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Abstract

This thesis studies certain theoretical aspects of planar point location using the randomized
incremental construction of the trapezoidal-map. Moreover, it describes a major revision of
the corresponding implementation in Cgal, the Computational Geometry Algorithms Li-
brary. We focus on a variant of the algorithm, which guarantees that the constructed search
structure, a directed acyclic graph G, is of linear size and provides logarithmic query time.
A major challenge is to retain the expected O(n log n) preprocessing time while providing
the above (deterministic) space and query-time guarantees. We describe two efficient pre-
processing algorithms, which explicitly verify the length L of the longest query path. One
runs in expected O(n log2 n) time while the other runs in expected O(n log n) time only. The
former, although slower, is simpler and in particular it does not require the construction of
auxiliary structures.

Our revised Cgal implementation can now guarantee linear size and logarithmic query
time. Another major innovation is the support of general unbounded subdivisions as well
as subdivisions of two-dimensional parametric surfaces such as spheres, tori, cylinders. Like
the previous implementation, it is exact, complete, and general, i.e., it can also handle
non-linear subdivisions. The data structure also supports modifications of the subdivision,
such as insertions and deletions of edges, after the initial preprocessing. However, instead
of using L, our implementation is based on the depth D of G, which is a more reasonable
choice in practice. Although we prove that the worst case ratio of D and L is Θ(n/log n), we
conjecture, based on our experimental results, that this solution achieves expected O(n log n)
preprocessing time.

Via the construction of the Voronoi diagram for a given point set S of size n this also
enables nearest-neighbor queries in guaranteed O(log n) time.
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1
Introduction

Imagine the use of a maps application for mobile devices based on GPS coordinates. The lat-
itude and longitude coordinates are used for determining the current location on earth easily.
Often, in such maps applications, the street containing the given coordinates is returned as
an output. One can define a planar subdivision (arrangement) based on a given map. The
streets and the junctions defined in the underlying map correspond to the edges and vertices,
respectively. The faces represent regions between different streets and roads. An example of
such a planar subdivision is presented in Figure 1.1. However, since GPS is not exact, mea-
suring errors should be taken into account, that is, it is likely that one would not hit the exact
street at which the device is. Thus, within these maps, whose ambient dimension is two, the
edges are treated as one-dimensional, i.e., have no width. Therefore, the search for a point,
given in GPS coordinates, would locate the subdivision face containing the point and would
then compare the point to all edges on the boundary of the face in order to return the closest
one.

(a)

q

(b)

Figure 1.1: A planar point location example for a non-linear sub-
division. (a) The planar subdivision (b) Marking the subdivision
face containing a query point q

The maps application is a good
example for point location with
a rather static set of geomet-
ric objects, since the maps data
is known in advance. However,
the maps can be updated from
time to time, therefore, having
a dynamic method, which al-
lows additional updates, such
as deletions and further inser-
tions, rather than reconstruct-
ing the whole structure, may be
advantageous.
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2 Chapter 1. Introduction

The planar point location problem for a set S of n pairwise interior disjoint x-monotone
curves inducing a planar subdivision (or a planar arrangement) A(S) is defined as follows:
given a query point q, locate the feature of A(S) containing q, i.e., the face, edge or vertex
of A(S) that q lies in. In our mobile application example, the subdivision A(S) represents a
map, and the query point is specified by GPS coordinates. However, the planar point location
problem appears in many other fields as well. It is a fundamental problem in Computational
Geometry and has numerous applications in a variety of domains, such as computer graphics,
motion planning, computer aided design (CAD), geographic information systems (GIS), and
many more.

This thesis concerns theoretical aspects of the planar point location problem as well as
its implementation in Cgal, the Computational Geometry Algorithms Library [48]. Cgal
is an open-source C++ library containing various efficient geometric algorithms. As Cgal,
we follow the exact geometric computation paradigm [44,45] yielding robust implementation
with exact results.

Previous Work

As a core problem in Computational Geometry, the planar point location problem has been
well-studied for many years. Among the various solutions to the problem, some methods can
only provide an expected query time of O(log n) but can not guarantee it for all possible sce-
narios. It is particularly true for solutions that only require O(n) space. In addition, certain
solutions may only support linear subdivisions, while others are applicable to non-linear ones
as well. Triangulation-based point location methods, such as Kirkpatrick’s approach [29] and
Devillers’s Delaunay Hierarchy [15] are restricted to linear subdivisions, since they build on
a triangulation of the actual input. Kirkpatrick creates a hierarchy of O(log n) levels of
triangulated faces (including the outer face), where at each level an independent-set of low-
degree vertices is removed when creating the next level in the hierarchy. This approach
guarantees that the data structure requires only O(n) space and that a query takes only
O(log n) time. The Delaunay Hierarchy of Devillers, on the other hand, does not guarantee
logarithmic query time, and may have a linear query time in the worst-case. Nevertheless, it
has an exact implementation in Cgal, which performs well for random data. The different
behavior of the two approaches is due to the different methods for selecting the next-level
vertices. It should be noted that large constants are involved in the complexity bounds of
the hierarchical triangulation methods.

The Landmarks point location strategy [26] is a method maintaining good running times
in practice, which is available for Cgal arrangements. The Landmarks strategy combines a
nearest-neighbor search to find the nearest landmark, and a hopefully short walk in the full
subdivision from the landmark to the query point. It is a heuristics, and therefore does not
guarantee a logarithmic query time.

Most of the other methods can be summarized under the trapezoidal search graph model
of computation, as pointed out by Seidel and Adamy [39]. The fundamental search structure
used by this model is a directed acyclic graph G (which may even be just a tree for some
methods) with one root and many leaves. Internal nodes in G have two outgoing edges each,



3

and are either labeled with a vertical line and are therefore left-right nodes, or labeled by an
input curve and in such a case are top-bottom nodes. A search for a query point q starts from
the root of G and at each encountered internal node the query point q is compared to the
geometric entity represented by the node. In principal, all these solutions can be generalized
to support input curves that are decomposable into a finite number of x-monotone pieces.

One of the earliest solutions that can be subsumed under this model is known as the slabs
method introduced by Dobkin and Lipton [17]. Every endpoint induces a vertical wall giving
rise to 2n+ 1 vertical slabs. Within each slab, the curves are efficiently stored according to
their vertical order. A point location query is performed by a binary search to locate the
correct slab and another search within the slab in O(log n) time. Preparata [35] introduced
the Trapezoid Graph method based on the slabs method. His method, reduces the space
bounds from O(n2), as required by Dobkin and Lipton’s slabs method, to O(n log n) only, by
uniquely decomposing each edge into O(log n) fragments. Sarnak and Tarjan [37] achieved
a significant improvement in memory usage for a slabs-based method by using a persistent
data structure. Their key observation is that the sequence of search structures in all slabs can
be interpreted as one structure that changes over time, which can be stored as a persistent
data structure requiring only O(n) size. Another example for this model is the separating
chains method by Lee and Preparata [30]. Their algorithm expects a monotone subdivision
and uses horizontal monotone chains to separate faces. It is based on the idea that faces of
any monotone subdivision can be totally ordered preserving the above-below relation. Each
chain is a node in a binary search tree (each edge is kept only once). Querying the structure
is essentially deciding whether the query point is above or below O(log n) chains. However,
for each chain this test takes O(log n), using a binary search. Therefore, the total query time
is O(log2 n). Edelsbrunner et al. [18] used Fractional Cascading in order to create a layered
chain tree as a search structure by copying every other x-value from a node to its parent and
maintaining pointers from parent list to child lists. Querying this structure takes O(log n)
time.

The most relevant method in the context of this thesis is the trapezoidal map randomized
incremental construction (RIC). This asymptotically optimal solution was introduced by
Mulmuley [32] and Seidel [38]. It uses a Directed Acyclic Graph (DAG) recording the
history of the randomized incremental construction (RIC) of the trapezoidal map for an
arrangement of x-monotone curves. In static settings, where the subdivision is unchanged, it
achieves expected O(n log n) preprocessing time, expected O(log n) query time and expected
O(n) space. As pointed out by De Berg et al. [14], the latter two can even be guaranteed,
when applying minor modifications to the basic algorithm. It is also claimed there that
one can achieve an expected preprocessing time of O(n log2 n), but no concrete proof is
given. This approach is able to handle dynamic scenes as well, namely, it is possible to
add or delete edges later on. The entire method is discussed in more detail in Chapter 2
below. The above five methods are all applicable for arbitrary subdivisions of well-behaved
curves [20, Section 1.3.3] as one can switch to monotone subdivisions by decomposing every
curve into a set of x-monotone sub-curves in time which is proportional to the total number
of x-monotone edges.

A variant of the latter adds weights and thus gives expected query time satisfying entropy
bounds [5]. Arya et al. also stated that entropy preserving cuttings can be used to give a
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method the query time of which approaches the optimal entropy bound, at the cost of
increased space and programming complexity [4]. These methods guarantee a logarithmic
query time, however maintaining the search structures requires a considerably large amount
of memory and a significant increase in the preprocessing time. Therefore, these solutions
are generally rather complicated to implement. For other methods and variants the reader
is referred to a comprehensive overview given in [40].

Contribution

This thesis studies certain theoretical aspects of planar point location using the trapezoidal-
map random incremental construction algorithm as well as describes a major revision of its
implementation in Cgal. Part of the work in this thesis was presented in the European
Symposium on Algorithms (ESA) 2012 [27]. Our implementation provides a data structure
for arbitrary subdivisions that can handle static settings. Dynamic settings, where both
insertions and deletions of edges are allowed, are supported as well. However, this method
is best used when not too many deletions occur and the settings are mostly static. Like
the previous implementation by Oren Nechushtan [19], it is part of the “2D Arrangements”
package [42] of Cgal. As it supports arbitrary subdivisions, both linear and non-linear
subdivisions represented in Cgal by the “2D Arrangements” package can be given as input.
The implementation is exact, complete, and general. The main new feature is that we are
now able to guarantee for any input both O(log n) query time and O(n) space. Moreover,
the trigger for this major revision is the added support for unbounded curves, as it was
introduced for the “2D Arrangements” package in [11]. In particular, it is now possible to
provide guaranteed logarithmic point location for subdivisions embedded on two-dimensional
orientable parametric surfaces in three-dimensional space (e.g., spheres, tori, etc.) [10,11,42,
43]. We conjecture, based on our experimental results, that the expected preprocessing time
is O(n log n).

Chapter 2 discusses in detail the fundamental algorithm by Mulmuley [32] and Seidel [38].
A variant by De Berg et al. [14], which is the implementation’s basis, is thoroughly described
there as well. The latter guarantees logarithmic query time by constructing the directed
acyclic graph (DAG) using the basic algorithm. However, it rebuilds the DAG if the length
of the longest search path L or the size S exceed some thresholds. Therefore, in order to
bound the runtime of the guaranteed variant both L and S must be efficiently accessible.
An early version of [14] did not make the distinction between L and the depth D of the
DAG, which is the length of the longest DAG path. Chapter 3 discusses the fundamental
difference between the two quantities, D and L. In fact, we show there that the worst
case ratio between D and L can be Θ(n/log n). As argued there, D and L are not trivially
interchangeable. In particular, determining the value of L is rather expensive while D is easy
to maintain. In Chapter 4 two construction algorithms for static settings are presented. For
the first one we can show an expected O(n log2 n) time complexity. However, we believe that
using a more refined analysis an expected O(n log n) bound is achievable. For the second
algorithm we can prove an expected O(n log n) bound on the runtime. The technical details
of the implementation in Cgal are given in Chapter 5 as well as the details about the
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previous implementation by Oren Nechushtan. There we also compare our implementation
to other point location methods available for Cgal arrangements. A possible application
for the planar point location implementation is a guaranteed logarithmic planar nearest-
neighbor search, which is obtained by using our point location implementation on top of the
Voronoi diagram of the input points. This application is described in detail in Chapter 6
with appropriate experiments. Our conclusions and open problems are given in Chapter 7.

In summary, this thesis contains a theoretical solution for constructing in expected
O(n log n) time a linear size data structure for point location with logarithmic query time
for a subdivision of n pairwise disjoint x-monotone curves (this bound is true only for static
settings). However, we decided to implement the variant that uses the depth D of the DAG
for which we conjecture, based on our experiments, that the preprocessing time is expected
O(n log n) as well. Our implementation is exact and general, supporting both linear and
non-linear subdivisions, and can handle unbounded curves as well. It guarantees logarithmic
query time and linear size for all possible inputs. To the best of our knowledge, this is the
only existing implementation having such properties.
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2
Background

This chapter describes the trapezoidal map random incremental construction for point lo-
cation in detail. After some relevant general definitions in Section 2.1, the basic algorithm
presented by Mulmuley [32] and Seidel [38] is provided in Section 2.2. In Section 2.3 a variant
by De Berg et al. [14] is described, on which the implemented algorithm is based.

