
1/61

Introduction
Kd-trees

Range searching and kd-trees

Computational Geometry

Lecture 9 : Range searching and kd-trees

Computational Geometry Lecture 9 : Range searching and kd-trees

2/61

Introduction
Kd-trees

Database queries
1D range trees

Databases

Databases store records or objects

Personnel database: Each employee has a name, id code, date
of birth, function, salary, start date of employment, . . .

Fields are textual or numerical

Computational Geometry Lecture 9 : Range searching and kd-trees

3/61

Introduction
Kd-trees

Database queries
1D range trees

Database queries

A database query may ask for
all employees with age
between a1 and a2, and salary
between s1 and s2

date of birth

salary

19,500,000 19,559,999

G. Ometer
born: Aug 16, 1954
salary: $3,500

Computational Geometry Lecture 9 : Range searching and kd-trees

4/61

Introduction
Kd-trees

Database queries
1D range trees

Database queries

When we see numerical fields of objects as coordinates, a
database stores a point set in higher dimensions

Exact match query: Asks for the objects whose coordinates
match query coordinates exactly

Partial match query: Some but not all coordinates are
specified

Range query: Asks for the objects whose coordinates lie in a
specified query range (interval)

Computational Geometry Lecture 9 : Range searching and kd-trees

5/61

Introduction
Kd-trees

Database queries
1D range trees

Database queries

Example of a 3-dimensional
(orthogonal) range query:
children in [2 , 4], salary in
[3000 , 4000], date of birth in
[19,500,000 , 19,559,999]

19,500,000 19,559,999

3,000

4,000

2

4

Computational Geometry Lecture 9 : Range searching and kd-trees

6/61

Introduction
Kd-trees

Database queries
1D range trees

Data structures

Idea of data structures

Representation of structure, for convenience (like DCEL)

Preprocessing of data, to be able to solve future
questions really fast (sub-linear time)

A (search) data structure has a storage requirement, a query
time, and a construction time (and an update time)

Computational Geometry Lecture 9 : Range searching and kd-trees

7/61

Introduction
Kd-trees

Database queries
1D range trees

1D range query problem

1D range query problem: Preprocess a set of n points on
the real line such that the ones inside a 1D query range
(interval) can be reported fast

The points p1, . . . ,pn are known beforehand, the query [x,x′]
only later

A solution to a query problem is a data structure description,
a query algorithm, and a construction algorithm

Question: What are the most important factors for the
efficiency of a solution?

Computational Geometry Lecture 9 : Range searching and kd-trees

8/61

Introduction
Kd-trees

Database queries
1D range trees

Balanced binary search trees

A balanced binary search tree with the points in the leaves

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

Computational Geometry Lecture 9 : Range searching and kd-trees

9/61

Introduction
Kd-trees

Database queries
1D range trees

Balanced binary search trees

The search path for 25

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

Computational Geometry Lecture 9 : Range searching and kd-trees

10/61

Introduction
Kd-trees

Database queries
1D range trees

Balanced binary search trees

The search paths for 25 and for 90

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

Computational Geometry Lecture 9 : Range searching and kd-trees

11/61

Introduction
Kd-trees

Database queries
1D range trees

Example 1D range query

A 1-dimensional range query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

Computational Geometry Lecture 9 : Range searching and kd-trees

12/61

Introduction
Kd-trees

Database queries
1D range trees

Node types for a query

Three types of nodes for a given query:

White nodes: never visited by the query

Grey nodes: visited by the query, unclear if they lead to
output

Black nodes: visited by the query, whole subtree is
output

Question: What query time do we hope for?

Computational Geometry Lecture 9 : Range searching and kd-trees

13/61

Introduction
Kd-trees

Database queries
1D range trees

Node types for a query

The query algorithm comes down to what we do at each type
of node

Grey nodes: use query range to decide how to proceed: to
not visit a subtree (pruning), to report a complete subtree, or
just continue

Black nodes: traverse and enumerate all points in the leaves

Computational Geometry Lecture 9 : Range searching and kd-trees

14/61

Introduction
Kd-trees

Database queries
1D range trees

Example 1D range query

A 1-dimensional range query with [61, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

split node

Computational Geometry Lecture 9 : Range searching and kd-trees

15/61

Introduction
Kd-trees

Database queries
1D range trees

1D range query algorithm

Algorithm 1DRangeQuery(T, [x : x′])
1. νsplit ←FindSplitNode(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point in νsplit must be reported.
4. else ν ← lc(νsplit)
5. while ν is not a leaf
6. do if x≤ xν

7. then ReportSubtree(rc(ν))
8. ν ← lc(ν)
9. else ν ← rc(ν)
10. Check if the point stored in ν must be reported.
11. ν ← rc(νsplit)
12. Similarly, follow the path to x′, and . . .

