Halfplane Intersection and Linear Programming

Dan Halperin, Tel Aviv University

Figures and pseudocode taken from:
CGAA: Chapter 4 in Computational Geometry Algorithms and Applications, de Berg et al

Overview

- The casting problem
- Half-plane intersection
- Linear programming (LP) in low dimensions
- Minimum enclosing disc
- The casting problem, take II (later on in the semester)

Credits

- CGAA: Chapter 4 in Computational Geometry Algorithms and Applications, Linear Programming, by de Berg et al
- L5vK: Lecture 5 in Computational Geometry, Casting a polyhedron, by Marc van Kreveld

Slides, Part I

- Lecture 5 in Computational Geometry, Casting a polyhedron, by Marc van Kreveld (Slides4a):
- The casting problem
- Half-plane intersection
- Linear programming (LP) in low dimensions
- Supplements, here:
- The space of directions
- Probabilistic analysis of LP2D
- Unbounded LP2D
- LP3D

The space of directions

Representing directions in the plane

- Using the unit circle S^{1}
- The point p represents the vector from the origin to p

Representing upward directions

- Using the line $y=1$
- The point p^{\prime} represents the vector from the origin to p^{\prime}

Representing directions in (3-)space

- Using the unit sphere S^{2}
- Upward directions: the plane $z=1$

LP2D randomized, bounded

Analysis

Algorithm 2dRandomizedBoundedLP(H, \vec{c}, m_{1}, m_{2})

Input. A linear program $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$, where H is a set of n half-planes, $\vec{c} \in \mathbb{R}^{2}$, and m_{1}, m_{2} bound the solution.
Output. If $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.

1. Let v_{0} be the corner of C_{0}.
2. Compute a random permutation h_{1}, \ldots, h_{n} of the half-planes by calling RANDOMPERMUTATION $(H[1 \cdots n])$.
3. for $i \leftarrow 1$ to n
4. do if $v_{i-1} \in h_{i}$
5. \quad then $v_{i} \leftarrow v_{i-1}$

6
else $v_{i} \leftarrow$ the point p on ℓ_{i} that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1}.
if p does not exist
then Report that the linear program is infeasible and quit.
9. return v_{n}

Running time analysis

- Random permutation: $O(n)$
- Line 5 , the `easy' case, $v_{i-1} \in H_{i}: O(1)$, which is $O(n)$ over all iterations
- It remains to estimate the running time of all the 'hard' cases
- Let X_{i} be the indicator random variable, which is 1 if Step i is a hard case and 0 otherwise
- The running time of all the hard cases: $\sum_{i=1}^{n} O(i) X_{i}$
- Randomized analysis-the expected value of the running time $E\left(\sum_{i=1}^{n} O(i) X_{i}\right)$
- In what follows, we assume that the first two half-planes h_{1}, h_{2} are fixed, so our randomized analysis focuses on steps $i=3, \ldots$, n

Running time analysis, cont'd

- Randomized analysis-the expected value of the running time $E\left(\sum_{i=3}^{n} O(i) X_{i}\right)$
- Using linearity of expectation, $E\left(\sum_{i=3}^{n} O(i) X_{i}\right)=\sum_{i=3}^{n} O(i) E\left(X_{i}\right)$
- $E\left(X_{i}\right)=$?
- The expected value of an indicator random variable is the probability that $X_{i}=1$
- Let's start with X_{n}

The last step

- What is the probability that $X_{n}=1$?
- $\operatorname{Pr}\left[X_{n}=1\right] \leq \frac{2}{n-2}$
- Why at most?
- more than two lines meet at v_{n}
- v_{n} is defined by h_{1} or h_{2}

The i th step

- What is the probability that $X_{i}=1$?
- Let's first assume that the set of half-planes $h_{3} \ldots h_{i}$ is fixed
- Then the previous argument holds and the probability is $\leq \frac{2}{i-2}$
- But every subset of $i-2$ half-planes has the same probability to be those $h_{3} \ldots h_{i}$
- Hence, $\operatorname{Pr}\left[X_{i}=1\right] \leq \frac{2}{i-2}$

Summary

- $E\left(\sum_{i=3}^{n} O(i) X_{i}\right)=\sum_{i=3}^{n} O(i) E\left(X_{i}\right) \leq \sum_{i=3}^{n} O(i) \frac{2}{i-2}=O(n)$
- Together with the other costs, the algorithm runs in expected $O(n)$ time

LP2D unbounded

Possible outcomes of LP2D

- We now consider also the case where the program may be unbounded
- Possible output:
- The optimal (maximal) solution, as before
- The program is infeasible, as before
- The program is unbounded: a ray along which the solution gets arbitrarily large values