2.1 Definitions

Let S be a set of n pairwise interior disjoint x-monotone curves inducing a planar subdi-
vision (or a planar arrangement) A(S). For ease of reading let us assume that the input
curves are in general position, i.e., no two distinct endpoints have the same x-coordinate and

Figure 2.1: The trapezoidal map T (S) for
an arrangement A(S). The edges of A(S)
are in red while the vertical walls are in blue.

no endpoint of one curve lies in the interior of an-
other curve. The arrangement A(S) is composed
of vertices, and faces, in addition to its n edges.

The Trapezoidal Map of an arrangement A(S),
denoted by T (S), is obtained by extending verti-
cal walls from each endpoint upwards and down-
wards until an input curve is reached or the
wall extends to infinity. In general position,
each trapezoid of T (S) is defined by at most
two edges of A(S) and has one or two verti-
cal edges (trapezoid bases)1. Each vertical edge
can be represented by the one endpoint induc-
ing the wall it lies on. Therefore, each trapezoid ∆ in T (S) can be defined by a

1We use the term trapezoid even when the side edges are not linear segments.

7



8 Chapter 2. Background

unique quadruplet: 〈left(∆), right(∆), bottom(∆), top(∆)〉, in which left(∆), right(∆)
represent the left and right endpoints (inducing the left and right vertical edges),
respectively, and bottom(∆), top(∆) represent the bottom and top edges, respec-
tively. Figure 2.2 illustrates a basic trapezoid. In a degenerate trapezoid, hav-
ing only one vertical edge (a triangle), the two non-vertical edges are adjacent.
The trapezoidal map T (S) is unique and does not depend on the order of insertion. As
shown in [14], T (S) of an arrangement consisting of n edges in general position, has at most
3n + 1 trapezoids and at most 6n + 4 vertices. In other words, the trapezoidal map of an
arrangement of linear size has a linear size as well.

cvi(pi, qi)

cvj(pj, qj)∆

∆ = 〈qk, qi, cvj, cvi〉

cvk(pk, qk)

Figure 2.2: A trapezoid.

The trapezoids in T (S) are neighbors if they share a vertical
wall. In general position, each trapezoid has at most four neigh-
boring trapezoids: at most two along its left vertical edge, and
the same along its right vertical edge. In order to avoid the gen-
eral position assumption, a symbolic shear transformation should
be used. This is done by employing lexicographical comparison,
that is, comparing first by the x-coordinate and then by the y-
coordinate. This implies that two covertical points produce a vir-
tual trapezoid, which has zero width.

For simplicity of presentation, and w.l.o.g., the following figures
contain horizontal line-segments and are clipped using a bounding
rectangle. However, both our analysis and software are for general
x-monotone curves and do not depend on the existence of bounding
boxes.

2.2 The Basic RIC Algorithm

We review here the random incremental construction (RIC) of an efficient point location
structure, as introduced in [32,38] and described in [14,33]. Given an arrangement A(S) of
n pairwise interior disjoint x-monotone curves, a random permutation of the curves is inserted
incrementally, constructing the trapezoidal map T (S). During the incremental construction,
an auxiliary search structure, a directed acyclic graph (DAG) G, is maintained. The DAG G
has one root and many leaves, one for every trapezoid in the trapezoidal map T (S). Every
internal node is a binary decision node, representing either an endpoint p, deciding whether
a query point q lies to the left or to the right of the vertical line through p, or an x-monotone
curve cvi, deciding whether the query point q is above or below it. When we reach a curve-
node representing a curve cvi, we are guaranteed that the query point q lies in the x-range of
cvi. In Figure 2.3, the DAG root is an internal node representing an endpoint p1 (in purple).
This DAG also includes a curve-node representing cv1, which is marked in orange. Finally,
there are four leaves, representing the four trapezoids in the map. Note that this DAG is
still a tree.

The trapezoids in the leaves are interconnected, such that each trapezoid knows its (at
most) four neighboring trapezoids (two to the left and two to the right, as explained above).
In particular, there are no common x-coordinates for two distinct endpoints, since we use a
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B

DA

C

cv1(p1, q1)

(a)

B

D
cv1

q1

p1

A

C

(b)

Figure 2.3: (a) The trapezoidal map T (S) of an arrangement A(S) containing one curve cv1(p1, q1)
(marked in red). (b) The corresponding DAG G for T (S), which is currently still a tree.

symbolic shear transform. For example, trapezoid A in Figure 2.3, has only two neighbors,
namely B and C, which are its top-right and bottom-right neighbors, respectively. Trapezoid
C has also two different neighbors, which are trapezoid A to its left and trapezoid D to its
right. In the underlying data structure, each trapezoid maintains four pointers to its potential
neighbors.

2.2.1 Querying

B

DA

C

cv1(p1, q1)

query

(a)

B

D

A

C

p1

q1

cv1

(b)

Figure 2.4: Locating query point q in the DAG. (a) The trapezoid containing the query point q is
marked. (b) The query path for q along the history DAG is marked with arrows.

In order to locate the trapezoid containing a query point q one needs to perform a search
in the history DAG. The search begins at the root of the DAG and ends in a DAG leaf.
At each internal node a decision is made, depending on whether the node represents an
endpoint or a curve, in order to find the next node in the path. In other words, the number
of comparisons used by one query equals to the number of internal nodes along a search path
to the leaf representing the trapezoid that contains the query point. Therefore, the query
time is proportional to the length of the path.
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B

DA

C

cv1(p1, q1)

cv2(p2, q2)

B

D

A

C

p1

q1

cv1

(a)

B

DA

E

cv1(p1, q1)

cv2(p2, q2)

F

HC

B

D
cv1

q1

p1

A

F

E

p2

cv2

HC

(b)

B

GA

E

cv1(p1, q1)

cv2(p2, q2)

F

HC HD

I B

cv1

q1

p1

A

F

E

p2

cv2

I

q2

cv2

GH

HC

D

(c)

B

GA

E

cv1(p1, q1)

cv2(p2, q2)

F

HC HD

I

H

B

cv1

q1

p1

A

F

E

p2

cv2

I

q2

cv2

G

H

H
H

C

D

(d)

Figure 2.5: Updating the DAG with a second curve cv2(p2, q2). (a) Locating p2 (the left endpoint of
cv2). (b) Splitting the trapezoid C, which contains p2, into trapezoids E,F,HC . The right neighbor
of C, trapezoid D, is the next trapezoid to split. (c) Splitting trapezoid D into trapezoids HD, G, I.
(d) Newly created trapezoids HC , HD are merged into trapezoid H, since they share the same top and
bottom curves, resulting in the updated DAG. Note that the search structure is no longer a tree, due
to the merge.
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2.2.2 Insertion

When a new x-monotone curve is inserted, the trapezoid containing its left endpoint is
located by a search from root to leaf. Then, using the connectivity information described
above, the trapezoids intersected by the curve are gradually revealed and updated. Merging
new trapezoids, if needed, takes time that is linear in the number of intersected trapezoids.
The merge turns the data structure into a DAG with expected O(n) size, instead of an
Ω(n log n) size binary tree [39]. The whole insertion process is illustrated in Figure 2.5. For
an unlucky insertion order the size of the resulting data structure may be quadratic, and
the longest search path may be linear. However, since the curves are inserted in a random
order, one can expect O(n) space, O(log n) query time, and O(n log n) preprocessing time.
For proofs see [14,32,38].

As a result of the merge, the search structure in Figure 2.5 contains two directed paths
from the root to the leaf labeled H. Figure 2.6 demonstrates the two paths, which are both
valid search paths.

B

GA

E

cv1(p1, q1)

cv2(p2, q2)

F I

H

B

cv1

q1

p1

A

F

E

p2

cv2

I

q2

cv2

G

H

(a)

B

GA

E

cv1(p1, q1)

cv2(p2, q2)

F I

H

B

cv1

q1

p1

A

F

E

p2

cv2

I

q2

cv2

G

H

(b)

Figure 2.6: Two search paths to H. The paths illustrated in (a) and (b) are realized by queries in the
left and right regions of trapezoid H, respectively. These regions are marked with yellow in the matching
trapezoidal map figures (left-hand side).
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2.3 A Guaranteed Logarithmic Query Time and Linear

Size Variant

De Berg et al. [14] show that one can build a data structure, which guarantees O(log n) query
time and O(n) size, by monitoring the size S and the length of the longest search path L
during the construction. The idea is that as soon as one of the values becomes too large, the
structure is rebuilt using a different random insertion order. It is shown that only a small
constant number of rebuilds is expected. We now analyze the algorithm presented in [14] in
more details.

The basic algorithm, described in Section 2.2, bounds the query time with a logarithmic
bound, in expectation. However, it can be shown that the probability that the maximum
query path length L is bad (larger than some defined bound) is very small.

Lemma 2.1. Let S be a set of n non-crossing x-monotone curves, let q be a query point,
and let λ > 0 be a parameter. The probability that the search path for q in the DAG has
more than 3λ ln(n+ 1) nodes is at most 1/(n+ 1)λ ln 1.25−1.

The proof can be found in [14, Section 6.4]. The next lemma is used to bound the expected
value for the length L of the longest query.

Lemma 2.2. Let S be a set of n non-crossing x-monotone curves, and let λ > 0 be a
parameter. The probability that L, the maximum search path length, is greater than 3λ ln(n+
1) is at most 2/(n+ 1)λ ln 1.25−3.

Proof sketch: The idea is that by extending the vertical walls to full lines, the plane is
decomposed into at most 2(n + 1)2 regions. The search paths for two query points q, q′

lying in the same region are identical. Therefore, it is sufficient to consider the search paths
of representative queries for these regions. Using Lemma 2.1 the required result follows.
Obviously, we can choose an appropriate value for λ such that the probability that the
maximum query path length is “bad” is sufficiently small. For instance, choosing λ = 20
implies that the probability that for the search structure L ≤ 60 ln(n+ 1) is at least 3/4.

Moreover, the following lemma, which does not appear in [14], shows that the probability
that the size S of the search structure is too big is very small.

Lemma 2.3. Let S be a set of n non-crossing x-monotone curves, and let ρ ≥ 1 be a
parameter. The probability that S is more than 15ρn is at most 1

ρ
.

Proof. Let C be a non-negative random variable representing the number of DAG nodes, i.e.,
the size S of the search structure. C is composed of the number of leaves in the final search
structure and the sum of inner nodes created in all iterations. The number of leaves equals
to |T (S)|, the number of trapezoids in the final trapezoidal map. Hence, it is at most 3n+1.
Let ki denote the number of trapezoids created by the insertion of the ith curve. Let A(Si)
denote the arrangement of the first i curves, and T (Si) denote the matching trapezoidal
map for this arrangement. The number of inner nodes created in iteration i is equal to the
number of trapezoids that are split by the interior (not endpoints) of the inserted curve cvi
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plus the number of endpoints of cvi that do not exist in the current structure T (Si−1). In
fact, we can count the number of vertical walls that are blocked by the cvi (which is equal
to the number of trapezoids that are split by the interior of cvi − 1), since the trapezoid
lying on the left side of the blocked wall is new. If the left endpoint of cvi is inserted to the
structure (an inner node for this endpoint is added) then a new trapezoid to its left is added.
Similarly, if the right endpoint of cvi is inserted to the structure then a new trapezoid to
its right is added. Therefore, the number of inner nodes created in iteration i is exactly the
number of new trapezoids created in the same iteration minus 1, i.e., ki − 1.

The expected number of DAG nodes, E[C], can be bounded as follows:

E[C] = E[|T (S)|+
n∑
i=1

(ki − 1)]

= E[|T (S)|] + E[
n∑
i=1

(ki − 1)]

= E[|T (S)|] + E[
n∑
i=1

ki]− n

≤ (3n+ 1) + E[
n∑
i=1

ki]− n

= 2n+ 1 + E[
n∑
i=1

ki] .

Using linearity of expectation we get:

E[C] ≤ 2n+ 1 +
n∑
i=1

E[ki].

The expected number of new trapezoids created in the ith iteration can be bounded using
the following backwards analysis. Each trapezoid is defined by at most four curves and by
removing one of these curves the trapezoid is destroyed. If cvi, the ith inserted curve, is
removed from T (Si), the probability that a given trapezoid ∆ is destroyed is at most 4/i.
Since |T (Si)| is the number of trapezoids in the trapezoidal map for the first i inserted
curves, the expected number of trapezoids that are destroyed if cvi is removed from T (Si)
is at most |T (Si)|·4/i, which is the expected number of new trapezoids created in the ith
iteration. In addition, as we already mentioned, the number of trapezoids in a trapezoidal
map of i curves in general position is at most 3i + 1. Therefore, E[ki] can be bounded as
follows:

E[ki] ≤
4 · |T (Si)|

i
≤ 4(3i+ 1)

i
= 12 +

4

i
.

Putting it all together:

E[C] ≤ 2n+ 1 +
n∑
i=1

(12 +
4

i
) = 14n+ 1 + 4

n∑
i=1

1

i
= 14n+ 1 + 4Hn ,
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where Hn is the n-th harmonic number and lnn < Hn < lnn+ 1, and therefore:

E[C] < 14n+ 4 lnn+ 2 < 15n, for n ≥ 12.

