## Nearest-neighbor search in robot motion planning

## CG Course, Lecture 10

Michal Kleinbort

Tel Aviv University, May 2020

## A robot

- A mechanical device, equipped with actuators and sensors, that is controlled by a computing system
- Operates in a real-world workspace, populated by physical objects
- Performs tasks by executing motions in the workspace
- An autonomous robot is required to plan its own motions automatically in order to achieve a given task



### Some examples





Robotic vacuum cleaners





Proteins can be considered as robots that execute motion in order to fold



Robotic arms

Robotic arms for

medical use



Drones



Multi-robot settings



A D N A B N A B N A B N

### Some examples



#### In the context of COVID-19

A D N A B N A B N A B N

## The motion-planning problem

Given:

- A robot *R*
- A workspace  $\mathcal{W}$  (with obstacles)
- Initial and final positions

Goal:

• Plan a collision-free continuous path for the robot from the initial position to the final position



## A configuration of the robot

A configuration of the robot is represented by a set of parameters, e.g.,  $(x, y, \Theta_1, \Theta_2, \Theta_3)$ 



< ∃ ►

## The dimension

The dimension of the motion-planning problem is defined by the length of each configuration

#### **Complex robots**



 $(x_1, y_1, \theta_{11}, \theta_{12}, \theta_{13}, x_2, y_2, \theta_{21}, \theta_{22}, \theta_{23})$ 

A (10) < A (10) < A (10) </p>

#### **Multiple robots**

Michal Kleinbort (TAU)

## The configuration space

The *d*-dimensional space C containing all possible configurations of the robot is called the configuration space (C-space).

A subset  $\mathcal{F} \subset \mathcal{C}$  of all the collision-free configurations is called the free space.

The C-obstacles, defined as  $C_{forb} = C \setminus F$ , are rarely represented exactly (may have a complex mathematical representation).



Figures from [Lynch and Park, 16]

An alternative formulation of the MP problem

Given:

- A point robot
- A *d*-dimensional configuration space C (C-space)
- C-obstacles (often not explicitly given)  $\mathcal{C}_{\mathrm{forb}}$
- Free space  $\mathcal{F} = \mathcal{C} \setminus \mathcal{C}_{\mathrm{forb}}$
- Initial and final configurations

Goal:

• Plan a continuous path in the free space from the initial configuration to the final configuration

< ∃ > < ∃

## An alternative formulation of the MP problem



Figures from [Lynch and Park, 16]

CG Course, Lecture 10

May, 2020 8 / 23

.⊒ . >

## Challenges

- High-dimensional problems are "hard" to solve
- Finding an optimal path is harder than finding a path
  - minimal path length
  - maximal distance from obstacles
  - smoothness



## Sampling-based methods for solving the problem

- Attempt to capture the structure of the C-space by constructing a graph (called a roadmap)
  - The nodes are collision-free configurations sampled at random
  - Two nearby nodes are connected by an edge if the path between them (usually a straight line) is collision-free
- Are often probabilistically complete
- Novel methods also ensure asymptotic optimality

## Primitive operations in sampling-based methods

### • Collision detection (CD)

- Determines whether a configuration or a C-space path between two configurations is collision-free. The latter is termed local planning (LP)
- Complexity usually depends on both the complexity of the workspace obstacles and the complexity of the robot
- Nearest-neighbor search (NN)
  - ▶ Returns the nearest neighbor (or neighbors) of a given configuration
  - Complexity depends on the number n of nodes and the dimension d

The main practical computational bottleneck is typically considered to be CD (including LP)

A B A A B A

#### The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



Michal Kleinbort (TAU)

May, 2020 12 / 23

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



#### The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



#### Involves CD operation

| Michal | Kleinbort | (TAU) |
|--------|-----------|-------|
|        |           |       |

CG Course, Lecture 10

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



#### The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



Involves NN operation (*r*-nearest neighbors or *k*-nearest neighbors)  $r_{\mathsf{PRM}^*}(n) = 2 \left[ \left( 1 + \frac{1}{d} \right) \cdot \left( \frac{\mu(\mathcal{C}_{\mathrm{free}})}{\zeta_d} \right) \cdot \left( \frac{\log n}{n} \right) \right]^{1/d}$ 

