More on RIC Point Location

Dan Halperin, Tel Aviv University

Deterministic guarantees

for storage and query time

Tail estimate

Lemma 6.6 Let *S* be a set of *n* non-crossing line segments, let *q* be a query point, and let λ be a parameter with $\lambda > 0$. Then the probability that the search path for *q* in the search structure computed by Algorithm TRAPEZOIDALMAP has more than $3\lambda \ln(n+1)$ nodes is at most $1/(n+1)^{\lambda \ln 1.25-1}$.

[CGAA]

[L9vK]

Maximum query time/length

Lemma 6.7 Let *S* be a set of *n* non-crossing line segments, and let λ be a parameter with $\lambda > 0$. Then the probability that the maximum length of a search path in the structure for *S* computed by Algorithm TRAPEZOIDALMAP is more than $3\lambda \ln(n+1)$ is at most $2/(n+1)^{\lambda \ln 1.25-3}$.

- For example, for $\lambda = 20$ and n > 4 this probability is smaller than $\frac{1}{4}$
- Namely, with probability at least $\frac{3}{4}$ we get a structure with good query length, bounded by $c_1 \log n$

Maximum storage space

• Following similar analysis*, we can show that with probability at least $\frac{3}{4}$ we obtain a structure requiring at most c_2n storage space

* Michael Hemmer, Michal Kleinbort, Dan Halperin:

Optimal randomized incremental construction for guaranteed logarithmic planar point location. Comput. Geom. 58: 110-123 (2016)

• Can we use these observations to derive an efficient algorithm to produce a point location structure with guaranteed deterministic worst-case bound on query time and storage?

breakout

Scheme

- Monitor the maximum query length so far during a run of the RIC algorithm; abort if $\geq c_1 \log n$
- Monitor the storage allocated so far during a run of the RIC algorithm; abort if $\geq c_2 n$

The catch

- It is easy to monitor the storage allocated so far during a run of the RIC algorithm
- How do we monitor the maximum query length?

Longest query path vs. longest path

- L: the longest query path in the search structure
- *D*: the longest path in the search structure

- There are search structures for which
 - L is $O(\log n)$, and
 - D is $\Omega(n)$

Guaranteed logarithmic time Point Location

• The length L in a linear size DAG can be verified in $O(n \log n)$ time

 A point location data structure for a planar subdivision with n edges, which has O(n) size and O(log n) query time in the worst case, can be built in expected O(n log n) time

Michael Hemmer, Michal Kleinbort, Dan Halperin:

Optimal randomized incremental construction for guaranteed logarithmic planar point location. Comput. Geom. 58: 110-123 (2016)