Computational Geometry Lecture 9 : Range searching and kd-trees

16/61

Introduction
Kd-trees

Database queries
1D range trees

Query time analysis

The efficiency analysis is based on counting the numbers of
nodes visited for each type

White nodes: never visited by the query; no time spent

Grey nodes: visited by the query, unclear if they lead to
output; time determines dependency on n

Black nodes: visited by the query, whole subtree is
output; time determines dependency on k, the output size

Computational Geometry Lecture 9 : Range searching and kd-trees

17/61

Introduction
Kd-trees

Database queries
1D range trees

Query time analysis

Grey nodes: they occur on only two paths in the tree, and
since the tree is balanced, its depth is O(logn)

Black nodes: a (sub)tree with m leaves has m−1 internal
nodes; traversal visits O(m) nodes and finds m points for the
output

The time spent at each node is O(1) ⇒ O(logn+ k) query
time

Computational Geometry Lecture 9 : Range searching and kd-trees

18/61

Introduction
Kd-trees

Database queries
1D range trees

Storage requirement and preprocessing

A (balanced) binary search tree storing n points uses O(n)
storage

A balanced binary search tree storing n points can be built in
O(n) time after sorting, so in O(n logn) time overall
(or by repeated insertion in O(n logn) time)

Computational Geometry Lecture 9 : Range searching and kd-trees

19/61

Introduction
Kd-trees

Database queries
1D range trees

Result

Theorem: A set of n points on the real line can be
preprocessed in O(n logn) time into a data structure of O(n)
size so that any 1D range query can be answered in
O(logn+ k) time, where k is the number of answers reported

Computational Geometry Lecture 9 : Range searching and kd-trees

20/61

Introduction
Kd-trees

Database queries
1D range trees

Example 1D range counting query

A 1-dimensional range tree for range counting queries

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

1 1 1 1 1 1 1 1 1 1 1 1

112 22222

3 34 4

7 7

14

Computational Geometry Lecture 9 : Range searching and kd-trees

21/61

Introduction
Kd-trees

Database queries
1D range trees

Example 1D range counting query

A 1-dimensional range counting query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

1 1 1 1 1 1 1 1 1 1 1 1

112 22222

3 34 4

7 7

14

Computational Geometry Lecture 9 : Range searching and kd-trees

22/61

Introduction
Kd-trees

Database queries
1D range trees

Result

Theorem: A set of n points on the real line can be
preprocessed in O(n logn) time into a data structure of O(n)
size so that any 1D range counting query can be answered in
O(logn) time

Note: The number of points does not influence the output
size so it should not show up in the query time

Computational Geometry Lecture 9 : Range searching and kd-trees

23/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Range queries in 2D

Computational Geometry Lecture 9 : Range searching and kd-trees

24/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Range queries in 2D

Question: Why can’t we simply use a balanced binary tree in
x-coordinate?

Or, use one tree on x-coordinate and one on y-coordinate, and
query the one where we think querying is more efficient?

Computational Geometry Lecture 9 : Range searching and kd-trees

25/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-trees

Kd-trees, the idea: Split the point set alternatingly by
x-coordinate and by y-coordinate

split by x-coordinate: split by a vertical line that has half the
points left and half right

split by y-coordinate: split by a horizontal line that has half
the points below and half above

Computational Geometry Lecture 9 : Range searching and kd-trees

26/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-trees

Kd-trees, the idea: Split the point set alternatingly by
x-coordinate and by y-coordinate

split by x-coordinate: split by a vertical line that has half the
points left or on, and half right

split by y-coordinate: split by a horizontal line that has half
the points below or on, and half above

Computational Geometry Lecture 9 : Range searching and kd-trees

27/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-trees

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`3

`4

`5

`6

`7

`8

`9

p1 p2

`8 p3 p4

`4 `5

p5

p6 p7

p8 p9 p10

`7

`3

`1

`6

`9

`2

Computational Geometry Lecture 9 : Range searching and kd-trees

28/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree construction
Algorithm BuildKdTree(P,depth)
1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P with a vertical line ℓ through the

median x-coordinate into P1 (left of or
on ℓ) and P2 (right of ℓ)

5. else Split P with a horizontal line ℓ through
the median y-coordinate into P1 (below
or on ℓ) and P2 (above ℓ)

6. νleft ← BuildKdTree(P1,depth+1)
7. νright ← BuildKdTree(P2,depth+1)
8. Create a node ν storing ℓ, make νleft the left

child of ν , and make νright the right child of ν .
9. return ν

Computational Geometry Lecture 9 : Range searching and kd-trees

29/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree construction

The median of a set of n values can be computed in O(n)
time (randomized: easy; worst case: much harder)

Let T(n) be the time needed to build a kd-tree on n points

T(1) = O(1)

T(n) = 2 ·T(n/2)+O(n)

A kd-tree can be built in O(n logn) time

Question: What is the storage requirement?

