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A robot

@ A mechanical device, equipped with actuators and sensors, that is
controlled by a computing system

@ Operates in a real-world workspace, populated by physical objects
@ Performs tasks by executing motions in the workspace

@ An autonomous robot is required to plan its own motions
automatically in order to achieve a given task
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Some examples

Robotic
vacuum
cleaners

Self-driving cars

Proteins can be
considered as
robots that Robotic arms for
execute motion medical use

in order to fold
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Some examples

In the context of COVID-19
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The motion-planning problem
Given:
@ A robot R

o A workspace W (with obstacles)
@ Initial and final positions
Goal:

@ Plan a collision-free continuous path for
the robot from the initial position to the
final position
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A configuration of the robot
(Xa.ya 91,62,@3)

A configuration of the robot is represented by a set of parameters, e.g.,
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The dimension
each configuration

The dimension of the motion-planning problem is defined by the length of
Complex robots

Multiple robots

(x,v,08,,0;,65,084,05,06,0;)
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The configuration space

The d-dimensional space C containing all possible configurations of the
robot is called the configuration space (C-space).

A subset F C C of all the collision-free configurations is called the free
space.

The C-obstacles, defined as Ceo,, = C \ F, are rarely represented exactly
(may have a complex mathematical representation).

(a) (b)

Figures from [Lynch and Park, 16]
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An alternative formulation of the MP problem

Given:
@ A point robot
@ A d-dimensional configuration space C (C-space)
o C-obstacles (often not explicitly given) Cob,
@ Free space F = C \ Ctorb
@ Initial and final configurations

Goal:

@ Plan a continuous path in the free space from the initial configuration
to the final configuration
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An alternative formulation of the MP problem

Figures from [Lynch and Park, 16]
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Challenges

@ High-dimensional problems are “hard” to
solve

e Finding an optimal path is harder than
finding a path
» minimal path length

» maximal distance from obstacles
» smoothness
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Sampling-based methods for solving the problem

@ Attempt to capture the structure of the C-space by constructing a
graph (called a roadmap)

» The nodes are collision-free configurations sampled at random
» Two nearby nodes are connected by an edge if the path between them
(usually a straight line) is collision-free

@ Are often probabilistically complete

@ Novel methods also ensure asymptotic optimality
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Primitive operations in sampling-based methods

e Collision detection (CD)
» Determines whether a configuration or a C-space path between two
configurations is collision-free. The latter is termed local planning (LP)
» Complexity usually depends on both the complexity of the workspace
obstacles and the complexity of the robot
@ Nearest-neighbor search (NN)

» Returns the nearest neighbor (or neighbors) of a given configuration
» Complexity depends on the number n of nodes and the dimension d

The main practical computational bottleneck is typically considered to be
CD (including LP) J
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

A
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves CD operation
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

1/d

-2 (1)  (2552) - (5]

Involves NN operation (r-nearest neighbors or k-nearest neighbors)
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

.
k= 0O(logn)

korm+(n) = 2elog n

Involves NN operation (r-nearest neighbors or k-nearest neighbors)
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

Involves CD operation (as an LP sub-procedure)
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An example: s-PRM* [Karaman and Frazzoli, 11]

The Probabilistic Roadmap Method (PRM) - Multi-query algorithm

A

the two configurations
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Sampling-based planners

single-robot planners
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|LBT-RRT| [BFMT*| | MPLB |
¥ I
| (R
1 1
| RSEC| [sPARs2| [RRG| [FMT*|| |BTT
RS = >— A —<———F" Dottleneck
T~ >~ ! - cost
~ 1 -
PRM
I
7 = 1 = ~
7 ﬂ" N
M |dRRT | dRRT
multi-robot planners
gy 2020

13/23



Our results [K., Salzman and Halperin '15, '16]

@ We formally prove that the complexity of NN search dominates the
asymptotic running time of several AO algorithms
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Our results [K., Salzman and Halperin '15, '16]

@ We formally prove that the complexity of NN search dominates the
asymptotic running time of several AO algorithms