Since C is a non-negative random variable we can use Markov’s inequality, according to
which for any α > 0 we have:

Pr[C ≥ α] ≤ E[C]
α

.

Now, we choose α = 15ρn and substitute

Pr[C ≥ 15ρn] ≤ E[C]
15ρn

=
15n

15ρn
=

1

ρ
.

Finally, we can choose an appropriate value for ρ such that the probability that the size
is “bad” is small enough. If we choose λ = 20 and ρ = 4 then by Lemma 2.2 the probability
that for the search structure L ≤ 60 ln(n+1) occurs is at least 3/4. Similarly, by Lemma 2.3,
the probability that S ≤ 60n is at least 3/4. Therefore, the probability that both the size
and the maximal query length are good is at least 1/2.

The algorithm of the guaranteed logarithmic query time and linear size variant is as
follows. We observe the size S and the maximum query path length L during the construction
using the basic algorithm described in Section 2.2. If at some stage of the construction
S ≥ c1n or L ≥ c2 log n occurs (for suitably chosen constants c1, c2 > 0), then we abort the
construction and rebuild the structure using a different random permutation of the input
curves. It follows from both Lemma 2.2 and Lemma 2.3 that only a constant number of
rebuilds is expected. Since an insertion takes O(log n) time we observe the following:

Observation 2.4. If the size S and the maximum query path length L are accessible in
O(log n) time then the expected preprocessing time of the algorithm described above is O(n log n).

The size S can be trivially made efficiently accessible (in fact, it can even be accessed
in constant time). It is not clear, however, how to achieve this for L. This topic will be
thoroughly discussed both in Chapter 3 and Chapter 4. The proof of Lemma 2.2 above
relies on the fact that there are at most 2(n + 1)2 query paths in the DAG. In [14] it is
mentioned that the number of representative points for different query paths can be reduced
to O(n log n) only, setting the bound of the expected preprocessing time for static settings
to be O(n log2 n).



3
Depth vs. Maximum Query Path Length

An algorithm for constructing a point location data structure, which guarantees O(log n)
query time and O(n) size, was described in Section 2.3. This structure is constructed while
monitoring the size S and the maximum search path length L. However, in order to retain the
expected construction time of O(n log n), both values, namely, S and L, must be efficiently
accessible. While this is trivial for the size S, it is not clear how to achieve this for the
maximum query path length L. Hence, we resort to the depth D of the DAG, which is an
upper bound on L as the set of all possible search paths is a subset of all paths in the DAG.
Thus, the resulting data structure still guarantees a logarithmic query time.

The depth D can be made accessible in constant time, by storing the depth of each leaf
in the leaf itself, and maintaining the maximum depth in a separate variable. The cost of
maintaining the depth can be charged to new nodes, since existing nodes never change their
depth value. This is not possible for L while retaining linear space, since each leaf would
have to store a non-constant number of values, i.e., one for each valid search path that
reaches it. In fact the memory consumption would be equivalent to the data structure that
one would obtain without merging trapezoids, namely the trapezoidal search tree, which for
certain scenarios requires Ω(n log n) memory as shown in [39]. In particular, it is necessary to
perform merges as the sizes of the resulting search tree and the resulting DAG considerably
differ also in practice, as demonstrated in Table 3.1.

Section 3.1 shows that the depth D of a given DAG can be linear while its maximum
query path length L is still logarithmic, that is, such a DAG would trigger an unnecessary
rebuild. It is thus questionable whether we can still expect a constant number of rebuilds
when relying on D. Our experiments, reported in Section 3.2, show that in practice the two
values hardly differ, indicating that it is sufficient to rely on D. However, a theoretical proof
to consolidate this is still missing.

15



16 Chapter 3. Depth vs. Maximum Query Path Length

Table 3.1: The table displays the number of trapezoidal search tree nodes vs. number of DAG nodes
for the same input with the same insertion order. The trapezoidal search tree is obtained by inserting
the curves in the same order as in the construction of the DAG, however, while avoiding merges. The
last column presents the ratio between the number of tree nodes and the number of DAG nodes. As
expected, its values correspond to the function log n, where n is the number of edges.

# Arrangement Edges # Tree nodes # DAG nodes ratio
22 125 101 1.23
138 1263 681 1.85
285 3167 1492 2.12
1483 23511 8019 2.93
2977 51551 16330 3.15
14975 350629 84576 4.14
29973 759075 169355 4.48

3.1 Theoretical Bounds on the Ratio

The difference between the DAG depth D and the maximum query path length L should first
be clarified, and this is done in Subsection 3.1.1. Then, in Subsection 3.1.2, a construction in
which the difference between D and L is significant is presented. However, the ratio between
the two values can be even larger, as shown in Subsection 3.1.3. In particular, the Ω(n/log n)
ratio of D and L achieved in the latter is proven to be tight.

3.1.1 Definitions

To demonstrate the difference between the DAG depth D and the maximum query path
length L, a third curve cv3 should be added to the subdivision of the two curves from
Figure 2.5. Figure 3.1 shows the appropriate trapezoidal map and DAG after the insertion
of cv3. The leaf representing trapezoid H in the former structure (Figure 2.5) was replaced
with a subtree rooted at p3, the left endpoint of cv3.
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Figure 3.1: The trapezoidal map and appropriate DAG after inserting cv3(p3, q3).
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There are two directed paths starting at the root that reach trapezoid N , illustrated in
Figure 3.2. The black path is a valid search path to all queries in trapezoid N . The blue
path, on the other hand, is not a valid search path, since all points in N are to the right
of q1, that is, such a query would never visit the left child of q1. This blue path, however,
determines the depth of N , since it is the longer path of the two. This scenario occurs due to
the merge that was part of the insertion of cv2 (see Figure 2.6) creating two different paths
to a leaf, which became an inner node in the updated structure. In the sequel we use this
observation to construct an example that shows that the ratio between D and L can be as
large as Ω(n/log n). Moreover, we will show that this bound is tight.
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Figure 3.2: Two directed paths to N . The black path illustrated in (a) and the blue path illustrated
in (b) represent the longest query path and the longest DAG path, respectively. While the black path
in (a) is the search path for all queries that end up in trapezoid N , the blue path in (b) is not a valid
search path and cannot be realized by any query.

3.1.2 Towards a Worst Case Bound

The figure to the right demonstrates a simple con-
struction achieving an Ω(

√
n) lower bound for the ra-

tio between D and L. Assuming that n = k2 ∈ N, the
construction consists of k blocks, each containing k
horizontal segments. The blocks are arranged as de-
picted in the figure. Segments are inserted from top
to bottom. A block starts with a large segment at the
top, which we call the cover segment, while the other
segments successively shrink in size. Now the next block is placed to the left and below
the previous block. Only the cover segment of this block extends below the previous block,
which causes a merge as illustrated in Figure 3.3. All k =

√
n blocks are placed in this

fashion. This construction ensures that each newly inserted segment intersects the trapezoid
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with the largest depth, which increases D. The largest depth of Ω(n) is finally achieved in
the trapezoid below the lowest segment. However, the actual search path into this trapezoid
has only O(

√
n) length, since there are O(

√
n) blocks and a query is able to skip an entire

block using only one comparison to the leftmost point of the cover segment. Within the
relevant block there are at most O(

√
n) possible comparisons.
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Figure 3.3: (a) The trapezoidal map after inserting cv4. The map is displayed before and after the
merge of I ′, C ′, D′, and E′ into N , in the top and bottom illustrations, respectively. (b) The DAG
after merging. A query path to the region of I ′ in N will take 3 steps, while the depth of N in this
example is 11.

3.1.3 Worst Case Ratio

n
2

n
4

n
8

The following construction, illustrated in the figure to
the right, which uses a recursive scheme, establishes
the lower bound Ω(n/log n) for D/L. Blocks are con-
structed and arranged in a similar fashion as in the
previous construction. However, this time we have
log2 n blocks, where block i contains n/2i segments.
Within each block we then apply the same scheme re-
cursively as depicted in the figure to the right. Again
segments are inserted from top to bottom such that
the depth of Ω(n) is achieved in the trapezoid below the lowest segment. The fact that
the lengths of all search paths are logarithmic can be proven by the following argument. By
induction we assume that the longest search path within a block of size n/2i is some constant
times (log2 n − i). Obviously this is true for a block containing only one segment. Now, in
order to reach block i with n/2i segments, we require i− 1 comparisons to skip the i− 1st
preceding blocks. Thus in total the search path is of logarithmic length.
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Theorem 3.1. The Ω(n/log n) worst-case lower bound on D/L is tight.

Proof. Obviously, D of O(n) is the maximal achievable depth, since by construction each
segment can only appear once along any path in the DAG. It remains to show that for any
scenario with n segments there is no DAG for which L is smaller than Ω(log n). Since there
are n segments, there are at least n different trapezoids having these segments as their top
boundary. Let T be a decision tree of the optimal search structure in the sense that its
longest query path is the shortest possible. Each path in the decision tree corresponds to a
valid search path in the DAG and vice versa. The depth of T must be at least log2 n, since
it is only a binary tree. We conclude that the worst case ratio of D and L is Θ(n/log n).

3.2 Observed Ratio Experiments

Since D is an upper bound on L and since D is accessible in constant time, our implemen-
tation explores an alternative that monitors D instead of L. Though this may cause some
additional rebuilds, the experiments in this section give strong evidence that one can still
expect an O(n log n) preprocessing time.

3.2.1 Experiments

We compared D and L in the following two scenarios: random non-intersecting line segments
and Voronoi diagrams for random sites. In addition, the two special scenarios, which were
constructed in order to achieve lower bounds on the worst case ratio of D and L as described
in Subsection 3.1.2 and Subsection 3.1.3, were tested as well. Figure 3.4 illustrates the four
different scenarios. It should be noted, however, that in all experiments here, in particular
for the lower bound constructions, we chose a random insertion order for the input curves.
Each scenario was tested with an increasing number of subdivision edges, with several runs
for each input.

In the random line-segments scenario (Figure 3.4 (a)) each segment was created from
two points chosen at random in [−1, 1]2. The number of generated segments was b1.5kc, for
6 ≤ k ≤ 19. The reported results are the average of 20 builds of the search structure for
the same random scenario. In the scenarios of Voronoi diagrams of random sites (Figure 3.4
(b)) we used 2k random sites for 6 ≤ k ≤ 15. For each k we generated 10 different point
sets and created the search structure 7 times, that is, the reported results are the average
of 70 builds. Each run in the scenario achieving a worst-case O(

√
n) ratio (Figure 3.4 (c))

contains k2 segments for k ∈ {10 · 2i|i ∈ {1, . . . , 6}}. Finally, in the scenario achieving a
worst-case O(n/log n) ratio (Figure 3.4 (d)) each run contains 2k segments for 8 ≤ k ≤ 17.
As mentioned above all experiments used a different random permutation of the input curves
for each construction.
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(a) (b)

(c) (d)

Figure 3.4: Scenarios: (a) random line-segments (b) Voronoi diagrams of random sites (c) construction
for worst case O(

√
n) D/L ratio (d) construction for worst case O(n/log n) D/L ratio.

3.2.2 Results

The plots in Figure 3.5 display the average D/L ratio with error bars. In all experiments
the two values hardly differ, that is, the largest ratio that we were able to observe was
strictly less than 1.3. In the special scenarios, this value was even lower and in many cases D
and L actually had the same value. However, for very large scenarios of random curves, see
Figure 3.5 (a), D was always a bit larger than L, but on the other hand the largest observed
ratio there went down to less than 1.2. Furthermore, even in the scenario of Figure 3.4 (d)
that achieves a worst case ratio of O(n/log n), the results show that when taking a random
permutation of the curves the chance of reaching an O(n/log n) ratio becomes very small.

This indicates that D and L behave sufficiently similarly in practice. Therefore, replacing
the test for the length of the longest search path L by the depth D of the DAG in the
randomized incremental construction should not harm the runtime. This led us to the
following conjecture.

Conjecture 3.2. There exists a constant c > 0 such that the runtime of the randomized
incremental algorithm, modified such that it rebuilds in case the depth D of the DAG becomes
larger than c log n, is expected O(n log n), i.e., the number of expected rebuilds is still constant.
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Figure 3.5: Results: (a) random line-segments (b) Voronoi diagrams of random sites (c) construction
for worst case O(

√
n) D/L ratio (d) construction for worst case O(n/log n) D/L ratio.
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4
Efficient Construction Algorithms for Static

Settings

This chapter describes optional construction algorithms for static settings guaranteeing both
logarithmic query time and linear size (similar to the algorithm reviewed in Section 2.3). Sec-
tion 4.1 defines a basic scheme for such construction algorithms. This prototype uses as a
“black box” an algorithm that verifies the maximum query path length L. This “black
box” algorithm has an effect on the total runtime of the whole construction algorithm.
The next two sections describe two efficient verification algorithms for L that can be used
by the general construction algorithm. The first verification algorithm, reviewed in Sec-
tion 4.2, has expected O(n log2 n) runtime. However, as discussed there, it is likely to have a
tighter runtime bound. In Section 4.3 we present a second verification algorithm for L that
has O(n log n) runtime.

