
Halfplane Intersection
and

Linear Programming

Dan Halperin, Tel Aviv University

Figures and pseudocode taken from:

CGAA: Chapter 4 in Computational Geometry Algorithms and Applications, de Berg et al

Overview

• The casting problem

• Half-plane intersection

• Linear programming (LP) in low dimensions

• Minimum enclosing disc

• The casting problem, take II (later on in the semester)

Credits

• CGAA: Chapter 4 in Computational Geometry Algorithms and
Applications, Linear Programming, by de Berg et al

• L5vK: Lecture 5 in Computational Geometry, Casting a polyhedron, by
Marc van Kreveld

Slides, Part I

• Lecture 5 in Computational Geometry, Casting a polyhedron, by Marc
van Kreveld (Slides4a):
• The casting problem

• Half-plane intersection

• Linear programming (LP) in low dimensions

• Supplements, here:
• The space of directions

• Probabilistic analysis of LP2D

• Unbounded LP2D

• LP3D

The space of directions

[blog.weatherflow.com]

Representing directions in the plane

• Using the unit circle 𝑆1

• The point 𝑝 represents the
vector from the origin to 𝑝

Representing upward directions

• Using the line 𝑦 = 1

• The point 𝑝′ represents the
vector from the origin to 𝑝′

Representing directions in (3-)space

• Using the unit sphere 𝑆2

• Upward directions: the plane 𝑧 = 1

LP2D randomized, bounded
Analysis

Running time analysis

• Random permutation: 𝑂(𝑛)

• Line 5, the `easy’ case, 𝑣𝑖−1 ∈ 𝐻𝑖 : 𝑂(1), which is 𝑂(𝑛) over all
iterations

• It remains to estimate the running time of all the `hard’ cases

• Let 𝑋𝑖 be the indicator random variable, which is 1 if Step 𝑖 is a hard
case and 0 otherwise

• The running time of all the hard cases: σ𝑖=1
𝑛 𝑂 𝑖 𝑋𝑖

• Randomized analysis−the expected value of the running time
𝐸(σ𝑖=1

𝑛 𝑂 𝑖 𝑋𝑖)

• In what follows, we assume that the first two half-planes ℎ1, ℎ2 are
fixed, so our randomized analysis focuses on steps 𝑖 = 3,… , 𝑛

Running time analysis, cont’d

• Randomized analysis−the expected value of the running time
𝐸(σ𝑖=3

𝑛 𝑂 𝑖 𝑋𝑖)

• Using linearity of expectation, 𝐸(σ𝑖=3
𝑛 𝑂 𝑖 𝑋𝑖) = σ𝑖=3

𝑛 𝑂 𝑖 𝐸(𝑋𝑖)

• 𝐸 𝑋𝑖 = ?

• The expected value of an indicator random variable is the probability
that 𝑋𝑖 = 1

• Let’s start with 𝑋𝑛

The last step

• What is the probability that 𝑋𝑛 = 1?

• Pr[𝑋𝑛 = 1]≤
2

𝑛−2

• Why at most?
• more than two lines meet at 𝑣𝑛
• 𝑣𝑛 is defined by ℎ1 or ℎ2

[CGAA]

The 𝑖th step

• What is the probability that 𝑋𝑖 = 1?

• Let’s first assume that the set of half-planes ℎ3 … ℎ𝑖 is fixed

• Then the previous argument holds and the probability is ≤
2

𝑖−2

• But every subset of 𝑖 − 2 half-planes has the same probability to be
those ℎ3 … ℎ𝑖

• Hence, Pr[𝑋𝑖 = 1]≤
2

𝑖−2

Summary

• 𝐸(σ𝑖=3
𝑛 𝑂 𝑖 𝑋𝑖) = σ𝑖=3

𝑛 𝑂 𝑖 𝐸(𝑋𝑖) ≤ σ𝑖=3
𝑛 𝑂 𝑖

2

𝑖−2
= 𝑂(𝑛)

• Together with the other costs, the algorithm runs in expected
𝑂(𝑛) time

LP2D unbounded

Possible outcomes of LP2D

• We now consider also the case where the program may be
unbounded

• Possible output:
• The optimal (maximal) solution, as before

• The program is infeasible, as before

• The program is unbounded: a ray along which the solution gets arbitrarily
large values

Overall scheme for general LP2D

• We will start by testing for the unbounded case, with possible
outcomes:
• The program is infeasible, stop

• The program is unbounded, with the desired ray, stop

• The program is bounded, together with two witness half-planes ℎ1, ℎ2 for the
boundedness, continue to the previous, bounded, procedure

