Halfplane Intersection
and
Linear Programming

Dan Halperin, Tel Aviv University

Figures and pseudocode taken from:

CGAA: Chapter 4 in Computational Geometry Algorithms and Applications, de Berg et al

Overview

* The casting problem

* Half-plane intersection

* Linear programming (LP) in low dimensions
 Minimum enclosing disc

* The casting problem, take Il (later on in the semester)

Credits

* CGAA: Chapter 4 in Computational Geometry Algorithms and
Applications, Linear Programming, by de Berg et al

e L5vK: Lecture 5 in Computational Geometry, Casting a polyhedron, by
Marc van Kreveld

Slides, Part |

e Lecture 5 in Computational Geometry, Casting a polyhedron, by Marc
van Kreveld (Slides4a):
* The casting problem
* Half-plane intersection
e Linear programming (LP) in low dimensions

e Supplements, here:
* The space of directions
* Probabilistic analysis of LP2D
* Unbounded LP2D
e LP3D

The space of directions

200 \60
19 70
SSW b g SSE

S [blog.weatherflow.com]

Representing directions in the plane

* Using the unit circle S1!

* The point p represents the
vector from the origin to p

0.5

Representing upward directions

* Using theliney =1

* The point p’ represents the
vector from the origin to p’

p!

N

-0.5 0 0:5 15 2 25 3
-0.5

Representing directions in (3-)space

* Using the unit sphere S
 Upward directions: the plane z = 1

LP2D randomized, bounded

Analysis

Algorithm 2DRANDOMIZEDBOUNDEDLP(H ¢, my.,m3)

Input. A linear program (H U {mj,m»},¢). where H is a set of n half-planes.
¢ c R?, and m. m> bound the solution.

Output. If (H'\J {my,m3},¢) is infeasible. then this fact is reported. Otherwise,
the lexicographically smallest point p that maximizes fz(p) is reported.

1. Letvg be the corner of (.

2. Compute a random permutation hy,...,h, of the half-planes by calling
RANDOMPERMUTATION(H [- - - n]).

3. fori<— 1ton

4. doifvi_ € hy

5. then v; «— v;_

6. else v; «the point p on #; that maximizes fz(p). subject to the

constraints in H;_.
1. if p does not exist
8. then Report that the linear program 1s infeasible and quit.

0. return v,

Running time analysis

* Random permutation: O(n)

* Line 5, the "easy’ case, v;_; € H,: 0(1), whichis O(n) over all
iterations

* It remains to estimate the running time of all the "hard’ cases

* Let X, be the indicator random variable, which is 1 if Step i is a hard
case and 0 otherwise

* The running time of all the hard cases:).;-; 0(i)X;

 Randomized analysis—the expected value of the running time
E(iz1 0()X)

* In what follows, we assume that the first two half-planes h,, h, are
fixed, so our randomized analysis focuses on stepsi = 3, ..., n

Running time analysis, cont’d

 Randomized analysis—the expected value of the running time
Eiz3 0()X)

* Using linearity of expectation, E(}i-; 0(i)X,) = XL O()E(X,)

E(X,) =7

* The expected value of an indicator random variable is the probability
that X; =1

* Let’s start with X

The last step

* What is the probability that X, = 17
: 2
([— < —_—
PriX, = 1]< —
* Why at most?
* more than two lines meet at v,
* v_is defined by h, or h,

™
*—l‘

Vi

Liciil _lJ Tl Dy

defining v, [CGAA]

The ith step

* What is the probability that X, = 17
* Let’s first assume that the set of half-planes h, ... h; is fixed

* Then the previous argument holds and the probability is < l—iz

* But every subset of i — 2 half-planes has the same probability to be
those h; ... h;

l

* Hence, Pr[X; = 1]< l—iz

Summary

* EQiz3 0(DX) = Lim3 0EX) < Xi=3 0() l—iz = 0(n)

* Together with the other costs, the algorithm runs in expected
O(n) time

LP2D unbounded

Possible outcomes of LP2D

* We now consider also the case where the program may be
unbounded

* Possible output:
* The optimal (maximal) solution, as before
* The program is infeasible, as before