4.1 Algorithmic Scheme for Static Settings

Given a set S of n pairwise interior disjoint x-monotone curves inducing a planar subdivision,
one can define an efficient construction algorithm for static settings, when all input curves
are given in advance. This can be done as follows:

Definition 4.1. f(n) denotes the time it takes to verify that, in a linear size DAG con-
structed over a set of n pairwise interior disjoint x-monotone curves, L is bounded by c log n
for a constant c.

Theorem 4.2. Let S be a set of n pairwise interior disjoint x-monotone curves inducing a
planar subdivision. A point location data structure for S, which has O(n) size and O(log n)

23
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query time in the worst case, can be built in O(n log n + f(n)) expected time, where f(n) is
as defined above.

Proof. The construction of a DAG with some random insertion order takes expectedO(n log n)
time. The linear size can be verified trivially on the fly (as discussed in Section 2.3). After
the construction an algorithm that verifies that the maximum query path length L is loga-
rithmic is used. The verification of the size S and the maximum query path length L may
trigger rebuilds with a new random insertion order. However, according to Lemma 2.2 and
Lemma 2.3, one can expect only a constant number of rebuilds. Thus, the overall expected
runtime remains O(n log n+ f(n)).

As described in Section 2.3, with high probability the length of the longest query over
all insertion orders (permutations of the input curves) is O(log n). Obviously part of these
permutations will generate a linear size DAG while others will create DAGs with larger size
complexity. Since we verify L only for permutations that construct a linear size DAG, it is
not clear whether we can still expect a logarithmic query path length in this subpopulation
of DAGs. Suppose that the expected value of L in the subpopulation of linear-size DAGs
is larger than O(log n). Since at least three out of four DAGs have linear size (the sub-
population size is at least 3/4 of the population size), the expected value of L in the whole
population would have also been larger than O(log n). Therefore, the expected value of L in
the subpopulation of linear size DAGs is also O(log n). In other words, we can still expect
a constant number of rebuilds when using the above algorithm.

4.2 An Expected O(n log2 n) Verification Algorithm

The following algorithm verifies that the maximum query path length L in the search struc-
ture of linear size is bounded as desired. It is a recursive algorithm that performs a DFS-like
(Depth First Search) traversal on the DAG in order to verify that L is logarithmic.

The algorithm essentially computes all possible search paths in the DAG by discarding
those paths that are geometrically impossible. Starting at the root it descends towards the
leaves in a recursive fashion. Taking the history of the current path into account, each
recursion call maintains the interval of the x values that are still possible. More precisely,
there are three cases: (i) if the recursion call reaches a point node whose x-coordinate is
contained in the current interval, the recursion splits into two with updated intervals; (ii) if
the recursion call reaches a point node that is not contained in the interval, the recursion
does not split and continues to the proper child only. Such a node in a path that does not
cause the recursion call to split is named a bouncing-node for this path; (iii) if the recursion
call reaches a curve node, it always splits while the interval remains unchanged. Figure 4.1
illustrates a partial run of the algorithm.

In order to bound the expected time complexity of the algorithm a bound on the expected
number of different search paths that are traced by the algorithm should be found. Obviously,
in the DAG several different search path may reach the same leaf. In other words it is not
obvious how to count the number of such search paths. Thus, finding a structure in which
the number of different search paths can be computed more easily would be helpful. Such
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Figure 4.1: The first 9 steps of the recursive verification algorithm run on the search structure for
3 curves, as illustrated in Figure 3.1. A magnification of (a) is depicted in Figure 4.2. The interval
of possible x-values is marked by the blue brackets. In each step the growing path so far is marked
with arrows. In (i) the interval of possible x-values remains [p2, q1] and does not shrink since p3 is not
contained in it. The subgraph rooted at the right child of p3 is clearly not contained in [p2, q1], since it
represents regions that are completely to the right of p3, and is, therefore, skipped.
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a structure is the trapezoidal search tree T which is a full binary tree constructed as the
DAG using the same insertion order while skipping the merge step. In T, as in any tree, the
number of different search paths is exactly the number of leaves. Therefore, we would like
to show that the number of search paths in the DAG is equal to the number of search paths
in T.

Lemma 4.3. Let S be a set of n pairwise interior disjoint x-monotone curves inducing a
planar subdivision. Let G and T be the DAG and the trapezoidal search tree created using
the same permutation of the curves in S, respectively. The number of different search paths
in G is equal to the number of search paths in T.

Proof. In order to prove this we can simply show that the following statement holds. Suppose
that while searching in the DAG for some query point q we maintain the interval of possible
x-values (similarly to what the recursive algorithm does). If the search in the DAG ends
in trapezoid t and with the x-interval (a, b) (the x-range of trapezoid t contains (a, b) but
may be even larger) then the search path for q in the trapezoidal search tree will end in
trapezoid t′ whose left and right x-values are a and b, respectively, and whose top and
bottom curves are identical to the top and bottom curves of t. Moreover, we would like to
show that the search paths for q in the DAG and the search path for q in the trapezoidal
search tree are identical up to bouncing-nodes. This can be shown by induction on the set
of inserted curves. We denote by Gi, Ti the DAG and the trapezoidal search tree after the
first i curves were inserted, respectively.
Base case k = 1: G1 = T1 since no merge has occurred. Therefore, the search paths for q in
both structures are identical.
Suppose that the statement holds for k = i − 1. We now show that it holds for k = i,
as well. The ith curve cvi is inserted into both Gi−1 and Ti−1. Let ti−1 and t′i−1 denote
the trapezoids containing the query point q in Gi−1 and Ti−1, respectively. Let (ai−1, bi−1)
denote the x-interval of t′i−1.

t′i−1ti−1

ai−1 bi−1

1
2
3
4
5

6
7
8
9

10
11
12

13
14

15

A EB C D

Figure 4.3: Possible positions for cvi

We use the following notations for the five different vertical slabs (regions). We denote by A
the region to the left of ti−1, by B the region to the left of t′i−1 inside ti−1. We denote
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by C the region inside t′i−1 and ti−1. D will denote the region to the right of t′i−1 inside ti−1,
and E represents the region to the right of ti−1. There are 15 optional positions to insert
curve cvi(pi, qi) presented in Figure 4.3 (note that pi is always to the left of qi). We will
group them according to the region containing pi as follows:

• pi is located to the left of ti−1, that is, in region A. In Figure 4.3 the relevant positions
are 1-5. In such positions pi will not be added to the search paths of a query point q
that lies in t′i−1 both in the DAG Gi and in the trapezoidal search tree Ti. We now
distinguish the different cases depending on the position of qi.

– Position 1: qi lies in region A as well. Therefore, will not be added to the search
paths of a query point q that lies in t′i−1. Clearly, ti = ti−1 and t′i = t′i−1. Therefore,
since the statement holds for k = i− 1, it holds for k = i as well.

– Position 2: qi lies in region B. In such a case qi will be added to the query path to
q as a bouncing node in Gi, but will not affect the x-interval maintained during
the search since qi is not contained in (ai−1, bi−1). The query path to q in Ti will
not change, since cvi does not intersect t′i−1. Using the induction hypothesis and
since the only new internal node in the search paths for q is a bouncing-node in
Gi, then the statement holds for k = i as well.

– Position 3: qi lies in region C. The search paths for q in both Gi and Ti will include
qi. If q is in the x-range of cvi then an additional internal node representing cvi
will appear in the path for q in both structures. The x-interval (ai, bi) in such a
case would change to (ai−1, qi). If, on the other hand, q is to the left of qi then the
new x-interval would be from qi to bi−1. Since the statement held for k = i − 1,
it holds for k = i as well.

– Position 4: qi lies in region D. Similar to the case where qi lies in region B, that
is, qi will be added to the query path to q as a bouncing node in Gi, but will not
appear in Ti. In addition, since cvi intersects t′i−1 completely, an internal node
cvi will be added to both structures. Using the induction hypothesis and since
the only new internal node in the search paths for q that does not appear in both
paths (i.e., in the search paths for q in both Gi and Ti) is a bouncing-node in Gi,
then the statement holds for k = i as well.

– Position 5: qi lies in region E. Therefore, will not be added to the search paths of
a query point q that lies in t′i−1. Since cvi intersects t′i−1 completely, an internal
node cvi will be added to both structures. Since the statement held for k = i− 1,
it holds for k = i as well.

• pi is located inside ti−1 to the left of t′i−1, that is, in region B. In Figure 4.3 the
relevant positions are 6-9. In such positions pi will be added to the search path of a
query point q that lies in t′i−1 in the DAG Gi as a bouncing node for this path, since
it is not contained in (ai−1, bi−1). On the other hand, it will not be added to the path
of q in the trapezoidal search tree Ti. We now distinguish several cases depending on
the position of qi.
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– Position 6: qi lies in region B. In such a case qi will be added to the query path to
q as a bouncing node in Gi, but will not affect the x-interval maintained during
the search since qi is not contained in (ai−1, bi−1). The query path to q in Ti will
not change, since cvi does not intersect t′i−1. Using the induction hypothesis and
since the only new internal nodes in the search paths for q are bouncing-nodes in
Gi, then the statement holds for k = i as well.

– Position 7: qi lies in region C. The search paths for q in both Gi and Ti will include
qi. If q is in the x-range of cvi then an additional internal node representing cvi
will appear in the path for q in both structures. The x-interval (ai, bi) in such a
case would change to (ai−1, qi). If, on the other hand, q is to the left of qi then
the new x-interval would be from qi to bi−1. Using the induction hypothesis and
since the only new internal node in the search paths for q that does not appear in
both paths is a bouncing-node in Gi, then the statement holds for k = i as well.

– Position 8: qi lies in region D. Similar to the case where qi lies in region B, that
is, qi will be added to the query path to q as a bouncing node in Gi, but will not
appear in Ti. In addition, since cvi intersects t′i−1 completely, an internal node
cvi will be added to both structures. Using the induction hypothesis and since
the only new internal node in the search paths for q that does not appear in both
paths is a bouncing-node in Gi, then the statement holds for k = i as well.

– Position 9: qi lies in region E. Therefore, will not be added to the search paths of
a query point q that lies in t′i−1. Since cvi intersects t′i−1 completely, an internal
node cvi will be added to both structures. Since the statement held for k = i− 1,
it holds for k = i as well.

• pi is located inside t′i−1, that is, in region C. In Figure 4.3 the relevant positions are
10-12. In such positions pi will be added to the search path of a query point q that lies
in t′i−1 both in Gi and in Ti, since it is contained in (ai−1, bi−1). We now distinguish
several cases depending on the position of qi.

– Position 10: qi lies in region C. cvi is contained completely in region C. The
same internal nodes, depending on the position of q, will be added for both search
structures. Using the induction hypothesis and since the search paths for q in
both structures were added with the same nodes it holds for k = i as well.

– Position 11: qi lies in region D. If the query point q is located to the left of pi
then no new node (other than pi) will be added to the search paths of q in both Gi

and Ti. If, on the other hand, q is in the x-range of cvi then qi will be added to
the path as a bouncing node in Gi, but will not appear in Ti. In addition the
paths in the two structures will be added with a node representing cvi. Using the
induction hypothesis and since the only new internal node in the search paths for
q that does not appear in both paths is a bouncing-node in Gi, then the statement
holds for k = i as well.

– Position 12: qi lies in region E. Therefore, will not be added to the search paths
of a query point q that lies in t′i−1. Depending on the location of q, an internal



30 Chapter 4. Efficient Construction Algorithms for Static Settings

node cvi may be added to the paths in both structures. Since the statement held
for k = i− 1, it holds for k = i as well.

• pi is located inside ti−1 to the right of t′i−1, that is, in region D. In Figure 4.3 the
relevant positions are 13-14. In such positions pi will be added to the search path of a
query point q that lies in t′i−1 in the DAG Gi as a bouncing node for this path, since
it is not contained in (ai−1, bi−1). On the other hand, it will not be added to the path
of q in the trapezoidal search tree Ti. In both positions qi is to the right of pi and
is, therefore, blocked by pi for query points that lie in t′i−1 and will not be added to
the search paths of such points. Using the induction hypothesis and since the only
new internal node in the search paths for q that does not appear in both paths is a
bouncing-node in Gi, then the statement holds for k = i as well.

• pi is located to the right of ti−1, that is, in region E. In Figure 4.3 the relevant position
is 15. pi will not be added to the search paths of a query point q that lies in t′i−1 both
in the DAG Gi and in the trapezoidal search tree Ti. qi is located to the right of pi
(also in region E) Since the statement held for k = i− 1, it holds for k = i as well.

We showed a bijection between the paths in the trapezoidal search tree T and the different
search paths in the DAG. Therefore, the expected number of leaves in T should be bounded
in order to bound the expected number of different search paths in the DAG.