• Notice that our guarantee that the program is bounded does not
preclude the case that it is infeasible, which will be found by the
previous (bounded) procedure

Notation

• LP2D(𝐻, Ԧ𝑐)

• 𝐻 = {ℎ1, … , ℎ𝑛}

• Ԧ𝑐 is the objective vector

• The LP is unbounded if there is a ray 𝜌 fully
contained in the feasible region and such that
the objective function grows arbitrarily as we
proceed along 𝜌 away from its terminus 𝑝

• We denote the ray’s direction by Ԧ𝑑

• 𝜌 = {𝑝 + 𝜆 Ԧ𝑑: 𝜆 > 0}

Notation, cont’d

• For a half-plane ℎ ∈ 𝐻 , Ԧ𝜂 (ℎ) is the normal
to the line defining the half-plane and pointing
into the feasible region of ℎ

Necessary conditions for unboundedness

𝜌 = {𝑝 + 𝜆 Ԧ𝑑: 𝜆 > 0}

• Ԧ𝑑 ∙ Ԧ𝑐 > 0

• for each half-plane ℎ ∈ 𝐻 , Ԧ𝜂 (ℎ) ∙ Ԧ𝑑 ≥ 0

Let 𝐻′ = {ℎ ∈ 𝐻: Ԧ𝜂 (ℎ) ∙ Ԧ𝑑 = 0}, the we also
require the following boundary condition:

• the linear program 𝐻′, Ԧ𝑐 is feasible

Conditions for unboundedness

Claim: (𝐻, Ԧ𝑐) is unbounded iff there is a
direction Ԧ𝑑 with Ԧ𝑑 ∙ Ԧ𝑐 > 0 such that for each
ℎ ∈ 𝐻 , Ԧ𝜂 (ℎ) ∙ Ԧ𝑑 ≥ 0 , and the linear program
𝐻′, Ԧ𝑐 is feasible

• We showed that the conditions are necessary.
We will show that they are sufficient by
constructing the witness ray 𝜌

Constructing the ray 𝜌

• Assume Ԧ𝑐 = (0,1)

• Then the ray must be directed upward, and we can represent the
possible directions Ԧ𝑑 by the line 𝑦 = 1, Ԧ𝑑 =(dx,1)

• Every constraint of the form Ԧ𝜂 (ℎ) ∙ Ԧ𝑑 ≥ 0 becomes a half-line, ray, on
the line 𝑦 = 1

• The valid directions:

The intersection of all

these rays

The valid directions

• Recall

[L5vK]

• Assume first that the intersection is not empty

• We take the direction at the left endpoint of the interval (if it is
bounded only on the right, we take the right endpoint)

• Denote it by Ԧ𝑑

• We first need to check that Ԧ𝑑 is valid (relevant only if the interval is a
single point)

• The validity check is in the original plane, where we aim to construct
the ray 𝜌

• The test: is the linear program 𝐻′, Ԧ𝑐 is feasible

Is the linear program 𝐻′, Ԧ𝑐 is feasible?

• Recall: 𝐻′ = {ℎ ∈ 𝐻: Ԧ𝜂 (ℎ) ∙ Ԧ𝑑 = 0}

• Outcome 1: If infeasible, report that the original LP infeasible and
stop

If 𝐻′, Ԧ𝑐 is feasible

• Outcome 2: Stick to the left
wall of the feasible region
and construct the ray there

If no valid direction Ԧ𝑑 exists

• Namely 𝑝𝑙 > 𝑝𝑟, then the
half-planes inducing 𝑝𝑙 and
𝑝𝑟 are witnesses to the
boundedness of the LP

• Outcome 3: Go to the
bounded procedure and
start with these two half-
planes as ℎ1 and ℎ2

LP3D

The input

• LP3D(𝐻, Ԧ𝑐)

• 𝐻 = ℎ1, … , ℎ𝑛 , half-spaces
• ℎ𝑖 is bounded by the plane 𝑔𝑖

• Ԧ𝑐 is the objective vector

• Assume we have already run LP3DUnbounded, and obtained three
witnesses to the boundedness of LP3D(𝐻, Ԧ𝑐)

• Let’s rename these three half-space ℎ1, ℎ2, ℎ3
• They define an optimum 𝑣3

The incremental step

• We now add ℎ4
• If 𝑣3 ∈ ℎ4 then 𝑣4: = 𝑣3
• Else, 𝑣4 lies on 𝑔4

• How do we find 𝑣4?

[gdbooks/3dcollisions]

THE END

