

Fall 2021-2022

Algorithmic Robotics and Motion Planning

The Roomba in the café
Combinatorics and algorithms

Dan Halperin
School of Computer Science Tel Aviv University

Moving a disc among discs

Outline

- the C-space
- combinatorial complexity
- representation
- algorithm
- algebra

Arrangements (take I)

Definition (Arrangement)

Given a collection \mathscr{C} of curves on a surface, the arrangement $\mathscr{A}(\mathscr{C})$ is the partition of the surface into vertices, edges and faces induced by the curves of 8

Arrangement of circles: how complex?

Arrangement of circles: TMI. Why?

Combinatorial analysis

- n - the number of obstacle discs
- arrangement of n circles
- the union of n discs
- the lifting transform
- the complexity of a 3-poytope

The lifting transform

- the lifting transform maps points in R^{d} to objects (points or hyperplanes) in R^{d+1}
- we will focus on the plane, and the vertical projection of planar points onto the unit paraboloid U in R^{3} :
$U: z=x^{2}+y^{2}$
- vertical cross-sections of U are parabolas, horizontal cross-sections are circles
- LT: $p(x, y) \longmapsto \hat{p}\left(x, y, x^{2}+y^{2}\right)$

Lifting a circle

- LT: $p(x, y) \mapsto \hat{p}\left(x, y, x^{2}+y^{2}\right)$
- $C(a, b, r)$ is a circle in the plane with center at (a, b) and radius r
- LT: $C(a, b, r) \mapsto$?
- $C:(x-a)^{2}+(y-b)^{2}=r^{2}$
- $C: x^{2}-2 a x+a^{2}+y^{2}-2 b y+b^{2}=r^{2}$
- \hat{C} is on U, therefore in \hat{C} we can replace $x^{2}+y^{2}$ by z, to obtain
$\cdot z=2 a x+2 b y-\left(a^{2}+b^{2}-r^{2}\right)$

Lifting a circle, cont'd

$\cdot z=2 a x+2 b y-\left(a^{2}+b^{2}-r^{2}\right)$
-the lifted circle \widehat{C} resides on a plane!

[Aurenhammer and Klein]

Envelopes

- arrg of n lines
- what is the shape below the lower envelope?
- what is the exact maximum complexity of the envelope?
- what is the shape above the upper envelope?
- what is the exact maximum complexity of the envelope?

Degenerate upper envelope of planes and its minimization diagram

[^0]
Arrangements of planes and their lower envelope

- arrg of n planes, H
- the upper and lower envelope: shape and complexity

[wikipedia]

The complexity of the upper envelope of planes
-Euler's formula $V-E+F=2$

- Each vertex has at least 3 incident edges, $V \leq 2 E / 3$
- Together $E \leq 3 F-6 \leq 3 n-6$

The number of vertices on the boundary of the free space

- U intersects each edge of the upper envelope at most twice: these are the vertices of the free space
-Their number is therefore at most $6 n-12$

Algorithms for computing the union of discs

- representation: DCEL
- Algorithm I: divide and conquer using plane sweep in the merge step
- Algorithm II: mimicking the proof of the combinatorial bound

Vertical decomposition of the complement of the union of discs

Algorithms for solving the Roomba MP problem

- augment the DCEL with vertical decomposition
- build a connectivity graph (CG) over the augmented DCEL:
- a node for every free trapezoid
- an edge between two trapezoids that share a vertical wall
- ../..

Reminder: Vertical decomposition of the complement of the union of discs

Algorithms for solving the Roomba MP problem, cont'd

- find the cells that contain the start and goal positions
- search in the CG for a path between the start node to the goal node
- transform the path in the graph into a collision-free path in the plane

The connectivity graph

Reference

- Writeup (combinatorial analysis) on the course's website

The next step

[^0]: - we assume henceforth general position

