Computing Convex Hulls
in 3D

Computational Geometry
Dan Halperin

Tel Aviv University

Credits

e figures and pseudocode pieces are taken from
Chapter 11, Convex Hulls, in Computational
Geometry Algorithms and Applications by de Berg et
al [CGAA]

* the original figures and pseudocode are available at
the book’s site: www.cs.uu.nl/geobook/

Convex hull in 3D

e the convex hull of a set P of n points in R3 is

a convex polytope whose vertices are points
in P

e it therefore has at most n vertices

* its vertices and edges constitute a planar f
graph [0’Rourke]

 CH(P) has at most 2n — 4 faces and at
most 3n — 6 edges

Convex polytopes and planar graphs

* the complexity bounds hold also for non-convex polytopes of genus
zero with n vertices

Gift wrapping

* the convex hull of n points in R® can be computed in O(nF) time,
where F is the number of facets in the convex hull

* hence, the worst case running time of the gift-wrapping algorithm
is 0(n?)

Randomized incremental
construction

Outline of the algorithm

e the input: a set P of n points in R*>

* find four points not in a single plane, call them p4, p,, P3, P4

* randomly permute the remaining points: ps, pg, .., Pn

* let P. denote the set {p4, ..., s}

* at stager = 5, ..., n we add the point p, and compute CH(F,)
* the output: CH(P,)

Representation: DCEL

* CH(P.) is a convex polytope, its boundary is a planar graph

* the vertices are points in 3-space

* the half-edges are oriented counterclockwise around the boundary
of each face, when viewed from outside CH(FP,)

Choosing the first four points

* choose two points arbitrarily

* choose the third point not to lie on the line through the first two
* if all the points lie on a line, report the segment that is their convex hull

e choose the forth point not to lie on the plane through the first three
* if all the points lie on a plane, apply a two-dimensional CH algorithm

Adding the next point p,- to CH(P,_1)

e if p,, € CH(P,_) we do nothing (also when p,. is on the boundary of
CH(Pr—l))

* else

CH(P,)

Adding the next point p,., details

e if p,. € CH(P,_1) we distinguish
between visible facets of
CH(P,_q1) and invisible facets

(w.r.t. p,-)

* in-between visible and invisible
facets lies the horizon

horizon

e the invisible facets will move on
to CH(P.)

* the visible facets will be replaced
by triangles between p,- and
edges of the horizon

When is a face of CH(P,_1) visible from p,.?

* let hy be the plane through the
facet f of CH(P,_4)

* CH(P,_,) is on one side of h¢

* the facet f is visible from p,. if
pr is on the other side of h¢
(not the side of CH(Py_4))

horizon

f is visible from p,
but not from ¢

Co-planar facets

* if p;- lies on the plane h¢ of an invisible facet f, we will add triangles
from p,. to boundary edges of f that lie on the horizon: f needs to be
merged with these triangles into a single facet

/ Pr

=

Cost of modifying CH(P,_,) into CH(P,)

* the visible facets are removed
and triangles between p,. and
edges of the horizon are added

horizon

e assuming we are given the
horizon, this process takes time
linear in the number of removed
facets

How to find the horizon relative to the next point?

* can be done naively in O(r) time
e this will lead to an 0(n?) time algorithm
horizon

* we will maintain conflict lists

* a point p; is in conflict with a face f of
CH(P,) iff f is visible from p;

* for each point p;, t > r, we will maintain DN
the list of facets visible from p; e

* for each facet f of CH(PB.) we will
maintain the list of points visible from f

Conflict graph

conflicts

* a point p; is in conflict with a face f since points Facols
they cannot co-exist in a convex hull

* we initialize the conflict graph for CH(P,) in

linear time (-
O

* updating the graph I, removing visible facets //O

when adding p,-: we remove their nodes o
from the graph as well as the arcs incident ;'Q;
to these nodes; we also remove the node N

Pr

* the visible facets are the neighbors of p,. in
the graph, and so this update is easy Peonfiict(f)

F c:}n-l;lpic:t (Pr)

Updating the conflict graph, Il

e we add new nodes for the newly created
facets—those that connect p,. to the edges
of the horizon

* it remains to find the conflicts of these new
facets, and record them in the conflict
graph—this is the tricky part of the
algorithm!

* let f be one of the new facets—it is a
triangle connecting p,- to an edge e of the
horizon ...

conflicts

points

l facets

Pcnnﬂict(f)

F i:n::nn-l;lpin::t (Pr)

Updating the conflict graph, Il, cont’d

* let f be one of the new facets—itis a

triangle connecting p,- to an edge e of the / e
horizon 1

* if f sees a point p;, then the edge e sees it
as well

* the edge e sees whatever the incident
facets f; or f, see, so we only need to check
the current conflicts of these two facets

* (if f merges with an existing invisible facet
g, the new merged facet inherits g’s
conflicts)

Pr

The algorithm, initial steps

Algorithm CONVEXHULL(P)

Input. A set P of n points in three-space.
Output. The convex hull CH(P) of P.

[. Find four points py, pa, p3. pg in P that form a tetrahedron.

2. C—CH({p1.p2,P3,P4})

3. Compute a random permutation ps, ps, ..., P, of the remaining points.

4. Initialize the conflict graph G with all visible pairs (p;. f). where f is a

facet of C and r > 4.

5. forr—>5ton .
6. do (+ Insert p, into C: *) The a|gOrIth m,
7. if Fionfiict(pr) 1s not empty (x that is, p, lies outside C) . .
8. then Delete all facets in Fiopgict(py) from C. INSe I’tl N g new
9. Walk along the boundary of the visible region of p, (which :

consists exactly of the facets in F.ouaic¢(pr)) and create a list p Ol ntS

L of horizon edges 1n order.
10. forallec L
[1. do Connect e to p, by creating a triangular facet f. * DCEL operations
[2. if / is coplanar with its neighbor facet f” along e are omitted—they
[3. then Merge f and /' into one facet, whose conflict £airl

list is the same as that of f”. are _alr Y
14. else (x Determine conflicts for f: %) stralg htforward
[5. Create a node for fin G.
[6. Let f1 and f, be the facets incident to e in the
old convex hull.

17. P(E‘) <_ cn::-nﬂi-::t(f]) U Pconﬂict(fﬁ)
[8. for all points p € P(e)
19. do If f is visible from p, add (p, f) to G.
20. Delete the node corresponding to p, and the nodes corre-

sponding to the facets in Foopgict(pr) from G, together with
their incident arcs.
21. return C

Analysis

e see Section 11.3 in [CGAA]

* the expected number of facets created during the algorithm for n
input points is 6n — 20 (proof uses backward analysis similarly to
what we have seen in other algorithms)

* the overall expected size of the list of conflicts (visible points) of
horizon edges is O(nlogn) (proof has novel components)

e in summary: the convex hull of n points in R3 can be computed in
expected O(nlogn) time

Remarks

* the algorithm is due to Clarkson and Shor, Test of Time Award, SoCG
2020 (together with Haussler and Welzl)

* the analysis as presented in [CGAA] is due to Mulmuley

* the algorithm extends to higher dimensions and runs in expected
O(nl%/2hy time in R4, for d > 3

THE END

[Jeb Gaither, CGAL arrangements] P