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



Involves NN operation (*r*-nearest neighbors or *k*-nearest neighbors)  $k_{\text{PRM}^*}(n) = 2e \log n$ 

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



#### Involves CD operation (as an LP sub-procedure)

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



#### Involves CD operation (as an LP sub-procedure)

| Michal  | Kleinbort | (TAU)   |
|---------|-----------|---------|
| whichai | Rembole   | (17,00) |

CG Course, Lecture 10

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



Query: Given start and goal configurations, find the shortest path between the two configurations

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm



Query: Given start and goal configurations, find the shortest path between the two configurations

## Sampling-based planners

single-robot planners



▶ ◀ ≣ ▶ ■ ∽ ९ ୯ May, 2020 13 / 23

A D N A B N A B N A B N

## Our results [K., Salzman and Halperin '15, '16]

• We formally prove that the complexity of NN search dominates the asymptotic running time of several AO algorithms

. . . . . . .

## Our results [K., Salzman and Halperin '15, '16]

- We formally prove that the complexity of NN search dominates the asymptotic running time of several AO algorithms
- We characterize settings in which the role of NN is far from negligible and show experimentally that NN may dominate CD after finite time



• We use an efficient, specifically-tailored NN data structure in such settings to reduce the overall time of motion-planning algorithms

## NN-sensitive settings

Can be of the following types:

- Algorithms: Planners that algorithmically shift some of the computational weight from CD to NN
- Scenarios: Scenarios in which the computational cost of certain planners is mostly due to NN search
- Parameters: Parameters' values for which the computational cost of certain planners is mostly due to NN search

## NN-sensitive algorithms

We measure the ratio  $\chi_{ALG}(N)$  between the overall time spent on NN and the time spent on CD, after N configurations were sampled, when algorithm ALG is used



Using NN-sensitive algorithms (e.g., Lazy-PRM\* [Hauser '15], MPLB [Salzman and Halperin '15] etc.), the ratio  $\chi_{ALG}(N)$  significantly increases as a function of N, obtaining values greater than 1, namely, NN takes more time than CD

Michal Kleinbort (TAU)

## NN-sensitive scenarios

- Let S = (W, R) denote a scenario, where:
  - *W* denotes the workspace
  - ➤ R denotes the robot system, which is a set of l single constant-description complexity robots operating simultaneously
- Let *d* denote the dimension of S,  $d = \Theta(\ell)$
- Let *m* denote the complexity of the workspace obstacles
- Robot-robot collisions should be taken into account as well

## NN-sensitive scenarios - The effect of *d* sPRM\* example:

- When *d* is gradually increased, the ratio  $\chi_{\text{sPRM}^*}(N)$ :
  - Shows an initial increase
  - Then shows a possible decrease
  - Finally, shows a very slow increase or perhaps even tends to some constant value



#### R-NN

3 1 4

## NN-sensitive scenarios - The effect of *d* sPRM\* example:

- When *d* is gradually increased, the ratio  $\chi_{\text{sPRM}*}(N)$ :
  - Shows an initial increase
  - Then shows a possible decrease
  - Finally, shows a very slow increase or perhaps even tends to some constant value



#### K-NN: shows a different trend

< ∃ > <

# Adapting all-pairs *r*NN algorithms for sampling-based motion planning

- In several planning algorithms "all-pairs" *r*-NN are used with a predefined value  $r(n) = O((\frac{\log n}{n})^{1/d})$
- Randomly transformed grids (RTG) [Aiger et al., 14] is a novel method for approximate all-pairs *r*-NN
- We implemented RTG and used it for certain sampling-based algorithms
- We obtain significant speedups improving: the construction time, the time to find an initial solution, and the time to converge to high-quality solutions