Overall scheme for general LP2D

- We will start by testing for the unbounded case, with possible outcomes:
- The program is infeasible, stop
- The program is unbounded, with the desired ray, stop
- The program is bounded, together with two witness half-planes h_{1}, h_{2} for the boundedness, continue to the previous, bounded, procedure
- Notice that our guarantee that the program is bounded does not preclude the case that it is infeasible, which will be found by the previous (bounded) procedure

Notation

- $\operatorname{LP2D}(H, \vec{c})$
- $H=\left\{h_{1}, \ldots, h_{n}\right\}$
- \vec{c} is the objective vector
- The LP is unbounded if there is a ray ρ fully
 contained in the feasible region and such that the objective function grows arbitrarily as we proceed along ρ away from its terminus p
- We denote the ray's direction by \vec{d}
- $\rho=\{p+\lambda \vec{d}: \lambda>0\}$

Notation, cont'd

- For a half-plane $h \in H, \vec{\eta}(h)$ is the normal to the line defining the half-plane and pointing into the feasible region of h

Necessary conditions for unboundedness

$$
\rho=\{p+\lambda \vec{d}: \lambda>0\}
$$

- $\vec{d} \cdot \vec{c}>0$
- for each half-plane $h \in H, \vec{\eta}(h) \cdot \vec{d} \geq 0$

Let $H^{\prime}=\{h \in H: \vec{\eta}(h) \cdot \vec{d}=0\}$, the we also require the following boundary condition:

- the linear program $\left(H^{\prime}, \vec{c}\right)$ is feasible

Conditions for unboundedness

Claim: (H, \vec{c}) is unbounded iff there is a direction \vec{d} with $\vec{d} \cdot \vec{c}>0$ such that for each $h \in H, \vec{\eta}(h) \cdot \vec{d} \geq 0$, and the linear program (H^{\prime}, \vec{c}) is feasible

- We showed that the conditions are necessary. We will show that they are sufficient by constructing the witness ray ρ

Constructing the ray ρ

- Assume $\vec{c}=(0,1)$
- Then the ray must be directed upward, and we can represent the possible directions \vec{d} by the line $y=1, \vec{d}=\left(\mathrm{d}_{\mathrm{x}}, 1\right)$
- Every constraint of the form $\vec{\eta}(h) \cdot \vec{d} \geq 0$ becomes a half-line, ray, on the line $y=1$
- The valid directions:

The intersection of all these rays

The valid directions

- Recall

The common intersection of a set of half-lines in 1D:

- Determine the endpoint p_{l} of the rightmost left-bounded half-line
- Determine the endpoint p_{r} of the leftmost right-bounded half-line
- The common intersection is $\left[p_{l}, p_{r}\right]$ (can be empty)

- Assume first that the intersection is not empty
- We take the direction at the left endpoint of the interval (if it is bounded only on the right, we take the right endpoint)
- Denote it by \vec{d}
- We first need to check that \vec{d} is valid (relevant only if the interval is a single point)
- The validity check is in the original plane, where we aim to construct the ray ρ
- The test: is the linear program $\left(H^{\prime}, \vec{c}\right)$ is feasible

Is the linear program $\left(H^{\prime}, \vec{c}\right)$ is feasible?

- Recall: $H^{\prime}=\{h \in H: \vec{\eta}(h) \cdot \vec{d}=0\}$

- Outcome 1: If infeasible, report that the original LP infeasible and stop

If $\left(H^{\prime}, \vec{c}\right)$ is feasible

- Outcome 2: Stick to the left wall of the feasible region and construct the ray there

If no valid direction \vec{d} exists

- Namely $p_{l}>p_{r}$, then the half-planes inducing p_{l} and p_{r} are witnesses to the boundedness of the LP
- Outcome 3: Go to the bounded procedure and start with these two halfplanes as h_{1} and h_{2}

The common intersection of a set of half-lines in 1D:

- Determine the endpoint p_{l} of the rightmost left-bounded half-line
- Determine the endpoint p_{r} of the leftmost right-bounded half-line
- The common intersection is $\left[p_{l}, p_{r}\right]$ (can be empty)

LP3D

The input

- $\operatorname{LP3D}(H, \vec{c})$
- $H=\left\{h_{1}, \ldots, h_{n}\right\}$, half-spaces
- h_{i} is bounded by the plane g_{i}
- \vec{c} is the objective vector
- Assume we have already run LP3DUnbounded, and obtained three witnesses to the boundedness of $\operatorname{LP3D}(H, \vec{c})$
- Let's rename these three half-space h_{1}, h_{2}, h_{3}
- They define an optimum v_{3}

The incremental step

- We now add h_{4}
- If $v_{3} \in h_{4}$ then $v_{4}:=v_{3}$
- Else, v_{4} lies on g_{4}
- How do we find v_{4} ?

[gdbooks/3dcollisions]

THE END