* The program is unbounded: a ray along which the solution gets arbitrarily
large values

Overall scheme for general LP2D

* We will start by testing for the unbounded case, with possible
outcomes:
* The program is infeasible, stop
e The program is unbounded, with the desired ray, stop

* The program is bounded, together with two witness half-planes h,, h, for the
boundedness, continue to the previous, bounded, procedure

* Notice that our guarantee that the program is bounded does not
preclude the case that it is infeasible, which will be found by the
previous (bounded) procedure

Notation

« LP2D(H, &)
o H = {hl’ ...,hn}
* C is the objective vector :Q

[CGAA]

* The LP is unbounded if there is a ray p fully
contained in the feasible region and such that
the objective function grows arbitrarily as we
proceed along p away from its terminus p

* We denote the ray’s direction by d
-p={p+/1c7: A >0}

Notation, cont’d

* For a half-plane h € H, 1 (h)isthe normal
to the line defining the half-plane and pointing
into the feasible region of h

Necessary conditions for unboundedness

p={p+/1¢i:/1>0}

ed-¢>0 :Q
- for each half-plane h € H , i (h)-d =0

[CGAA]

let H' = {h € H: 1 (h) .d = 0}, the we also
require the following boundary condition:

* the linear program (H’, ¢) is feasible

Conditions for unboundedness

Claim: (H, E) IS unbounded iff there is a
direction d with d ¢ > 0 such that for each

h € H, n(h)- d >0 , and the linear program
(H',c) is feasible

 We showed that the conditions are necessary.
We will show that they are sufficient by
constructing the witness ray p

7

[CGAA]

Constructing the ray p

* Assume ¢ = (0,1)
* Then the ray must be directed upward, and we can represent the
possible directions d by the liney =1, d =(d,,1)

* Every constraint of the form 1 (h) - d > 0 becomes a half-line, ray, on
the liney =1

e The valid directions: a
The intersection of all /

t h e S e ra yS -3 -25 -2 -1.5 \ -05
e

The valid directions

e Recall

The common intersection of a set of half-lines in 1D:

@ Determine the endpoint p; of the rightmost left-bounded
half-line

@ Determine the endpoint p, of the leftmost right-bounded
half-line

@ The common intersection is |p;,p,| (can be empty)

S— > * [L5VK]
~i}

e
-— >

* Assume first that the intersection is not empty

* \We take the direction at the left endpoint of the interval (if it is
bounded only on the right, we take the right endpoint)

* Denote it by d

« We first need to check that d is valid (relevant only if the interval is a
single point)

* The validity check is in the original plane, where we aim to construct
the ray p

* The test: is the linear program (H’, ¢) is feasible

s the linear program (H’, ¢) is feasible?

e Recal: H = {h € H: 7 (h) -d = 0}

Y

 Qutcome 1: If infeasible, report that the original LP infeasible and
stop

f (H',C) is feasible

e Qutcome 2: Stick to the left
wall of the feasible region
and construct the ray there

—_

If no valid direction d exists

o Name|y D; > D, then the The common intersection of a set of half-lines in 1D:
half-pla nes ind UCing P and @ Determine the endpoint p; of the rightmost left-bounded
p.. are witnesses to the halt-line | |
boundedness of the LP ° hDj‘f;;;n;ne the endpoint p, of the leftmost right-bounded

* Qutcome 3: Go to the @ The common intersection is [p;.p,] (can be empty)
bounded procedure and - _ .
start with these two half- ~— . s

planes as h, and h,

LP3D

The input

* LP3D(H,)

*H ={h,, ..., h }, half-spaces
* h; is bounded by the plane g,

* C is the objective vector

* Assume we have already run LP3DUnbounded, and obtained three
witnesses to the boundedness of LP3D(H,)

* Let’s rename these three half-space h, h,, h;
* They define an optimum v,

The incremental step

* We now add h,

* If v; € hythenv,: = v,
* Else, v, lieson g,

* How do we find v,?

[gdbooks/3dcollisions]

THE END