Computational Geometry Lecture 9 : Range searching and kd-trees

30/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree regions of nodes

`1

`2

`3region(ν)

ν

`1

`2

`3

Computational Geometry Lecture 9 : Range searching and kd-trees

31/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree regions of nodes

How do we know region(ν) when we are at a node ν?

Option 1: store it explicitly with every node

Option 2: compute it on-the-fly, when going from
the root to ν

Question: What are reasons to choose one or the other
option?

Computational Geometry Lecture 9 : Range searching and kd-trees

32/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree querying

p1 p2

p2

p1
p3

p3 p4

p4
p5

p5

p6p6

p7

p7 p8

p8

p9

p9
p10

p10

p11

p11

p12

p12 p13

p13

Computational Geometry Lecture 9 : Range searching and kd-trees

33/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree querying

Algorithm SearchKdTree(ν ,R)
Input. The root of (a subtree of) a kd-tree, and a range R
Output. All points at leaves below ν that lie in the range.
1. if ν is a leaf
2. then Report the point stored at ν if it lies in R
3. else if region(lc(ν)) is fully contained in R
4. then ReportSubtree(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SearchKdTree(lc(ν),R)
7. if region(rc(ν)) is fully contained in R
8. then ReportSubtree(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SearchKdTree(rc(ν),R)

Computational Geometry Lecture 9 : Range searching and kd-trees

34/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree querying

Question: How about a range counting query?
How should the code be adapted?

Computational Geometry Lecture 9 : Range searching and kd-trees

35/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

To analyze the query time of kd-trees, we use the concept of
white, grey, and black nodes

White nodes: never visited by the query; no time spent

Grey nodes: visited by the query, unclear if they lead to
output; time determines dependency on n

Black nodes: visited by the query, whole subtree is
output; time determines dependency on k, the output size

Computational Geometry Lecture 9 : Range searching and kd-trees

36/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

p1 p2

p2

p1
p3

p3 p4

p4
p5

p5

p6p6

p7

p7 p8

p8

p9

p9
p10

p10

p11

p11

p12

p12 p13

p13

Computational Geometry Lecture 9 : Range searching and kd-trees

37/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

White, grey, and black nodes with respect to region(ν):

White node ν: R does not intersect region(ν)

Grey node ν: R intersects region(ν), but region(ν) ̸⊆ R

Black node ν: region(ν)⊆ R

Computational Geometry Lecture 9 : Range searching and kd-trees

38/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Computational Geometry Lecture 9 : Range searching and kd-trees

39/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Question: How many grey and how many black leaves?
Computational Geometry Lecture 9 : Range searching and kd-trees

40/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Question: How many grey and how many black nodes?
Computational Geometry Lecture 9 : Range searching and kd-trees

41/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Grey node ν : R intersects region(ν), but region(ν) ̸⊆ R

It implies that the boundaries of R and region(ν) intersect

Advice: If you don’t know what to do, simplify until you do

Instead of taking the boundary of R, let’s analyze the number
of grey nodes if the query is with a vertical line ℓ

Computational Geometry Lecture 9 : Range searching and kd-trees

42/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Question: How many grey and how many black leaves?
Computational Geometry Lecture 9 : Range searching and kd-trees

43/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

We observe: At every vertical split, ℓ is only to one side, while
at every horizontal split ℓ is to both sides

Let Gx(n) be the number of grey nodes in a kd-tree on n
points whose root node splits on x (vertically).

Let Gy(n) be the number of grey nodes in a kd-tree on n
points whose root node splits on y (horizontally).

Gx(n)=

{
Gy(n/2)+1 if n > 1
1 if n = 1

Gy(n)=

{
2Gx(n/2)+1 if n > 1
1 if n = 1

Computational Geometry Lecture 9 : Range searching and kd-trees

44/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

x

y y

y

x x

n leaves n leaves

Computational Geometry Lecture 9 : Range searching and kd-trees

45/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Let Gx(n) be the number of grey nodes in a kd-tree on n
points whose root node splits on x (vertically).