@ We characterize settings in which the role of NN is far from negligible

and show experimentally that NN may dominate CD after finite time
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@ We use an efficient, specifically-tailored NN data structure in such
settings to reduce the overall time of motion-planning algorithms
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NN-sensitive settings

Can be of the following types:

@ Algorithms: Planners that algorithmically shift some of the
computational weight from CD to NN

@ Scenarios: Scenarios in which the computational cost of certain
planners is mostly due to NN search

@ Parameters: Parameters’ values for which the computational cost of
certain planners is mostly due to NN search
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NN-sensitive algorithms

We measure the ratio yac(/N) between the overall time spent on NN and
the time spent on CD, after N configurations were sampled, when
algorithm ALG is used
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Using NN-sensitive algorithms (e.g., Lazy-PRM* [Hauser '15],

MPLB [Salzman and Halperin '15] etc.), the ratio xa.c(/N) significantly
increases as a function of N, obtaining values greater than 1, namely, NN
takes more time than CD
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NN-sensitive scenarios

Let S = (W, R) denote a scenario, where:
» )}V denotes the workspace
» R denotes the robot system, which is a set of £ single
constant-description complexity robots operating simultaneously

Let d denote the dimension of S, d = ©(¥)

Let m denote the complexity of the workspace obstacles

Robot-robot collisions should be taken into account as well
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NN-sensitive scenarios - The effect of d

sPRM* example:
@ When d is gradually increased, the ratio x.prw+(/N):

Shows an initial increase

Then shows a possible decrease

>
>
>

X (N)
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Finally, shows a very slow increase or perhaps even tends to some

constant value

25
2.0
15
10
0.5
0.0

R-NN

—— NN, =05
NN, 1= 0.25
—=— NN, =0

5 10 15 20 25 30 35 40 45 50
Dimension

CG Course, Lecture 10

d-dimensional workspace
1 is the obstacle volume
® start ® end

May, 2020

18/23



NN-sensitive scenarios - The effect of d

sPRM* example:

@ When d is gradually increased, the ratio x.prw+(/N):
» Shows an initial increase
» Then shows a possible decrease

» Finally, shows a very slow increase or perhaps even tends to some

constant value

K-NN: shows a different trend
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Adapting all-pairs rNN algorithms for sampling-based

motion planning

@ In several planning algorithms “all-pairs” r-NN are used with a
predefined value r(n) = O((Io%)l/d)

e Randomly transformed grids (RTG) [Aiger et al., 14] is a novel
method for approximate all-pairs r-NN

@ We implemented RTG and used it for certain sampling-based
algorithms

@ We obtain significant speedups improving: the construction time, the
time to find an initial solution, and the time to converge to
high-quality solutions
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Randomly transformed grids (RTG) [Aiger et al., 14]

@ Given a set P of n points in R and a radius r, RTG reports all-pairs
of points p, g € P such that ||p — q||2 < r, with high probability
@ The algorithm:
@ Place a d-dimensional axis-parallel grid of cell size ¢ with a random
shift (chosen uniformly)
@ The points of P are partitioned into the grid cells
© The distance ||p — g||» between every pair of points p, g € P within the
same cell is computed, and the pair is reported if ||p — qg|lo < r
@ Repeat steps (1)-(3) m times, producing m distinct grids
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Factors determining the efficiency

@ The number m of grids:
> Increasing m increases the probability of capturing true near neighbors
in the same cell
» Increasing m increases the overall running time
@ The cell size c:
» Large c increases the probability of capturing true near neighbors in the
same cell
» Small ¢ causes the ratio between the overall number of inspected pairs
and the output size to be close to 1 (reduces the portion of irrelevant

checks)

¢ should be greater than (but very close to) r when a random shift is used

Michal Kleinbort (TAU) CG Course, Lecture 10 May, 2020 21/23



Experimental results
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Experimental results
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Experimental results
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In the above scenario for n = 50K we managed to always find a solution.
The number of reported NN pairs was ~ 400K.
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