
Computing Convex Hulls
in 3D

Computational Geometry
Dan Halperin

Tel Aviv University

Credits

• figures and pseudocode pieces are taken from
Chapter 11, Convex Hulls, in Computational
Geometry Algorithms and Applications by de Berg et
al [CGAA]

• the original figures and pseudocode are available at
the book’s site: www.cs.uu.nl/geobook/

2

Convex hull in 3D

• the convex hull of a set 𝑃 of 𝑛 points in 𝑅3 is
a convex polytope whose vertices are points
in 𝑃

• it therefore has at most n vertices

• its vertices and edges constitute a planar
graph

• 𝐶𝐻 𝑃 has at most 2𝑛 − 4 faces and at
most 3𝑛 − 6 edges

[O’Rourke]

Convex polytopes and planar graphs

• the complexity bounds hold also for non-convex polytopes of genus
zero with 𝑛 vertices

Gift wrapping

• the convex hull of 𝑛 points in 𝑅3 can be computed in 𝑂(𝑛𝐹) time,
where 𝐹 is the number of facets in the convex hull

• hence, the worst case running time of the gift-wrapping algorithm
is 𝑂(𝑛2)

Randomized incremental
construction

Outline of the algorithm

• the input: a set 𝑃 of 𝑛 points in 𝑅3

• find four points not in a single plane, call them 𝑝1, 𝑝2, 𝑝3, 𝑝4
• randomly permute the remaining points: 𝑝5, 𝑝6, … , 𝑝𝑛
• let 𝑃𝑟 denote the set {𝑝1, … , 𝑝𝑟}

• at stage 𝑟 = 5,… , 𝑛 we add the point 𝑝𝑟 and compute 𝐶𝐻(𝑃𝑟)

• the output: 𝐶𝐻(𝑃𝑛)

Representation: DCEL

• 𝐶𝐻(𝑃𝑟) is a convex polytope, its boundary is a planar graph

• the vertices are points in 3-space

• the half-edges are oriented counterclockwise around the boundary
of each face, when viewed from outside 𝐶𝐻(𝑃𝑟)

Choosing the first four points

• choose two points arbitrarily

• choose the third point not to lie on the line through the first two
• if all the points lie on a line, report the segment that is their convex hull

• choose the forth point not to lie on the plane through the first three
• if all the points lie on a plane, apply a two-dimensional CH algorithm

Adding the next point 𝑝𝑟 to 𝐶𝐻(𝑃𝑟−1)

• if 𝑝𝑟 ∈ 𝐶𝐻(𝑃𝑟−1) we do nothing (also when 𝑝𝑟 is on the boundary of
𝐶𝐻(𝑃𝑟−1))

• else

Adding the next point 𝑝𝑟 , details

• if 𝑝𝑟 ∉ 𝐶𝐻(𝑃𝑟−1) we distinguish
between visible facets of
𝐶𝐻(𝑃𝑟−1) and invisible facets
(w.r.t. 𝑝𝑟)

• in-between visible and invisible
facets lies the horizon

• the invisible facets will move on
to 𝐶𝐻 𝑃𝑟

• the visible facets will be replaced
by triangles between 𝑝𝑟 and
edges of the horizon

When is a face of 𝐶𝐻(𝑃𝑟−1) visible from 𝑝𝑟?

• let ℎ𝑓 be the plane through the
facet 𝑓 of 𝐶𝐻(𝑃𝑟−1)

• 𝐶𝐻(𝑃𝑟−1) is on one side of ℎ𝑓

• the facet 𝑓 is visible from 𝑝𝑟 if
𝑝𝑟 is on the other side of ℎ𝑓
(not the side of 𝐶𝐻(𝑃𝑟−1))

Co-planar facets

• if 𝑝𝑟 lies on the plane ℎ𝑓 of an invisible facet 𝑓, we will add triangles
from 𝑝𝑟 to boundary edges of 𝑓 that lie on the horizon: 𝑓 needs to be
merged with these triangles into a single facet

Cost of modifying 𝐶𝐻(𝑃𝑟−1) into 𝐶𝐻(𝑃𝑟)

• the visible facets are removed
and triangles between 𝑝𝑟 and
edges of the horizon are added

• assuming we are given the
horizon, this process takes time
linear in the number of removed
facets

How to find the horizon relative to the next point?

• can be done naively in 𝑂(𝑟) time

• this will lead to an 𝑂(𝑛2) time algorithm

• we will maintain conflict lists

• a point 𝑝𝑡 is in conflict with a face 𝑓 of
𝐶𝐻(𝑃𝑟) iff 𝑓 is visible from 𝑝𝑡

• for each point 𝑝𝑡 , t > r, we will maintain
the list of facets visible from 𝑝𝑡

• for each facet 𝑓 of 𝐶𝐻(𝑃𝑟) we will
maintain the list of points visible from 𝑓

Conflict graph

• a point 𝑝𝑡 is in conflict with a face 𝑓 since
they cannot co-exist in a convex hull

• we initialize the conflict graph for 𝐶𝐻(𝑃4) in
linear time

• updating the graph I, removing visible facets
when adding 𝑝𝑟: we remove their nodes
from the graph as well as the arcs incident
to these nodes; we also remove the node
𝑝𝑟

• the visible facets are the neighbors of 𝑝𝑟 in
the graph, and so this update is easy

Updating the conflict graph, II

• we add new nodes for the newly created
facets─those that connect 𝑝𝑟 to the edges
of the horizon

• it remains to find the conflicts of these new
facets, and record them in the conflict
graph─this is the tricky part of the
algorithm!

• let 𝑓 be one of the new facets─it is a
triangle connecting 𝑝𝑟 to an edge 𝑒 of the
horizon …

Updating the conflict graph, II, cont’d

• let 𝑓 be one of the new facets─it is a
triangle connecting 𝑝𝑟 to an edge 𝑒 of the
horizon

• if 𝑓 sees a point 𝑝𝑡, then the edge 𝑒 sees it
as well

• the edge 𝑒 sees whatever the incident
facets 𝑓1 or 𝑓2 see, so we only need to check
the current conflicts of these two facets

• (if 𝑓 merges with an existing invisible facet
𝑔, the new merged facet inherits 𝑔’s
conflicts)

The algorithm, initial steps

The algorithm,
inserting new
points

• DCEL operations
are omitted─they
are fairly
straightforward

Analysis

• see Section 11.3 in [CGAA]

• the expected number of facets created during the algorithm for 𝑛
input points is 6𝑛 − 20 (proof uses backward analysis similarly to
what we have seen in other algorithms)

• the overall expected size of the list of conflicts (visible points) of
horizon edges is 𝑂(𝑛 log 𝑛) (proof has novel components)

• in summary: the convex hull of 𝑛 points in 𝑅3 can be computed in
expected 𝑂(𝑛 log 𝑛) time

Remarks

• the algorithm is due to Clarkson and Shor, Test of Time Award, SoCG
2020 (together with Haussler and Welzl)

• the analysis as presented in [CGAA] is due to Mulmuley

• the algorithm extends to higher dimensions and runs in expected
Θ(𝑛 𝑑/2) time in 𝑅𝑑, for 𝑑 > 3

THE END

[Jeb Gaither, CGAL arrangements]