So, we get:

Gx(n) =

{
Gx(n/4)+3 if n > 1
1 if n = 1

Computational Geometry Lecture 9 : Range searching and kd-trees

46/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Let Gx(n) be the number of grey nodes in a kd-tree on n
points whose root node splits on x (vertically).

So, we get:

Gx(n) =

{
Gx(n/4)+O(1) if n > 1
1 if n = 1

Question: What does this recurrence solve to?

Computational Geometry Lecture 9 : Range searching and kd-trees

47/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Use the Master-Theorem:

T(n) = aT(n/b)+ f (n)

let c = logb a, let ε > 0

case 1: f (n) ∈ O(nc−ε) then T(n) = O(nc).
case 2: ...
case 3 ...

Here f (n) = O(1) and c = log4 2 = 1/2. Therefor
Gx(n) = O(n1/2) = O(

√
n).

Computational Geometry Lecture 9 : Range searching and kd-trees

48/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

The grey subtree has unary and binary nodes

Computational Geometry Lecture 9 : Range searching and kd-trees

49/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

The depth is logn, so the binary depth is 1
2 · logn

Important: The logarithm is base-2

Counting only binary nodes, there are

2
1
2 ·logn = 2logn1/2

= n1/2 =
√

n

Every unary grey node has a unique binary parent (except the
root), so there are at most twice as many unary nodes as
binary nodes, plus 1

Computational Geometry Lecture 9 : Range searching and kd-trees

50/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

The number of grey nodes if the query were a vertical line
is O(

√
n)

For a horizontal line we also get

G(n) =

{
2G(n/4)+3 if n > 1
1 if n = 1

Which also solves to O(
√

n).

How about a query rectangle?

Computational Geometry Lecture 9 : Range searching and kd-trees

51/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Computational Geometry Lecture 9 : Range searching and kd-trees

52/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Computational Geometry Lecture 9 : Range searching and kd-trees

53/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

The number of grey nodes for a query rectangle is at most
the number of grey nodes for two vertical and two horizontal
lines, so it is at most 4 ·O(

√
n) = O(

√
n) !

For black nodes, reporting a whole subtree with k leaves,
takes O(k) time (there are k−1 internal black nodes)

Computational Geometry Lecture 9 : Range searching and kd-trees

54/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Result

Theorem: A set of n points in the plane can be preprocessed
in O(n logn) time into a data structure of O(n) size so that
any 2D range query can be answered in O(

√
n+ k) time,

where k is the number of answers reported

For range counting queries, we need O(
√

n) time

Computational Geometry Lecture 9 : Range searching and kd-trees

55/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Efficiency

n logn
√

n

4 2 2
16 4 4
64 6 8

256 8 16
1024 10 32
4096 12 64

1.000.000 20 1000

Computational Geometry Lecture 9 : Range searching and kd-trees

56/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Higher dimensions

A 3-dimensional kd-tree alternates splits on x-, y-, and
z-coordinate

A 3D range query is performed with a box

Computational Geometry Lecture 9 : Range searching and kd-trees

57/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Higher dimensions

The construction of a 3D kd-tree is a trivial adaptation of the
2D version

The 3D range query algorithm is exactly the same as the 2D
version

The 3D kd-tree still requires O(n) storage if it stores n points

Computational Geometry Lecture 9 : Range searching and kd-trees

58/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Higher dimensions

How does the query time analysis change?

Intersection of B and region(ν) depends on intersection of
facets of B ⇒ analyze by axes-parallel planes (B has no more
grey nodes than six planes)

Computational Geometry Lecture 9 : Range searching and kd-trees

59/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Higher dimensions

m leaves

x

y

z

y

z zz

Computational Geometry Lecture 9 : Range searching and kd-trees

60/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Kd-tree query time analysis

Let G3(n) be the number of grey nodes for a query with an
axes-parallel plane in a 3D kd-tree

G3(1) = 1

G3(n) = 4 ·G3(n/8)+O(1)

Question: What does this recurrence solve to?

Question: How many leaves does a perfectly balanced binary
search tree with depth 2

3 logn have?

Computational Geometry Lecture 9 : Range searching and kd-trees

61/61

Introduction
Kd-trees

Kd-trees
Querying in kd-trees
Kd-tree query time analysis
Higher-dimensional kd-trees

Result

Theorem: A set of n points in d-space can be preprocessed in
O(n logn) time into a data structure of O(n) size so that any
d-dimensional range query can be answered in O(n1−1/d + k)
time, where k is the number of answers reported

Computational Geometry Lecture 9 : Range searching and kd-trees

	Introduction
	Database queries
	1D range trees

	Kd-trees
	Kd-trees
	Querying in kd-trees
	Kd-tree query time analysis
	Higher-dimensional kd-trees