Lemma 4.4. Let S be a set of n pairwise interior disjoint x-monotone curves inducing a
planar subdivision. The expected number of leaves in the trapezoidal search tree T, which is
constructed as the DAG but without merges, is O(n log n).

Proof. We would like to bound the expected number of leaves in T, namely, the expected
number of trapezoids in the decomposition without merges. We can symbolically shorten
every curve at its two endpoints by an arbitrarily small value, namely ε. In other words, if a
curve cvi has an x-range (a, b), then the shortened curve will have an x-range (a+ε, b−ε). The
curves of the updated subdivision are now completely disjoint. In addition, this operation
gave rise to new artificial trapezoids. Clearly, for any point p in such an artificial trapezoid,
we can decrease the value of ε such that p will not be covered by this trapezoid. Now we
would like to bound the number of trapezoids in the set of shortened curves. It is clearly
bounded by the number of vertical edges + 1. First, consider the vertical line W through
one endpoint of the ith inserted curve. W is intersected by n curves, in the worst-case. The
i− 1 already inserted curves partition W into i intervals. However, we are only interested in
the interval I containing the endpoint of the ith curve, as it will appear in the final structure.
Curves inserted after the ith curve may split I. The expected number of intersections in I
(including the endpoint of the ith curve) is O((n− i)/i). Summing up over all vertical walls
gives a total of expected O(n log n) intersections. Thus, the expected number of vertical
edges is O(n log n) as well, and, clearly, this is also the expected number of leaves in the
tree.
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By Lemma 4.4 the expected number of leaves of T, and thus of search paths, is O(n log n).
We verify that the length of each search path is at most c log n for some constant c > 0.
Therefore, the time complexity bound for this algorithm is expected O(n log2 n).

This is of course a trivial bound, since it is based on the argument that the algorithm
follows expected O(n log n) paths of at most logarithmic length each. However, due to its
recursive nature the algorithm does not treat every path separately. Thus, it might be
possible to achieve a better bound. Lemma 4.3 essentially argues that for a given query
point q its search path in the DAG is identical to its search path in the matching trapezoidal
search tree up to bouncing-nodes. When running this algorithm on the trapezoidal search
tree T the number of steps performed by the algorithm is equal to the number of edges in T,
namely: expected O(n log n) (since T is a full binary tree with expected O(n log n) leaves).
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Figure 4.4: The node representing p3 is a bouncing
node, and is due to a merge.

However, since we allow merges in order to re-
tain a linear-size structure, a search path may
include additional nodes, which are not part
of the matching search path in T. These addi-
tional nodes are exactly the bouncing-nodes
that may only appear in DAG paths. An ex-
ample for such a bouncing-node is given in
Figure 4.4. Hence, if we had a bound on the
number of occurring bouncing nodes, then a
better analysis which takes the recursive fash-
ion of the algorithm into account would be
available.

Another way to observe this is that sev-
eral edges of the matching trapezoidal search
tree T are split by additional nodes, i.e.,
bouncing nodes. Therefore, each edge of T
is split into several consecutive edges. A
possible work plan for showing an expected
O(n log n) bound on the runtime of the verification algorithm would be to show that each
original edge of T can be charged with a constant number of bouncing nodes. Moreover, each
bouncing node adds potential geometrically impossible DAG paths and having a bound on
the number of bouncing nodes may help understanding the expected value of the depth D
of the DAG.

4.3 An O(n log n) Verification Algorithm

Let T (Si) denote the trapezoidal map for the first i insertions. We will also use this notation
in order to identify the set of trapezoids of this map. We denote by T ∗ the collection of all the
trapezoids created during the construction of the DAG, including intermediate trapezoids
that are later killed by the insertion of later segments. More formally:

T ∗ =
n⋃
i=1

T (Si).
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Let A(T ∗) denote the arrangement of all trapezoids in T ∗. Notice that each face of the
arrangement can be covered by overlapping trapezoids. The depth of a point p in A(T ∗) is
defined as the number of trapezoids in T ∗ that cover p. The key to the improved algorithm
is the following observation by Har-Peled [25].

Observation 1. The length of a path in the DAG for a query point q is at most three times
the depth of q in A(T ∗).

It follows that we need to verify that the maximum depth of a point in A(T ∗) is c1 log n
for some constant c1 > 0. We remark that this depth is established in an interior of a face
of A(T ∗), since the longest path will always end in a leaf of the DAG, which represents a
trapezoid. Moreover, for any query point that falls on either a curve or an endpoint of the
initial subdivision the search path will end in an internal node of the DAG. If, on the other
hand, the query point q falls on a vertical edge of a trapezoid, the search path for q will be
identical to a path for a query point in a neighboring trapezoid. Therefore, we consider the
boundaries of the trapezoids as open.

Since the input curves are interior pairwise disjoint, according to the separation property
stemming from [24], one can define a total order on the curves. This order allows us to
apply a modified version (as described next in Subsection 4.3.1) of an algorithm by Alt and
Scharf [2], which originally detects the maximum depth in an arrangement of n axis-parallel
rectangles in O(n log n) time. Recall that we only apply this verification algorithm on DAGs
of linear size.

4.3.1 Computing the Depth of A(T ∗)

We would like to describe a linear space algorithm with O(n log n) runtime for computing
the depth of an arrangement of open trapezoids with the following properties: their bases
are y-axis parallel (vertical walls) and if the top or bottom curves of two different trapezoids
intersect not only in a joint endpoint then the two curves overlap completely in their joint x-
range. The depth of such an arrangement is the maximum number of trapezoids containing a
common point, that is, we are only interested in points located in faces of this arrangement.
In Subsection 4.3.1.1 we restate an algorithm by Alt & Scharf [2] such that the general
position assumption can be dropped. The restated algorithm is more general than what we
essentially need as it can handle rectangles with independently open or closed boundaries,
while we are only interested in open rectangles. Subsection 4.3.1.2 defines a reduction from
the collection of open trapezoids T ∗ to a collection R∗ of open axis-parallel rectangles such
that the maximum depth in A(R∗) is the same as the maximum depth in A(T ∗). Finally,
in Subsection 4.3.1.3 we describe a modification for the restated algorithm such that it can
compute the depth of an arrangement of all trapezoids created during the construction of
the DAG.
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4.3.1.1 An Algorithm for Computing the Depth of an Arrangement of Axis-
aligned Rectangles

The algorithm of Alt & Scharf [2] is an O(n log n) algorithm that computes the depth of
an arrangement of axis-aligned rectangles in general position, using O(n) space. We present
here a minor modification, which does not assume general position, i.e., rectangles may share
boundaries. Moreover, it can consider each of the four boundaries of a rectangle as either
belonging to the rectangle or not; we call these closed or open boundaries, respectively.

Given a finite set of rectangles, the set of all x-coordinates of the vertical sides of the
input rectangles is first sorted. Let x1, x2, ..., xm, m ≤ 2n be the sorted set of x-coordinates.
The ordered set of intervals I, is defined as follows; for i ∈ 1, 2, ...,m− 1, the 2(i− 1)th and
2(i− 1) + 1st intervals in the set I are [xi, xi] and (xi, xi+1), respectively. The last interval
is [xm, xm]. A balanced binary tree T is then constructed, holding all intervals in I in its
leaves, according to their order in I. An internal node represents the union of the intervals
of its two children, which is a contiguous interval. In addition, each internal node v stores
in a variable v.x the x-value of the merge point between the intervals of its two children.
Since we extended the algorithm to support both open or closed boundaries, internal nodes
also maintain a flag indicating whether the merge point is to the left or to the right of the
x-value.

According to the description of the algorithm in [2], a sweep is performed using a hori-
zontal line from y =∞ to y = −∞. The sweep-line events occur when a rectangle starts or
ends, i.e., when top or bottom boundary of a rectangle is reached. Since the rectangles are
not in general position, several events may share the same y-coordinate. In such a case, the
order of event processing in each y-coordinate is as follows:

1. Closing rectangle with open bottom boundary events.

2. Opening rectangle with closed top boundary events.

3. Closing rectangle with closed bottom boundary events.

4. Opening rectangle with open top boundary events.

The order of event processing within each of these four groups in a specific y-coordinate is
not important.

The basic idea of the algorithm is that each sweep event updates the leaves of the tree T
that span the intervals that are covered by the event. Therefore, each leaf holds a counter
c for the number of covering rectangles in the current position of the horizontal sweep line.
In addition, each leaf maintains in a variable cm the maximal number of covering rectangles
for this leaf seen so far. Clearly, the maximal coverage of an interval is the maximal cm of
all leaves. The problem with this näıve approach is that one such update can already take
O(n) time. Therefore, the key idea of [2] is that when updating an event of a rectangle
whose x-range is (a, b), one should follow only two paths; the path to a and the path to b.
The nodes on the path should hold the information of how to update the interval spanned
by their children. In the end of the update the union of intervals spanned by the updated
nodes (internal nodes and only 2 leaves) is (a, b).
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In order to hold the information in the internal nodes each internal node should maintain
the following variables:

l A counter storing the difference between the number of rectangles that were opened
and that were closed since the last traversal of the left child of v and that cover the
interval spanned by that child.

r A counter storing the difference between the number of rectangles that were opened
and that were closed since the last traversal of the right child of v and that cover the
interval spanned by that child.

lm A counter storing the maximum value of l since the last traversal of that child.

rm A counter storing the maximum value of r since the last traversal of that child.

A leaf, on the other hand, holds two variables:

c The coverage of the associated interval during the sweep at the point the leaf was
traversed for the last time.

cm The maximum coverage of the associated interval during the sweep from the start until
the leaf was traversed for the last time.

In relation to these values we define the following functions:

t(v) =


u.l + t(u) if v is the left child of u
u.r + t(u) if v is the right child of u
0 if v is the root

,

tm(v) =


max(u.lm, u.l + tm(u)) if v is the left child of u
max(u.rm, u.r + tm(u)) if v is the right child of u
0 if v is the root

.

At any point of the sweep the following two invariants hold for every leaf ` and its associated
interval I:

• The current coverage of I is: `.c+ t(`).

• The maximum coverage of I that was seen so far is: max(`.cm, `.c+ tm(`)).

Updating the structure with an event is done as follows: Let I be the x-interval spanned by
the processed rectangle creating the event. Depending on whether the rectangle starts or
ends, we set a variable d = 1 or d = −1, respectively. We follow the two search paths to the
leftmost leaf and the rightmost leaf that are covered by I. In the beginning the two paths
are joined until they split, for every node w on this path (including the split node) we can
ignore d and simply update the tuple (w.l, w.r, w.lm, w.rm) using t(w) and tm(w) according
to the invariants stated above. Note that this process needs to clear the corresponding
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values in the parent node as otherwise the invariants would be violated.1 After the split
the paths are processed separately. We discuss here the left path, the behavior for the right
path is symmetric. Let v be a node on the left path. As long as v is not a leaf we update
(v.l, v.r, v.lm, v.rm) as usual. However, if the path continues to the left we also have to
incorporate d into v.r and v.rm as the subtree to the right is covered by I. If v is a leaf we
simply update v.c and v.cm using t(v), tm(v) and d. A more detailed description (including
pseudo code) can be found in [2]. In total, this process takes O(log n) time.

Finally, in order to find the maximal number of rectangles covering an interval one last
propagation from root to leaves is needed, such that all l, r, lm, rm values of internal nodes
are cleared. This is done using one traversal on T . Now, the maximal number of rectangles
covering an interval is the maximal cm of all leaves of T .

Clearly, the running time of the algorithm is O(n log n), since constructing the tree and
sorting the y-events takes O(n log n) time. Updating each of the 2n y-events takes O(log n)
time, and the final propagation of values to the leaves takes O(n) time. The algorithm uses
O(n) space.

We remark that the above algorithm is not optimal in memory usage in practice. A more
efficient variant which stores less variables in the nodes of the tree can be easily implemented.

4.3.1.2 A Depth Preserving Reduction

Let T c be a collection of open trapezoids with y-axis parallel bases with the following prop-
erty: if the top or bottom curves of two different trapezoids intersect not only in joint
endpoints then the two curves overlap completely in their joint x-range. Let A(T c) denote
the arrangement of the trapezoids in T c. Notice that each arrangement face can be covered
by overlapping trapezoids. We describe a reduction from T c to Rc, where Rc is a collection
of axis-parallel rectangles, such that the maximum depth in A(Rc) equals to the maximum
depth in A(T c).

In order to define the reduction we need to have a total order < on the non-vertical
curves of the trapezoids in T c, such that one can translate the curves one by one accord-
ing to this order to y = −∞ without hitting other curves that have not been moved yet.
Guibas & Yao [24] defined an acyclic relation ≺ on a set C of n interior disjoint x-monotone
curves as follows:

Definition 4.5. For two such curves cvi, cvj ∈ C, let the open interval (a, b) be the x-range
of cvi and the open interval (c, d) be the x-range of cvj.
If x-range(cvi)

⋂
x-range(cvj) 6= ∅ then:

cvi ≺ cvj ⇔ cvi(x) < cvj(x) for some x ∈ x-range(cvi)
⋂
x-range(cvj).

