log n$

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves CD operation (as an LP sub-procedure)

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves CD operation (as an LP sub-procedure)

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Query: Given start and goal configurations, find the shortest path between the two configurations

An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Query: Given start and goal configurations, find the shortest path between the two configurations

Sampling-based planners

single-robot planners

Our results [K., Salzman and Halperin '15, '16]

- We formally prove that the complexity of NN search dominates the asymptotic running time of several AO algorithms

Our results [K., Salzman and Halperin '15, '16]

- We formally prove that the complexity of NN search dominates the asymptotic running time of several AO algorithms
- We characterize settings in which the role of NN is far from negligible and show experimentally that NN may dominate CD after finite time

- We use an efficient, specifically-tailored NN data structure in such settings to reduce the overall time of motion-planning algorithms

NN-sensitive settings

Can be of the following types:

- Algorithms: Planners that algorithmically shift some of the computational weight from CD to NN
- Scenarios: Scenarios in which the computational cost of certain planners is mostly due to NN search
- Parameters: Parameters' values for which the computational cost of certain planners is mostly due to NN search

NN-sensitive algorithms

We measure the ratio $\chi_{\text {ALG }}(N)$ between the overall time spent on NN and the time spent on CD, after N configurations were sampled, when algorithm ALG is used

Using NN-sensitive algorithms (e.g., Lazy-PRM* [Hauser '15], MPLB [Salzman and Halperin '15] etc.), the ratio $\chi_{\text {ALG }}(N)$ significantly increases as a function of N, obtaining values greater than 1, namely, NN takes more time than CD

NN-sensitive scenarios

- Let $\mathcal{S}=(\mathcal{W}, \mathcal{R})$ denote a scenario, where:
- \mathcal{W} denotes the workspace
- \mathcal{R} denotes the robot system, which is a set of ℓ single constant-description complexity robots operating simultaneously
- Let d denote the dimension of $\mathcal{S}, d=\Theta(\ell)$
- Let m denote the complexity of the workspace obstacles
- Robot-robot collisions should be taken into account as well

NN-sensitive scenarios - The effect of d

sPRM* example:

- When d is gradually increased, the ratio $\chi_{\text {sPRM* }}(N)$:
- Shows an initial increase
- Then shows a possible decrease
- Finally, shows a very slow increase or perhaps even tends to some constant value

NN-sensitive scenarios - The effect of d

sPRM* example:

- When d is gradually increased, the ratio $\chi_{\text {sPRM }}(N)$:
- Shows an initial increase
- Then shows a possible decrease
- Finally, shows a very slow increase or perhaps even tends to some constant value

K-NN: shows a different trend

d-dimensional workspace
μ is the obstacle volume

- start
- end

Dimension

Adapting all-pairs rNN algorithms for sampling-based motion planning

- In several planning algorithms "all-pairs" r-NN are used with a predefined value $r(n)=O\left(\left(\frac{\log n}{n}\right)^{1 / d}\right)$
- Randomly transformed grids (RTG) [Aiger et al., 14] is a novel method for approximate all-pairs r-NN
- We implemented RTG and used it for certain sampling-based algorithms
- We obtain significant speedups improving: the construction time, the time to find an initial solution, and the time to converge to high-quality solutions

Randomly transformed grids (RTG) [Aiger et al., 14]

- Given a set P of n points in \mathbb{R}^{d} and a radius r, RTG reports all-pairs of points $p, q \in P$ such that $\|p-q\|_{2} \leq r$, with high probability
- The algorithm:
(1) Place a d-dimensional axis-parallel grid of cell size c with a random shift (chosen uniformly)
(2) The points of P are partitioned into the grid cells
(3) The distance $\|p-q\|_{2}$ between every pair of points $p, q \in P$ within the same cell is computed, and the pair is reported if $\|p-q\|_{2} \leq r$
(3) Repeat steps (1)-(3) m times, producing m distinct grids

Randomly transformed grids (RTG) [Aiger et al., 14]

- Given a set P of n points in \mathbb{R}^{d} and a radius r, RTG reports all-pairs of points $p, q \in P$ such that $\|p-q\|_{2} \leq r$, with high probability
- The algorithm:
(1) Place a d-dimensional axis-parallel grid of cell size c with a random shift (chosen uniformly)
(2) The points of P are partitioned into the grid cells
(3) The distance $\|p-q\|_{2}$ between every pair of points $p, q \in P$ within the same cell is computed, and the pair is reported if $\|p-q\|_{2} \leq r$
(3) Repeat steps (1)-(3) m times, producing m distinct grids

Randomly transformed grids (RTG) [Aiger et al., 14]

- Given a set P of n points in \mathbb{R}^{d} and a radius r, RTG reports all-pairs of points $p, q \in P$ such that $\|p-q\|_{2} \leq r$, with high probability
- The algorithm:
(1) Place a d-dimensional axis-parallel grid of cell size c with a random shift (chosen uniformly)
(2) The points of P are partitioned into the grid cells
(3) The distance $\|p-q\|_{2}$ between every pair of points $p, q \in P$ within the same cell is computed, and the pair is reported if $\|p-q\|_{2} \leq r$
(3) Repeat steps (1)-(3) m times, producing m distinct grids

Randomly transformed grids (RTG) [Aiger et al., 14]

- Given a set P of n points in \mathbb{R}^{d} and a radius r, RTG reports all-pairs of points $p, q \in P$ such that $\|p-q\|_{2} \leq r$, with high probability
- The algorithm:
(1) Place a d-dimensional axis-parallel grid of cell size c with a random shift (chosen uniformly)
(2) The points of P are partitioned into the grid cells
(3) The distance $\|p-q\|_{2}$ between every pair of points $p, q \in P$ within the same cell is computed, and the pair is reported if $\|p-q\|_{2} \leq r$
(3) Repeat steps (1)-(3) m times, producing m distinct grids

Randomly transformed grids (RTG) [Aiger et al., 14]

- Given a set P of n points in \mathbb{R}^{d} and a radius r, RTG reports all-pairs of points $p, q \in P$ such that $\|p-q\|_{2} \leq r$, with high probability
- The algorithm:
(1) Place a d-dimensional axis-parallel grid of cell size c with a random shift (chosen uniformly)
(2) The points of P are partitioned into the grid cells
(3) The distance $\|p-q\|_{2}$ between every pair of points $p, q \in P$ within the same cell is computed, and the pair is reported if $\|p-q\|_{2} \leq r$
(3) Repeat steps (1)-(3) m times, producing m distinct grids

Factors determining the efficiency

(1) The number m of grids:

- Increasing m increases the probability of capturing true near neighbors in the same cell
- Increasing m increases the overall running time
(2) The cell size c :
- Large c increases the probability of capturing true near neighbors in the same cell
- Small c causes the ratio between the overall number of inspected pairs and the output size to be close to 1 (reduces the portion of irrelevant checks)
c should be greater than (but very close to) r when a random shift is used

Experimental results

Improved construction time (3D Euclidean C-space)

Experimental results

Faster convergence to high-quality solutions (6D non-Euclidean C-space)

Experimental results

Shorter times for finding an initial solution (6D Euclidean C-space)

In the above scenario for $n=50 \mathrm{~K}$ we managed to always find a solution. The number of reported NN pairs was $\sim 400 \mathrm{~K}$.

The End

