Halfplane Intersection and Linear Programming

Dan Halperin, Tel Aviv University

Figures and pseudocode taken from:

CGAA: Chapter 4 in Computational Geometry Algorithms and Applications, de Berg et al

Overview

- The casting problem
- Half-plane intersection
- Linear programming (LP) in low dimensions
- Minimum enclosing disc
- The casting problem, take II (later on in the semester)

Credits

- CGAA: Chapter 4 in Computational Geometry Algorithms and Applications, Linear Programming, by de Berg et al
- L5vK: Lecture 5 in Computational Geometry, Casting a polyhedron, by Marc van Kreveld

Slides, Part I

- Lecture 5 in Computational Geometry, Casting a polyhedron, by Marc van Kreveld (Slides4a):
 - The casting problem
 - Half-plane intersection
 - Linear programming (LP) in low dimensions
- Supplements, here:
 - The space of directions
 - Probabilistic analysis of LP2D
 - Unbounded LP2D
 - LP3D

The space of directions

[blog.weatherflow.com]

Representing directions in the plane

- Using the unit circle S^1
- The point *p* represents the vector from the origin to *p*

Representing upward directions

- Using the line y = 1
- The point p' represents the vector from the origin to p'

Representing directions in (3-)space

- Using the unit sphere S^2
- Upward directions: the plane z = 1

LP2D randomized, bounded

Analysis

Algorithm 2DRANDOMIZEDBOUNDEDLP(H, \vec{c}, m_1, m_2)

- *Input.* A linear program $(H \cup \{m_1, m_2\}, \vec{c})$, where *H* is a set of *n* half-planes, $\vec{c} \in \mathbb{R}^2$, and m_1, m_2 bound the solution.
- *Output.* If $(H \cup \{m_1, m_2\}, \vec{c})$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point *p* that maximizes $f_{\vec{c}}(p)$ is reported.
- 1. Let v_0 be the corner of C_0 .
- 2. Compute a *random* permutation h_1, \ldots, h_n of the half-planes by calling RANDOMPERMUTATION($H[1 \cdots n]$).
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. **then** $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow$ the point p on ℓ_i that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1} .
- 7. **if** p does not exist
- 8. **then** Report that the linear program is infeasible and quit.
- 9. return v_n

Running time analysis

- Random permutation: O(n)
- Line 5, the `easy' case, $v_{i-1} \in H_i$: O(1), which is O(n) over all iterations
- It remains to estimate the running time of all the `hard' cases
- Let X_i be the indicator random variable, which is 1 if Step *i* is a hard case and 0 otherwise
- The running time of all the hard cases: $\sum_{i=1}^{n} O(i) X_i$
- Randomized analysis—the expected value of the running time $E(\sum_{i=1}^{n} O(i)X_i)$

• In what follows, we assume that the first two half-planes h_1, h_2 are fixed, so our randomized analysis focuses on steps i = 3, ..., n

Running time analysis, cont'd

- Randomized analysis—the expected value of the running time $E(\sum_{i=3}^{n} O(i)X_i)$
- Using linearity of expectation, $E(\sum_{i=3}^{n} O(i)X_i) = \sum_{i=3}^{n} O(i)E(X_i)$
- $E(X_i) = ?$
- The expected value of an indicator random variable is the probability that $X_i = 1$
- Let's start with X_n

The last step

• What is the probability that $X_n = 1$?

•
$$\Pr[X_n = 1] \le \frac{2}{n-2}$$

- Why at most?
 - more than two lines meet at v_n
 - v_n is defined by h_1 or h_2

The *i*th step

- What is the probability that $X_i = 1$?
- Let's first assume that the set of half-planes $h_3 \dots h_i$ is fixed
- Then the previous argument holds and the probability is $\leq \frac{2}{i-2}$
- But every subset of i-2 half-planes has the same probability to be those $h_3\,\ldots\,h_i$
- Hence, $\Pr[X_i = 1] \le \frac{2}{i-2}$

Summary

- $E(\sum_{i=3}^{n} O(i)X_i) = \sum_{i=3}^{n} O(i)E(X_i) \le \sum_{i=3}^{n} O(i)\frac{2}{i-2} = O(n)$
- Together with the other costs, the algorithm runs in expected O(n) time

LP2D unbounded

Possible outcomes of LP2D

- We now consider also the case where the program may be unbounded
- Possible output:
 - The optimal (maximal) solution, as before
 - The program is infeasible, as before
 - The program is unbounded: a ray along which the solution gets arbitrarily large values