As a matter of fact, their definition is more specific, in a way that the relation cvi ≺ cvj
exists only if cvi is the first curve encountered by cvj in their joint x-range while translating
cvj to y = −∞. In [24] it is also mentioned that ≺+, which is the transitive closure of ≺, is
a partial order (as it allows transitivity). This partial order ≺+ can be extended to a total
order < in many ways. One possible extension is defined as follows:

1Notice that using t(w) and tm(w) here takes constant time since we only need to access the parent node
as all previous nodes on the path towards the root are already processed.
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Definition 4.6. Let C be a set of interior disjoint x-monotone curves. For two curves
cvi, cvj ∈ C, let the open interval (a, b) be the x-range of cvi and the open interval (c, d) be
the x-range of cvj.
The total order < on C is defined as follows:
cvi < cvj ⇔ (cvi ≺+ cvj) or (¬(cvj ≺+ cvi) and (cvi left cvj))

where (cvi left cvj) is true if the x-value of the left endpoint of cvi is less than the x-value of
the left endpoint of cvj.

Clearly, if cvi ≺+ cvj is true then cvi < cvj is true as well. If for two different curves
cvi, cvj the expression cvj ≺+ cvi is true then obviously cvi ≺+ cvj is false and also the right
expression in the “or” phrase is false, since ¬(cvj ≺+ cvi) is false. Therefore, cvi < cvj is also
false. If the partial order ≺+ does not say anything about cvi and cvj then both (cvi ≺+ cvj)
and (cvj ≺+ cvi) are false. Thus, cvi < cvj will be true only if (cvi left cvj) is true.

Ottmann & Widmayer [34] presented a one-pass O(n log n) time algorithm for computing
<, as in Definition 4.6, using linear space. Their algorithm performs a sweep using a hori-
zontal line from bottom to top which stops at each endpoint of a curve. The data structure
maintained by the algorithm represents the curves encountered so far in reverse order. When
a bottom endpoint of a curve is met, the correct position is chosen and the curve is inserted
into an auxiliary structure holding the active curves only. A curve is removed from the
auxiliary structure when its top endpoint is met by the sweep line. Since we would like to
translate the curves to y = −∞, then we should only require the curves to be x-monotone.
In addition, we can require the curves to be interior disjoint, rather than completely disjoint.

Definition 4.7. Let Rank: C → {1, ..., n} denote a function returning the rank of a given
x-monotone curve cv ∈ C when sorting C according to the total order <.

Definition 4.8. We define a reduction from T c to Rc as follows; Every trapezoid t ∈ T c
is reduced to a rectangle r ∈ Rc, such that:

• t and r have the same x-range,
i.e., (left(t) = left(r)) and (right(t) = right(r)), where left and right denote the left
x-value and the right x-value of t (or r), respectively.

• top(r) and bottom(r) lie on y =Rank(top(t)) and y =Rank(bottom(t)), respectively.

Definition 4.8 actually defines a mapping from T c to Rc, such that r is the corresponding
rectangular region to t. We will now show that this mapping is bijective. One can partition
the plane into vertical slabs by passing a vertical line through every endpoint of the subdi-
vision, and then partition each slab into regions by intersecting it with all possible curves
in the subdivision. This defines a decomposition of the plane into at most 2(n+ 1)2 regions
(see [14], for example).

Lemma 4.9. Let Regions(arr) denote the collection of regions of an arrangement arr, as
defined above. For any region at ∈ Regions(A(T c)) let ar ∈ Regions(A(Rc)) be the cor-
responding rectangular region to at. The collection Regions(A(Rc)) of all such rectangular
regions spans the plane.
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Proof. Trivial. The slabs remain the same and within each slab the rectangular regions
remain adjacent.

Lemma 4.10. Let at ∈ Regions(A(T c)) be a region and let ar ∈ Regions(A(Rc)) be the
corresponding rectangular region to at. The number of rectangles in Rc that cover ar is at
least the number of trapezoids in T c that cover at. In other words, for every t ∈ T c that
covers at its corresponding rectangle r ∈ Rc covers ar.

Proof. Let {t1, t2, ..., tm} ⊆ T c be the set of trapezoids, ordered by creation time, such that
for every i ∈ {1, ...,m}, ti covers at. Let {r1, r2, ..., rm} ⊆ Rc be the set of corresponding
rectangles, such that ri corresponds to ti for i ∈ {1, ...,m}. For any ti, since ti covers at we
get that x-range(at) ⊆ x-range(ti). By Definition 4.8 the x-ranges remain the same after the
reduction, and therefore x-range(ar) ⊆ x-range(ri). Since ti covers at then we also get that
in the shared x-range top(ti) is above or on top(at) and bottom(ti) is below or on bottom(at).
According to Definition 4.8, it immediately follows that Rank(top(ti)) ≥ Rank(top(at)). In
other words, top(ri) is above or on top(ar). Similarly, bottom(ri) is below or on bottom(ar).
We conclude that ri covers ar.

Lemma 4.11. Let ar ∈ Regions(A(Rc)) be a rectangular region, whose corresponding region
is at ∈ Regions(A(T c)). The number of trapezoids in T c that cover at is at least the number
of rectangles in Rc that cover ar. In other words, for every r ∈ Rc that covers ar its
corresponding trapezoid t ∈ T c covers at.

Proof. Let {r1, r2, ..., rm} ⊆ Rc be the set of rectangles, such that for every i ∈ {1, ...,m},
ri covers ar. Let {t1, t2, ..., tm} ⊆ T c be the set of corresponding trapezoids, such that ti
corresponds to ri for i ∈ {1, ...,m}. Proving that for any i ∈ {1, ...,m}, ti covers at, is done
symmetrically to the proof of Lemma 4.10.

Combining Lemma 4.10 and Lemma 4.11 we conclude that the number of trapezoids in
T c that cover a region at equals to the number of rectangles in Rc that cover ar, which is
the corresponding region to at. The covering rectangles are the reduced trapezoids in the set
of trapezoids covering at. Since both Regions(A(T c)) and Regions(A(Rc)) span the plane
(Lemma 4.9), we get the following theorem.

Theorem 4.12. Let T c be a collection of open trapezoids with the following properties:
their bases are y-axis parallel (vertical walls) and if the top or bottom curves of two different
trapezoids intersect not only in joint endpoints then the two curves overlap completely in
their joint x-range. Let A(T c) denote the arrangement of the trapezoids in T c. Notice that
each arrangement face can be covered by overlapping trapezoids. T c can be reduced to a
collection of open axis-parallel rectangles Rc, such that the maximum depth in A(Rc) equals
to the maximum depth in A(T c).

4.3.1.3 Modification of Alt & Scharf

Based on the correctness of the reduction described in Subsection 4.3.1.2 we can extend
the basic algorithm presented in Subsection 4.3.1.1 to support not only collections of axis-
aligned rectangles but also collections of open trapezoids with y-axis parallel bases and non-
intersecting top and bottom boundaries, if they intersect not only in joint endpoints then
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they overlap completely in their joint x-range. The only part of the basic algorithm that
should change is the top-to-bottom sweep. More precisely, the simple predicate that is used
for sorting the y-events should be replaced with a new predicate that compares according to
the reverse order of <, as given in Definition 4.6. The new predicate can be obtained in a
preprocessing stage for computing the total order < using the algorithm in [34].

Notice that for simplicity we assumed that no two distinct endpoints in the original sub-
division have the same x-value. However, if this is not the case, lexicographical comparison
can be used on the endpoints of the curves in order to define the order of the induced vertical
walls.

4.4 Summary

The two algorithms described in Section 4.2 and Section 4.3 can be used for defining efficient
construction algorithms for static settings, according to the scheme detailed in Section 4.1.

Using the verification algorithm from Section 4.2, a construction algorithm with expected
O(n log2 n) runtime is obtained. However, an asymptotically better construction algorithm
can be generated using the deterministic O(n log n) verification algorithm described in Sec-
tion 4.3, implying the following theorem.

Theorem 4.13. Let S be a set of n pairwise interior disjoint x-monotone curves inducing a
planar subdivision. A point location data structure for S, which has O(n) size and O(log n)
query time in the worst case, can be built in O(n log n) expected time.



5
Revamp of the Cgal Trapezoidal-Map RIC

for Planar Point-Location

In this chapter we present our revamp of Cgal’s implementation of planar point location via
the randomized incremental construction of the trapezoidal map. The new implementation
is based on the previous code by Oren Nechushtan and is available as of Cgal release 4.1.
In Section 5.1 we describe Cgal and its basic principals. Section 5.2 includes the neces-
sary background regarding the Arrangement class required to understand how point location
strategies for arrangements work in general. The implementation details of the class Arr -

trapezoid ric point location are discussed in Section 5.3. We assume here some familiar-
ity of the reader with the C++ programming language and with the generic programming
paradigm [7].

5.1 Cgal and Arrangements

Cgal, the Computational Geometry Algorithms Library, is a C++ library incorporating
generic and robust implementations for many geometric algorithms and data structures.
Cgal was launched in 1996 as a result of a collaboration between several research institutes
in Europe and in Israel. It has continued evolving since, and by now contains the state-
of-the-art implementations of computational geometry software in many areas. Among the
algorithms and data structures provided by Cgal are: convex hull algorithms, Delaunay
triangulations, Voronoi diagrams, arrangements of curves, and search structures [41, 48].
Cgal is used in various fields in industry and academia, such as computer graphics, computer
aided design (CAD), scientific visualization, bioinformatics, motion planning, and more.

Two difficulties that usually appear when implementing computational geometry algo-
rithms are providing a robust and a general implementation. Many computational geometry

39
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algorithms are formulated assuming the “real RAM” computational model [36]. This model
assumes that operations on real numbers yield accurate results and that any basic numer-
ical operation takes constant time. Obviously, in practical applications these assumptions
must be dropped, since numerical inaccuracies are inevitable while using standard computer
arithmetic. Such inaccuracies may result in rounding errors leading to inconsistency in the
results of topological predicates forming instable geometric algorithms [28]. One could use
exact operations on real numbers in order to avoid numerical errors. Such operations, how-
ever, require more than constant time. For example, rational and algebraic numbers require
additional arithmetic operations and more than constant time per operation. The second
problematic issue is that many computational geometry algorithms do not handle degener-
ate cases. They assume that the given input is in general position, i.e., special inputs are
discarded. For example, under the general position assumption, three lines do intersect at
a single point and no three points lie on the same line. In real life these degenerate cases
often occur. Therefore, discarding such inputs creates a considerable gap between theory
and practice.

In addition, in order to allow flexibility in the design and programming of algorithms,
Cgal follows the generic programming paradigm [7]. In the generic programming paradigm
the description of algorithms abstracts from the concrete types and leaves them unspecified.
It allows writing dynamic and general code that is not type-specific (using abstract types),
at the expense of code tangibility. The concrete types are provided as parameters when the
algorithm is instantiated. The specific types used to instantiate the algorithms (referred to
as models) should follow the collections of requirements and predefined behaviors (referred
to as concepts). Generic programming in C++ is obtained by templates. A code that uses
templates has an improved running time comparing to a similar polymorphic object oriented
code, since it performs static computations instead of dynamic ones. Moreover, such a code
has maximal flexibility.

Cgal is composed of packages, where each package contains an efficient implementation
of either a family of algorithms or a geometric data structure. Cgal packages are ascribed
to three types of layers, each layer uses the layer beneath it. The geometric algorithms
and geometric data structures define the topmost layer. They operate on geometric objects
such as points or curves and use them in geometric predicates. The objects and predicates
are grouped in “Kernels”, producing the next layer. The bottom layer is the “Support
Library” of Cgal consisting of fundamental utilities that are used throughout Cgal, such
as extensions for the STL [52], and BOOST [47] libraries. Classes that represent special
number types and operations on numbers of these types are also included in Cgal’s support
library. These number types are used as parameters to the kernel classes. A specific kernel
can be instantiated with machine provided numbers (such as int or double) or with exact
or multi-precision number types based on packages like GMP [50], Core [49], or LEDA [51].
Both the algorithm and the handled input determine which number types and kernels are
appropriate providing a trade-off between efficiency and accuracy. An interesting case is
when a kernel uses Lazy exact computations. In such a case a predicate would first try to use
a floating-point evaluation, and will resort to an exact evaluation only if the floating-point
evaluation could not give a clear result [13].

Cgal achieves genericity and flexibility by using traits classes. A certain traits class
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encapsulates all data types and operations needed by a certain algorithm and is passed as
an additional template parameter to the algorithm. This structure decouples the implemen-
tation of the algorithms contained in the packages from the specific geometric computation.