- Given a set *P* of *n* points in  $\mathbb{R}^d$  and a radius *r*, RTG reports all-pairs of points  $p, q \in P$  such that  $||p q||_2 \leq r$ , with high probability
- The algorithm:
  - Place a *d*-dimensional axis-parallel grid of cell size *c* with a random shift (chosen uniformly)
  - 2 The points of P are partitioned into the grid cells
  - Some the distance  $||p q||_2$  between every pair of points p, q ∈ P within the same cell is computed, and the pair is reported if  $||p q||_2 ≤ r$
  - Repeat steps (1)-(3) m times, producing m distinct grids



- B - - B

- Given a set *P* of *n* points in  $\mathbb{R}^d$  and a radius *r*, RTG reports all-pairs of points  $p, q \in P$  such that  $||p q||_2 \leq r$ , with high probability
- The algorithm:
  - Place a *d*-dimensional axis-parallel grid of cell size *c* with a random shift (chosen uniformly)
  - 2 The points of P are partitioned into the grid cells
  - Some the distance  $||p q||_2$  between every pair of points p, q ∈ P within the same cell is computed, and the pair is reported if  $||p q||_2 ≤ r$
  - Repeat steps (1)-(3) m times, producing m distinct grids



Michal Kleinbort (TAU)

May, 2020 20 / 23

- Given a set *P* of *n* points in  $\mathbb{R}^d$  and a radius *r*, RTG reports all-pairs of points  $p, q \in P$  such that  $||p q||_2 \leq r$ , with high probability
- The algorithm:
  - Place a *d*-dimensional axis-parallel grid of cell size *c* with a random shift (chosen uniformly)
  - 2 The points of P are partitioned into the grid cells
  - Some the distance  $||p q||_2$  between every pair of points p, q ∈ P within the same cell is computed, and the pair is reported if  $||p q||_2 ≤ r$
  - Repeat steps (1)-(3) m times, producing m distinct grids



- Given a set *P* of *n* points in  $\mathbb{R}^d$  and a radius *r*, RTG reports all-pairs of points  $p, q \in P$  such that  $||p q||_2 \leq r$ , with high probability
- The algorithm:
  - Place a *d*-dimensional axis-parallel grid of cell size *c* with a random shift (chosen uniformly)
  - 2 The points of P are partitioned into the grid cells
  - Some the distance  $||p q||_2$  between every pair of points p, q ∈ P within the same cell is computed, and the pair is reported if  $||p q||_2 ≤ r$
  - Repeat steps (1)-(3) m times, producing m distinct grids



- Given a set *P* of *n* points in  $\mathbb{R}^d$  and a radius *r*, RTG reports all-pairs of points  $p, q \in P$  such that  $||p q||_2 \leq r$ , with high probability
- The algorithm:
  - Place a *d*-dimensional axis-parallel grid of cell size *c* with a random shift (chosen uniformly)
  - ② The points of P are partitioned into the grid cells
  - Some the distance  $||p q||_2$  between every pair of points p, q ∈ P within the same cell is computed, and the pair is reported if  $||p q||_2 ≤ r$
  - Repeat steps (1)-(3) m times, producing m distinct grids



## Factors determining the efficiency

- **1** The number *m* of grids:
  - Increasing *m* increases the probability of capturing true near neighbors in the same cell
  - Increasing m increases the overall running time
- 2 The cell size c:
  - Large c increases the probability of capturing true near neighbors in the same cell
  - Small c causes the ratio between the overall number of inspected pairs and the output size to be close to 1 (reduces the portion of irrelevant checks)

c should be greater than (but very close to) r when a random shift is used

A B A A B A

## Experimental results





#### Improved construction time (3D Euclidean C-space)

Michal Kleinbort (TAU)

CG Course, Lecture 10

▲ E ▶ E 夕々で
May, 2020 22/23

(4) (3) (4) (4) (4)

## Experimental results



Faster convergence to high-quality solutions (6D non-Euclidean C-space)

## Experimental results



Shorter times for finding an initial solution (6D Euclidean C-space)

In the above scenario for n = 50K we managed to always find a solution. The number of reported NN pairs was  $\sim 400K$ .

## The End

Michal Kleinbort (TAU)

CG Course, Lecture 10

< □ > < □ > < □ > < □ > < □ >