Overall scheme for general LP2D

- We will start by testing for the unbounded case, with possible outcomes:
 - The program is infeasible, stop
 - The program is unbounded, with the desired ray, stop
 - The program is bounded, together with two witness half-planes h_1 , h_2 for the boundedness, continue to the previous, bounded, procedure
- Notice that our guarantee that the program is bounded does not preclude the case that it is infeasible, which will be found by the previous (bounded) procedure

Notation

- LP2D (H, \vec{c})
- $H = \{h_1, \dots, h_n\}$
- \vec{c} is the objective vector
- The LP is unbounded if there is a ray ρ fully contained in the feasible region and such that the objective function grows arbitrarily as we proceed along ρ away from its terminus p
- We denote the ray's direction by \vec{d}
- $\rho = \{p + \lambda \vec{d} \colon \lambda > 0\}$

Notation, cont'd

• For a half-plane $h \in H$, $\vec{\eta}(h)$ is the normal to the line defining the half-plane and pointing into the feasible region of h

Necessary conditions for unboundedness

$$\rho = \{ p + \lambda \vec{d} \colon \lambda > 0 \}$$

• $\vec{d} \cdot \vec{c} > 0$

• for each half-plane $h \in H$, $\vec{\eta}(h) \cdot \vec{d} \ge 0$

Let $H' = \{h \in H: \vec{\eta}(h) \cdot \vec{d} = 0\}$, the we also require the following boundary condition:

• the linear program (H', \vec{c}) is feasible

Conditions for unboundedness

Claim: (H, \vec{c}) is unbounded iff there is a direction \vec{d} with $\vec{d} \cdot \vec{c} > 0$ such that for each $h \in H$, $\vec{\eta}(h) \cdot \vec{d} \ge 0$, and the linear program (H', \vec{c}) is feasible

• We showed that the conditions are necessary. We will show that they are sufficient by constructing the witness ray ρ

Constructing the ray ρ

- Assume $\vec{c} = (0,1)$
- Then the ray must be directed upward, and we can represent the possible directions \vec{d} by the line y = 1, $\vec{d} = (d_x, 1)$
- Every constraint of the form $\vec{\eta}$ $(h) \cdot \vec{d} \ge 0$ becomes a half-line, ray, on the line y = 1
- The valid directions:

The intersection of all

these rays

The valid directions

Recall

The common intersection of a set of half-lines in 1D:

- Determine the endpoint p_l of the rightmost left-bounded half-line
- Determine the endpoint p_r of the leftmost right-bounded half-line

[L5vK]

• The common intersection is $[p_l, p_r]$ (can be empty)

- Assume first that the intersection is not empty
- We take the direction at the left endpoint of the interval (if it is bounded only on the right, we take the right endpoint)
- Denote it by \vec{d}
- We first need to check that \vec{d} is valid (relevant only if the interval is a single point)
- The validity check is in the original plane, where we aim to construct the ray ρ
- The test: is the linear program (H', \vec{c}) is feasible

Is the linear program (H', \vec{c}) is feasible?

• Recall: $H' = \{h \in H: \vec{\eta}(h) \cdot \vec{d} = 0\}$

• Outcome 1: If infeasible, report that the original LP infeasible and stop

If (H', \vec{c}) is feasible

• Outcome 2: Stick to the left wall of the feasible region and construct the ray there

If no valid direction \vec{d} exists

- Namely p_l > p_r, then the half-planes inducing p_l and p_r are witnesses to the boundedness of the LP
- Outcome 3: Go to the bounded procedure and start with these two halfplanes as h₁ and h₂

The common intersection of a set of half-lines in 1D:

- Determine the endpoint p_l of the rightmost left-bounded half-line
- Determine the endpoint p_r of the leftmost right-bounded half-line
- The common intersection is $[p_l, p_r]$ (can be empty)

LP3D

The input

- LP3D (H, \vec{c})
- $H = \{h_1, \dots, h_n\}$, half-spaces
 - h_i is bounded by the plane g_i
- \vec{c} is the objective vector
- Assume we have already run LP3DUnbounded, and obtained three witnesses to the boundedness of LP3D(H, \vec{c})
- Let's rename these three half-space h_1, h_2, h_3
- They define an optimum v_3

The incremental step

- We now add h_4
- If $v_3 \in h_4$ then $v_4 := v_3$
- Else, v_4 lies on g_4
- How do we find v_4 ?

[gdbooks/3dcollisions]