In Cgal planar subdivisions are referred to as arrangements, represented by the “2D
Arrangements” package. The package supports the construction of 2D arrangements and
various operations on them. The main class of the “2D Arrangements” package is the
Arrangement 2 class, supporting operations on planar arrangements of arbitrary bounded or
unbounded curves [20, 21, 43]. An additional class, namely the Arrangement on surface 2

class, which is the parent class from which the Arrangement 2 class is derived, supports
in addition arrangements embedded on certain two-dimensional orientable parametric sur-
faces [10]. The set of operations supported by the package includes constructing an arrange-
ment, traversing an arrangement, performing point-location queries on an arrangement, and
overlaying two arrangements.

The Arrangement 2 class should be instantiated with the following two template classes:
a geometry traits class and a topology traits class. The geometry traits class provides the
geometric functionality. In other words it is responsible for defining the associated geometric
types for the specific family of curves, i.e., points, curves, and x-monotone curves, and also
includes the geometric operations and predicates required for these types, e.g., construction,
computing the intersection of two given curves, or determining whether a point lies below or
above a given curve. The traits class defines function objects (also referred to as “functors”),
which often use an underlying kernel class. The topology traits class controls the topological
representation of the arrangement. In other words, the topology traits class maintains the
relations between the arrangement’s cells (faces, edges, and vertices) and their neighboring
cells while taking the embedding surface into account.

The “2D Arrangements” package provides various algorithms that operate on arrange-
ments of different kinds. Such algorithms are the sweep line algorithm, several traversal
algorithms and different point location algorithms. The next section describes the point
location methods that are available when using Cgal arrangements.

5.2 Point Location in Cgal Arrangements

Cgal arrangements support point location algorithms for queries on an arrangement. Since
the arrangement representation is separated from the different algorithms, it does not sup-
port the point location algorithm directly. In addition, often changes in the arrangement
should notify data structures that are associated to this arrangement. For example, if an
auxiliary structure is maintained by the algorithm then a change in the arrangement, e.g.,
a curve is inserted causing faces to split, should be followed by an update in the struc-
ture. Therefore, a notification mechanism was introduced in order to receive notifications
about the occurring changes in the underlying arrangement. This mechanism is described in
Subsection 5.2.1. The different point location algorithms for Cgal arrangements are later
detailed in Subsection 5.2.2.
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5.2.1 The Notification Mechanism

The notification mechanism offered by the arrangement package is based on observers [23].
Observers can be attached to an arrangement and as soon as certain structural changes occur
in the arrangement these observers are notified. Any defined observer should inherit from
the Arr_observer<Arrangement> base class. The base observer class includes a pointer for
storing the observed arrangement. In addition, the base class includes a set of empty virtual
notification methods, notifying before and after different possible structural changes. Each
observer can decide which of these methods to implement in order to be notified before or
after certain changes occur in the arrangement.

The notification methods can be grouped in three different categories, according to the
type of the structural changes notified by the method. The first type of methods notifies
about global changes in the arrangement, such as clearing the arrangement or assigning it
with the content of a different arrangement. The second type notifies about local changes
in the arrangement, such as creating a new edge, removing an edge, removing a vertex, and
others. The last type notifies about global changes that are initiated by a global function
such as aggregate insert. An auxiliary search structure, if needed, is efficiently constructed
during such a change, and therefore no point location queries are allowed as long as the
operation is not completed.

An arrangement is familiar with the list of observers observing it. Before either a global
change (initiated by an arrangement method) or a local change takes place, the arrangement
invokes the relevant before-methods of the observers in the list. After the event is completed
the arrangement traverses the list in a reverse order, invoking the relevant after-methods.
Global functions, such as aggregated insert, may also trigger notifications.

5.2.2 Point Location Strategies

The arrangement package does not support point location directly. Instead, it allows classes
that are models of the ArrangementPointLocation concept to answer point location queries.
In other words, any point location strategy used by Cgal arrangements must be a model
of this concept, and as a consequence must include several predefined methods. A core
method that should be defined is the locate() function that given a query point as an input
returns the arrangement cell containing this point as a CGAL:Object (either a Face_handle,
a Halfedge_handle, or a Vertex_handle).

The arrangement package includes the following point location strategies. All five classes
are models of the concept ArrangementPointLocation.

• Arr_naive_point_location performs a näıve search by comparing the query point to
all arrangements cells. It operates directly on the arrangement.

• Arr_walk_along_a_line_point_location starts at the unbounded face and continues
towards the query point along a vertical ray emanating from it, until it locates the
arrangement cell containing the query point. It operates directly on the arrangement.
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• Arr_landmarks_point_location finds the nearest point from a set of predefined
points (landmarks) and performs a walk from this landmark to the query point. There
are various ways to generate the landmark set in the arrangement. By default, the
arrangement vertices are the selected landmarks, but one may use other landmark
generators that sample random points or choose points on a grid. It uses the notifica-
tion mechanism since it requires an auxiliary data structure.

• Arr_trapezoid_ric_point_location implements the trapezoidal map random incre-
mental construction for point location algorithm. It uses the notification mechanism
since it requires an auxiliary data structure.

5.3 The Arr trapezoid ric point location Class

The main class of the trapezoidal map random incremental construction for point loca-
tion strategy is the Arr trapezoid ric point location<Arrangement> class. As all other
point location strategies, it is templated by the Arrangement parameter, representing the
arrangement type. The Arr trapezoid ric point location class inherits from the class
Arr_observer<Arrangement>, and implements (overloads) notification methods for various
events. The following events are the only events affecting the Arr trapezoid ric point -

location class:

• Before and after assigning the arrangement with the content of another arrangement.

• Before and after clearing the contents of the arrangement.

• Before and after the observer is attached to the arrangement instance.

• Before detaching the observer from the arrangement instance.

• Before and after an edge is split into two edges.

• Before and after two edges are merged to form a single edge.

• After a new edge has been created.

• Before an edge is removed from the arrangement.

Being a model of the concept ArrangementPointLocation it includes a member function
Object locate(Point_2 q), which implements the search using the trapezoidal RIC point
location algorithm. It uses a private class which maintains the search structure and the
search algorithm.

5.3.1 Representing the DAG

The underlying data structure used by the point location algorithm is a directed acyclic
graph (DAG), every node of which has at most two children. The DAG is accessed through
a pointer to its root. A DAG node is represented by the class Td_dag_node. Each DAG
node is associated with a trapezoidal map item and in order to reduce memory usage it is
reference counted. Therefore, the class Td_dag_node derives from Handle [16].
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As the previous implementation, our new code can be easily applied to linear geometry
but also to non-linear geometry such as algebraic curves or Bézier curves. This is possible
since we follow the generic programming paradigm. However, supporting unbounded curves,
as it was introduced for the “2D Arrangements” package in [10], was the main new feature
that encouraged us to revise the code. In order to support unbounded curves an endpoint of
a curve is represented by Curve_end, i.e., a reference of the original X_monotone_curve_2
object and a flag indicating whether this is the minimal or maximal end of the curve. In
addition, special predicates are used in order to compare a Curve_end and other geometric
entities. The previous implementation, on the other hand, used the Point_2 class for keeping
the endpoint data which required every vertex to have an underlying Point_2 object.

In the previous implementation all different types of map items were represented using a
single class containing a set of fields. The major disadvantage in such a representation is that
not all types of map items need to use the whole set of fields. In other words, certain types
may hold spurious fields. This became even more relevant due to the additional support
of unbounded curves, since endpoints are no longer represented using Point_2 but using
Curve_end, as described above. The chosen alternative is to define a dedicated class for
every type, storing its required data only.

The eight different types of trapezoidal map items are detailed in Table 5.1, all derive
from the Handle class. Types can be either active or inactive, that is, representing either an
existing map item or an item that was already destroyed due to the insertion of later curves,
respectively. There are two different types that represent an endpoint in the trapezoidal
map: Td_active_vertex and Td_active_fictitious_vertex. This is due to the fact that
there are two types of curve endpoints in an arrangement: an interior point and a fictitious
point on the parameter space boundary. Similarly, there are two different types representing
an inactive endpoint.

This separation clearly complicates other operations that were accessible using a single
method in the old class and should now be available to the whole set of item classes. We
wish that the set of item classes will behave as polymorphic classes, while avoiding additional
class hierarchies and virtual methods. Therefore, we use the boost::variant class template.
This class template offers a way for manipulating objects from a heterogeneous set of types
in a uniform manner. It allows both a dynamic value retrieval (checked at run-time) and a
type-safe value visitation, which is checked at compile-time. Thus, whenever a reference to
a trapezoidal map item is needed, the boost::variant is used instead. For instance, it was
already mentioned that the Td_dag_node class encapsulates a reference to the trapezoidal
map item. In other words Td_dag_node class has a data member of type boost::variant

templated by all the possible types for an item.

An additional data member that is contained by every object of the types mentioned in
Table 5.1 is a pointer to the DAG node. The DAG node pointer allows constant time access
from the map item to the correct position in the search structure.

It should be noted that in order to keep the memory consumption low all item classes
avoid copying redundant data and store handled data whenever it is possible. Moreover, the
data structure now operates directly on the entities of the arrangement. In particular, it
avoids copying of geometric data, which can significantly reduce the amount of additional
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memory that is used by the search structure. This is important, since due to the generic
nature of the code it is not clear whether the geometric types, which are provided by the
user, are referenced.

5.3.2 User Interface

In the following subsection the user interface of the Arr trapezoid ric point location class
is described.

The Arr trapezoid ric point location class has two possible constructors.

• Arr_trapezoid_ric_point_location<Arrangement> pl ( bool with_guarantees =

true);

• Arr_trapezoid_ric_point_location<Arrangement> pl ( Arrangement arr, bool

with_guarantees = true);

The first method constructs an Arr trapezoid ric point location object but does not at-
tach it to an arrangement instance. Therefore, the auxiliary search structure (DAG) re-
mains empty until an arrangement is attached. The second method receives an arrange-
ment instance to which the point location strategy is attached. After the object is ini-
tialized, the collection of all arrangement edges is processed and a random permutation is
inserted into the DAG. Both constructor methods have an optional parameter, namely bool

with_guarantees, whose default value is true. When with_guarantees is set to true, the
construction performs rebuilds in order to guarantee a resulting structure with linear size
and logarithmic query time. This is done by constantly verifying that the size is at most
linear and that the depth D of the DAG is at most logarithmic. We can maintain both
values, as described in Chapter 3, such that they are accessible in constant time. If, on
the other hand, the with_guarantees parameter is set to false, no rebuilds will occur and
therefore the structure will have expected linear size and expected logarithmic query time.
In both cases the expected construction time (for static settings) would be O(n log n). When
with_guarantees is set to true then we believe this bound still holds (see Conjecture in
Section 3.2), but this still remain to be proven.

Since the class is a concept of the model ArrangementPointLocation it includes attach

and detach methods. The former attaches the point location strategy to a given arrangement
object and the latter detaches the strategy from the arrangement it is currently attached
to. After attaching the arrangement object, the auxiliary search structure is constructed
according to the current arrangement edges. The search structure is cleared before detaching
the arrangement. Thus, in order to rebuild the structure, the user should call detach and
attach with the same arrangement object as an argument.

The user interface includes a modifier for the with_guarantees parameter. The method
receives a boolean value and when set to true, the structure may be reconstructed in order
to guarantee linear size and logarithmic query time. Three other available methods are
depth(), longest_query_path(), and size() returning the maximal depth, the length
of the longest query path in the DAG, and the DAG size, respectively, according to the
definitions provided in Chapter 3.



5.3. The Arr trapezoid ric point location Class 47

Table 5.2: Comparing the memory usage in the previous and the new implementation
# Generated Segments # Arrangement Edges Memory Usage (in MB)

Old Imp New Imp
32 342 1.121 1.128
64 884 0.812 0.761
128 3798 3.382 3.375
256 17206 15.461 15.457
512 67212 60.059 60.086
1024 229652 206.109 206.047
2048 1001474 903.422 903.414

5.3.3 Memory Benchmarks

Since unbounded curves are supported as well, making the representation of an endpoint more
complex, one may expect an increase in the memory consumption. We use the combination
of the Arrangement_2::Halfedge_const_handle and a bit indicating whether this is the
lexicographically minimal or maximal endpoint of the underlying curve, in order to avoid
such an increase. This new design avoids copying of non-referenced geometric data, and
accesses the curve through the halfedge object in the arrangement.

Another design decision for maintaining the memory usage as compact as possible in the
extended implementation was the separation for different types of map items described in
Subsection 5.3.1.

Table 5.2 shows that the new implementation, which is now able to support a much
broader range of subdivisions, uses the same amount of memory compared to the previous
implementation. This is thanks to the new design that uses boost::variant and avoids
keeping redundant data. The table displays the memory usage (MB) for arrangements of
increasing size both in the old implementation and in the new one. The input arrangements
were generated using an increasing number of random segments. It should be noted that
the geometric data (i.e., curves) was reference counted in all experiments of both the old
and the new implementation. This implies that the space used for storing the geometry in
a test with the old implementation was similar to the one in the same test with the new
implementation.

