

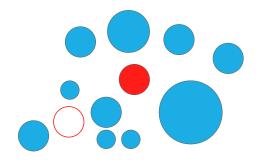
Algorithmic Robotics and Motion Planning

The Roomba in the café Combinatorics and algorithms

School of Computer
Fall 2021-2022 Tel Aviv Univers

Dan Halperin School of Computer Science Tel Aviv University

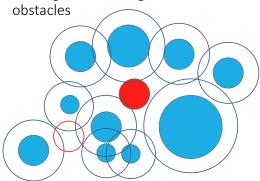
Moving a disc among discs



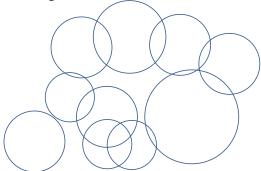
Outline

- the C-space
- combinatorial complexity
- representation
- algorithm
- algebra

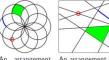
Moving a disc among discs: C-



Arrangement of circles



Arrangements (take I)

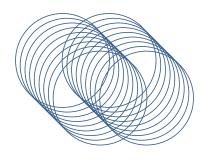


plane.

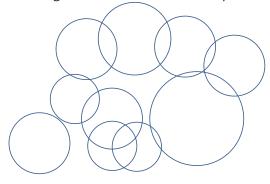
arcs on a sphere.

Arrangement of circles: how complex? Combinatorial complexity of a geometric structure: the total number of vertices, edges, faces etc.

Arrangement of circles: how complex?



Arrangement of circles: TMI. Why?



Arrangement of circles: TMI. Why?



Combinatorial analysis

- n the number of obstacle discs
- · arrangement of n circles
- the union of n discs
 - the lifting transform
 - the complexity of a 3-poytope

The lifting transform

- ${}^{\bullet}$ the lifting transform maps points in R^d to objects (points or hyperplanes) in R^{d+1}
- we will focus on the plane, and the vertical projection of planar points onto the unit paraboloid U in \mathbb{R}^3 :

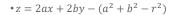
$$U: z = x^2 + y^2$$

- $\mbox{\ }$ vertical cross-sections of U are parabolas, horizontal cross-sections are circles
- $^{\bullet}LT \colon p(x,y) \ \longmapsto \hat{p}(x,y,x^2+y^2)$

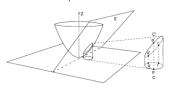
Lifting a circle

- $LT: p(x,y) \mapsto \hat{p}(x,y,x^2+y^2)$
- $\mathcal{C}(a,b,r)$ is a circle in the plane with center at (a,b) and radius r
- $LT: C(a, b, r) \mapsto ?$
- $C: (x-a)^2 + (y-b)^2 = r^2$
- C: $x^2 2ax + a^2 + y^2 2by + b^2 = r^2$
- ${}^{\bullet}\,\hat{\mathcal{C}}$ is on U , therefore in $\hat{\mathcal{C}}$ we can replace x^2+y^2 by z , to obtain
- $\cdot z = 2ax + 2by (a^2 + b^2 r^2)$

Lifting a circle, cont'd



• the lifted circle $\widehat{\mathcal{C}}$ resides on a plane!



[Aurenhammer and Klein]

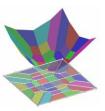
Envelopes

- ullet arrg of n lines
- what is the shape below the lower envelope?
- what is the exact maximum complexity of the envelope?
- what is the shape above the upper envelope?
- what is the exact maximum complexity of the envelope?

Arrangements of planes and their lower envelope

- ullet arrg of n planes, H
- the upper and lower envelope: shape and complexity

Degenerate upper envelope of planes and its minimization diagram



• we assume henceforth general position

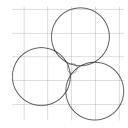
The complexity of the upper envelope of planes

- Euler's formula V E + F = 2
- Each vertex has at least 3 incident edges, $V \le 2E/3$
- Together $E \le 3F 6 \le 3n 6$

The number of vertices on the boundary of the free space

- *U* intersects each edge of the upper envelope at most twice: these are the vertices of the free space
- Their number is therefore at most 6n-12

Combinatorial analysis, lower bound



Algorithms for computing the union of discs

- · representation: DCEL
- Algorithm I: divide and conquer using plane sweep in the merge step
- Algorithm II: mimicking the proof of the combinatorial bound

Algorithms for solving the Roomba MP problem

- augment the DCEL with vertical decomposition
- build a connectivity graph (CG) over the augmented DCEL:
 - a node for every free trapezoid
 - an edge between two trapezoids that share a vertical wall
- ../..

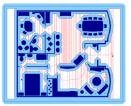
Algorithms for solving the Roomba MP problem, cont'd

- find the cells that contain the start and goal positions
- search in the CG for a path between the start node to the goal node
- transform the path in the graph into a collision-free path in the plane

Reference

• Writeup on the course's website

The next step



THE END