5.3.4 Comparison to the Landmarks Point Location

We emphasize that the new implementation of the trapezoidal-map random incremental
construction for point location (RIC) performs better than all other point location methods
available for Cgal arrangements.

Figure 5.1 displays the difference in the total query time in different arrangements of
random segments using the RIC vs. the Landmarks (LM) point location. The landmarks
generator in this experiment created landmarks on a d

√
V e×d

√
V e grid (V is the number of

vertices in the arrangement). In [26] it is shown that for subdivisions of random segments the
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Figure 5.1: Comparing the total query time for 50k queries in random subdivision of a varying size
using both the Cgal Landmarks and the RIC point location methods.

LM using the grid generator performs better than other point location methods implemented
in Cgal, other than the RIC. As expected, the new RIC implementation outperforms the
LM. Obviously, the RIC query time is logarithmic. The slight improvement of the query
time of the LM can be explained by the fact that, at some point, while the number of input
segments increases the average complexity of a face decreases, an effect similar to the one
studied in [1].



6
Planar Nearest-Neighbor Search

Birn et al. [12] presented a structure for planar nearest-neighbor queries, based on Delaunay
triangulations, named Full Delaunay Hierarchies (FDH). The FDH is a very simple and thus
light data structure that is also very easy to construct. It outperforms many other methods in
several scenarios, but it does not have a worst-case optimal behavior. However, Birn et al. [12]
claim that methods that are optimal in the worst-case are too cumbersome to implement
and thus not available. In particular, it was mentioned that guaranteed logarithmic nearest-
neighbor search can be achieved via efficient point location on top of the Voronoi diagram
of the input points, but that this approach “does not seem to be used in practice”. We got
challenged by this claim.

This chapter emphasizes that such an approach is practically available. The definition
of the nearest neighbor search problem is given in Section 6.1 along with some background.
Section 6.2 and Section 6.3 discuss the nearest-neighbor search via Voronoi diagrams and via
FDH, respectively. The main advantage indicated by our experiments, detailed in Section 6.4,
is that using the RIC planar point location the query times are stable and independent of
the actual scenario.

6.1 Definition and Background

The nearest-neighbor search problem is a fundamental problem in computer science, which
has been extensively studied throughout the years. It concerns a wide range of domains,
such as machine learning, geometric inference and others.

The problem is defined as follows: given a set P of n points in d-dimensional space,
preprocess P into a data structure, which can efficiently report the point p ∈ P that is
closest to a given query point q, i.e., has minimal distance to q using a given distance function.
This chapter focuses on two-dimensional problems, that is, planar nearest-neighbor search
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problems, with Euclidean distance.

Obviously, preprocessing the points into a data structure consumes time. However, it
allows a more efficient query time than with the brute-force algorithm that compares a
query point to all points in P . Such approaches that do create a data structure in the
preprocessing stage usually fit better to applications that require answering a large number
of queries on the same set of input points.

Some approaches [6] show a significant acceleration in query time, by allowing a relatively
small error in the search. In other words, such methods can return a point that may not be
the nearest neighbor, but is not significantly further away from the query point than the true
nearest neighbor. These methods are known as Approximate nearest-neighbor methods, as
opposed to exact nearest-neighbor methods.

The following chapter compares only exact nearest-neighbor methods and not approx-
imation methods, even though the exact version is computationally very hard. Both the
FDH, described in Section 6.3, and the Voronoi-based nearest-neighbor method, described
in Section 6.2, are exact methods. The two methods were compared to the kd-tree [9, 22],
which is another exact method. The kd-tree is a data structure based on a recursive subdi-
vision of the plane into disjoint cells which are rectangular regions. Each node in the kd-tree
represents a region and holds the set of input points contained in this region. As soon as
the number of points in a specific region exceeds some small predefined value, the region is
split into two by an axis-orthogonal hyper-plane intersecting the region. Constructing the
kd-tree takes O(n log n) time and requires O(n) space. Query time is logarithmic when the
input points are well distributed in the plane [8].

Another nearest-neighbor method that was compared is the Delaunay hierarchy [15].
Here a hierarchy of k triangulations is constructed, such that all points are contained in
the triangulation of the first level, and random trials for each point decide at which level it
will no longer be contained. In addition, the structure contains links between triangles in
different levels and between neighboring triangles in the same level. The expected complexity
of construction of the Delaunay hierarchy is O(n log n). A query may take O(n) time in the
worst case.

6.2 Nearest Neighbor Search via Voronoi Diagram

Suppose we are given a set P of n points which we wish to preprocess for efficient nearest-
neighbor queries. We first create a Delaunay triangulation for the points in P in expected
O(n log n) time using Cgal’s “2D Delaunay triangulation” implementation [46]. The Vo-
ronoi diagram is then obtained by dualizing the constructed Delaunay triangulation. The
arrangement representing the Voronoi diagram has at most 3n − 6 edges, and can be con-
structed in O(n log n) time using a plane sweep. However, taking advantage of the spatial
coherence of the edges, we use a more efficient method that directly inserts the Voronoi
diagram edges while crawling over the Delaunay triangulation. We start from an arbitrary
triangle in the Delaunay triangulation and insert the Voronoi edges, which are dual to the
triangle edges. The algorithm continues processing the neighboring triangles in a Breadth
First Search (BFS) fashion. The “2D Arrangements” package [42] is used with linear geom-
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etry traits and unbounded planar topology traits in order to represent this arrangement of
the Voronoi diagram.

The resulting arrangement is then further processed by our RIC implementation for point
location, as described in Chapter 5. As was already mentioned, our implementation verifies
the DAG depth D on-the-fly. Therefore, if Conjecture 3.2 is true then this takes expected
O(n log n) time. Alternatively, it would have been possible to implement the solution pre-
sented in Section 4.3, for which we can prove an expected O(n log n) preprocessing time.

6.3 Nearest Neighbor Search via FDH

The Full Delaunay Hierarchies (FDH) structure, presented in [12], is based on the fact
that one can find the nearest neighbor by performing a greedy walk on the edges of the
Delaunay triangulation. The difference is that the FDH keeps all edges that appear during
the randomized construction [3] of the Delaunay triangulation in a flattened n-level hierarchy
structure, where level i contains the Delaunay triangulation of the first i points. In other
words, the input points are processed in a random order such that for each point the Delaunay
triangulation of the points processed so far is constructed and added to the data structure
representing the hierarchy. The search for the nearest-neighbor of a query point q starts
from the vertex representing the first processed point (the point with index 1). Then, at
each vertex v continues to the neighboring vertex u which is closest to q of all adjacent
vertices with larger index than v (the edges from v reaching these vertices are referred to
as downward edges). The basic idea when using such an hierarchy is that a walk would be
accelerated due to long edges that appeared at an early stage of the construction process
while the Delaunay triangulation was still sparse.

The FDH is a very light, easy to implement, and fast data structure with expected O(n)
edges that can be constructed in expected O(n log n) time. The FDH achieves an expected
O(log n) query path length. However, a query may take Θ(n) time since the degree of nodes
in the traversed path can be linear.

Their paper [12] presents, in addition, several variants of the FDH. For instance, if we
already know a “finger” f (a hint), which is supposedly close to the query point, then the
search can start from f using edges to vertices with smaller indices (upward edges). Then,
when it is no longer possible to make progress, the search continues using downward edges
only. Other variants use exact arithmetics or plain floating point arithmetic. A usually faster
exact variant first uses an inexact phase in order to accelerate the search and then continues
from the point reached in the first phase with an exact walk using the “finger” variant. For
the experiments in Section 6.4 we used the basic exact version (EFDH) and the usually
faster variant (FFDH) that performs an inexact phase followed by an exact one. It should
be noted that in the exact implementation of FDHs first an inexact distance computation
using interval arithmetics is performed and the exact predicate of Cgal is then used only if
the initial outcome is uncertain.
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6.4 Experiments

We compared our implementation for nearest-neighbor search using the RIC point location
on the Voronoi-diagram (ENNRIC) to the following exact methods: EFDH, FFDH, Cgal’s
Delaunay hierarchy (CGAL DH) [15], and Cgal’s kd-tree (CGAL KD).1

All experiments have been executed on a Intel(R) Core(TM) i5 CPU M 450 with 2.40GHz,
512 kB cache and 4GB RAM memory, running Ubuntu 10.10. Programs were compiled using
g++ version 4.4.5 optimized with -O3 and -DNDEBUG. In all plots of Figure 6.1 the y-axis
represents the total query time of 500k nearest-neighbor queries. Figure 6.1 (a) displays the
results of the experiments in a random scenario, in which both input points and query points
are uniformly sampled within the unit square. Clearly, all methods have logarithmic query
time, however due to larger constants ENNRIC is slower. Figure 6.1 (b) presents a combined
scenario of (n−blog2 nc) equally spaced input points on the unit circle and blog2 nc uniformly
sampled outliers in the unit square. The queries are uniformly sampled points in the same
region. In these experiments both the CGAL KD and ENNRIC are significantly faster and
maintain a stable query time. A similar scenario, presented in Figure 6.1 (c), contains
equally spaced input points on a circle and a point in the center. The query points are
sampled uniformly inside the circle. This scenario showed even more significant differences
between the five methods, as compared to the circle with outliers scenario. In fact, it acts
as a worst-case scenario for many methods. In particular, the query time for the FDH in
such a scenario may be linear, and as indicated by the plot the runs for both EFDH and
FFDH with 216 input points could not complete. The query time of ENNRIC, on the other
hand, was stable and similar to the query time in other scenarios of similar size, and in this
scenario was always faster than the other methods.

The main drawback of the ENNRIC method, comparing to the other methods, is the con-
siderable preprocessing time. In all tested scenarios ENNRIC required significantly longer
preprocessing time in order to construct the efficient search structure for queries, and obvi-
ously could not compete with the fast construction time of the other methods.

1Due to similar performance we elided the kd-tree implementation in ANN [31].
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Figure 6.1: Performance of 500k nearest-neighbor queries for different methods on three scenarios: (a)
random points; (b) circle and center with outliers; (c) circle and center.
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7
Conclusions and Open Problems

In this thesis we described the details of the revised implementation of planar point loca-
tion using the trapezoidal-map random incremental construction algorithm in Cgal. Our
implementation provides a data structure for arbitrary curves (linear or non-linear) guaran-
teeing logarithmic query time and linear size for any input. It supports any subdivision that
can be represented in Cgal by the “2D Arrangements” package [42]. The trigger for this
major revision is the additional support of unbounded curves. Moreover, it can also be ap-
plied to arrangements of curves embedded on certain two-dimensional orientable parametric
surfaces in three-dimensional space. Our implementation is exact, complete, and general.
We conjecture, based on our experimental results, that its expected preprocessing time is
O(n log n).

Another contribution of this thesis is the study of the fundamental difference between the
length L of the longest search path and the DAG depth D, which is the length of the longest
path in the constructed DAG. Clearly, determining the value of L is rather expensive while D
is easy to maintain. We clarified why the two entities are not trivially interchangeable and
proved that the worst case ratio between D and L is bounded by Θ(n/log n).

We also presented two construction algorithms for static settings, where all curves are
given at the preprocessing stage. We showed that the time complexity of the first algorithm
is expected O(n log2 n). For the second algorithm we proved an asymptotically faster bound
for the time complexity of only expected O(n log n). Therefore, we proved that given a subdi-
vision of n pairwise interior disjoint x-monotone curves a point location data structure which
has O(n) size and O(log n) query time in the worst case can be built in expected O(n log n)
time. The main advantage of the first algorithm is that it does not require construction of
any other structures and only uses the already constructed DAG. Moreover, we conjecture
that it is possible to refine the analysis of this algorithm and prove an expected O(n log n)
bound by utilizing its recursive nature.
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A possible application for the planar point location implementation that we provided
here is a guaranteed logarithmic planar nearest-neighbor search. It is obtained by using our
point location implementation on top of the Voronoi diagram of the input points, and as
opposed to many other methods allows a stable logarithmic query time, which is independent
of the scenario.

Further improvements of the Cgal point location implementation should be considered
as well. For instance, a potential future work would be to reduce the actual preprocessing
time. In addition, since the code requires a considerable amount of memory, making the
implementation more compact in terms of space is another desired goal. Both issues are not
trivial to solve. In fact, it seems that both the preprocessing time and memory usage could
not be reduced significantly.

Our implementation treats isolated vertices in a näıve manner. That is, after the face
containing the query point is found, the query is compared to all isolated vertices inside
this face. This is clearly linear in the number of isolated vertices inside the face. A major
improvement would be to treat the isolated vertices as we treat the input curves, that is,
insert them into the DAG during the random incremental construction. However, in the
DAG, each isolated vertex will be represented by an appropriate point-node.

One major open problem is to prove Conjecture 3.2, that is, prove that it is possible to
rely on the depth D of the DAG and still expect only a constant number of rebuilds. This
solution would not require any changes to the current implementation and is preferable than
other solutions since computing the depth does not require geometric operations, which are
practically rather costly.
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