Computing Convex Hulls in 3D

Computational Geometry
Dan Halperin
Tel Aviv University

Credits

- figures and pseudocode pieces are taken from Chapter 11, Convex Hulls, in Computational Geometry Algorithms and Applications by de Berg et al [CGAA]
- the original figures and pseudocode are available at the book's site: www.cs.uu.nl/geobook/

Convex hull in 3D

- the convex hull of a set P of n points in R^{3} is a convex polytope whose vertices are points in P
- it therefore has at most n vertices
- its vertices and edges constitute a planar graph
[O’Rourke]
- $C H(P)$ has at most $2 n-4$ faces and at most $3 n-6$ edges

Convex polytopes and planar graphs

- the complexity bounds hold also for non-convex polytopes of genus zero with n vertices

Gift wrapping

- the convex hull of n points in R^{3} can be computed in $O(n F)$ time, where F is the number of facets in the convex hull
- hence, the worst case running time of the gift-wrapping algorithm is $O\left(n^{2}\right)$

Randomized incremental construction

Outline of the algorithm

- the input: a set P of n points in R^{3}
- find four points not in a single plane, call them $p_{1}, p_{2}, p_{3}, p_{4}$
- randomly permute the remaining points: $p_{5}, p_{6}, \ldots, p_{n}$
- let P_{r} denote the set $\left\{p_{1}, \ldots, p_{r}\right\}$
- at stage $r=5, \ldots, n$ we add the point p_{r} and compute $\operatorname{CH}\left(P_{r}\right)$
- the output: $\operatorname{CH}\left(P_{n}\right)$

Representation: DCEL

- CH $\left(P_{r}\right)$ is a convex polytope, its boundary is a planar graph
- the vertices are points in 3 -space
- the half-edges are oriented counterclockwise around the boundary of each face, when viewed from outside $C H\left(P_{r}\right)$

Choosing the first four points

- choose two points arbitrarily
- choose the third point not to lie on the line through the first two
- if all the points lie on a line, report the segment that is their convex hull
- choose the forth point not to lie on the plane through the first three
- if all the points lie on a plane, apply a two-dimensional CH algorithm

Adding the next point p_{r} to $C H\left(P_{r-1}\right)$

- if $p_{r} \in C H\left(P_{r-1}\right)$ we do nothing (also when p_{r} is on the boundary of CH $\left(P_{r-1}\right)$)
- else

$\mathcal{E} \mathcal{H}\left(P_{r}\right)$

Adding the next point p_{r}, details

- if $p_{r} \notin C H\left(P_{r-1}\right)$ we distinguish between visible facets of $\mathrm{CH}\left(P_{r-1}\right)$ and invisible facets (w.r.t. p_{r})
- in-between visible and invisible facets lies the horizon
- the invisible facets will move on to $\mathrm{CH}\left(P_{r}\right)$
- the visible facets will be replaced by triangles between p_{r} and edges of the horizon

When is a face of $C H\left(P_{r-1}\right)$ visible from p_{r} ?

- let h_{f} be the plane through the facet f of $C H\left(P_{r-1}\right)$
- $C H\left(P_{r-1}\right)$ is on one side of h_{f}
- the facet f is visible from p_{r} if p_{r} is on the other side of h_{f} (n not the side of $\mathrm{CH}\left(P_{r-1}\right)$)

f is visible from p,
but not from q

Co-planar facets

- if p_{r} lies on the plane h_{f} of an invisible facet f, we will add triangles from p_{r} to boundary edges of f that lie on the horizon: f needs to be merged with these triangles into a single facet

Cost of modifying $C H\left(P_{r-1}\right)$ into $C H\left(P_{r}\right)$

- the visible facets are removed and triangles between p_{r} and edges of the horizon are added
- assuming we are given the horizon, this process takes time linear in the number of removed facets

How to find the horizon relative to the next point?

- can be done naively in $O(r)$ time
- this will lead to an $O\left(n^{2}\right)$ time algorithm
- we will maintain conflict lists
- a point p_{t} is in conflict with a face f of CH $\left(P_{r}\right)$ iff f is visible from p_{t}
- for each point $p_{t}, \mathrm{t}>\mathrm{r}$, we will maintain the list of facets visible from p_{t}
- for each facet f of $C H\left(P_{r}\right)$ we will maintain the list of points visible from f

Conflict graph

- a point p_{t} is in conflict with a face f since they cannot co-exist in a convex hull
- we initialize the conflict graph for $\mathrm{CH}\left(P_{4}\right)$ in linear time
- updating the graph I, removing visible facets when adding p_{r} : we remove their nodes from the graph as well as the arcs incident to these nodes; we also remove the node p_{r}
- the visible facets are the neighbors of p_{r} in the graph, and so this update is easy

Updating the conflict graph, II

- we add new nodes for the newly created facets-those that connect p_{r} to the edges of the horizon
- it remains to find the conflicts of these new facets, and record them in the conflict graph-this is the tricky part of the algorithm!
- let f be one of the new facets-it is a triangle connecting p_{r} to an edge e of the horizon ...

Updating the conflict graph, II, cont'd

- let f be one of the new facets-it is a triangle connecting p_{r} to an edge e of the horizon
- if f sees a point p_{t}, then the edge e sees it as well
- the edge e sees whatever the incident
 facets f_{1} or f_{2} see, so we only need to check the current conflicts of these two facets
- (if f merges with an existing invisible facet g, the new merged facet inherits g 's conflicts)

The algorithm, initial steps

Algorithm ConvexHull(P)

Input. A set P of n points in three-space.
Output. The convex hull $\mathcal{C H}(P)$ of P.

1. Find four points $p_{1}, p_{2}, p_{3}, p_{4}$ in P that form a tetrahedron.
2. $\mathcal{C} \leftarrow \mathcal{C} \mathcal{H}\left(\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)$
3. Compute a random permutation $p_{5}, p_{6}, \ldots, p_{n}$ of the remaining points.
4. Initialize the conflict graph \mathcal{G} with all visible pairs $\left(p_{t}, f\right)$, where f is a facet of \mathcal{C} and $t>4$.
5. for $r \leftarrow 5$ to n
6. do $\left(*\right.$ Insert p_{r} into $\left.\mathcal{C}: *\right)$
7. if $F_{\text {conflict }}\left(p_{r}\right)$ is not empty ($*$ that is, p_{r} lies outside $\left.\mathcal{C} *\right)$
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

then Delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from \mathcal{C}.
Walk along the boundary of the visible region of p_{r} (which consists exactly of the facets in $\left.F_{\text {conflict }}\left(p_{r}\right)\right)$ and create a list \mathcal{L} of horizon edges in order.
for all $e \in \mathcal{L}$
do Connect e to p_{r} by creating a triangular facet f. if f is coplanar with its neighbor facet f^{\prime} along e then Merge f and f^{\prime} into one facet, whose conflict list is the same as that of f^{\prime}. else ($*$ Determine conflicts for $f: *$)

Create a node for f in \mathcal{G}.
Let f_{1} and f_{2} be the facets incident to e in the old convex hull.

$$
P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)
$$

for all points $p \in P(e)$
do If f is visible from p, add (p, f) to \mathcal{G}.
Delete the node corresponding to p_{r} and the nodes corre- sponding to the facets in $F_{\text {conflict }}\left(p_{r}\right)$ from \mathcal{G}, together with their incident arcs.

Analysis

- see Section 11.3 in [CGAA]
- the expected number of facets created during the algorithm for n input points is $6 n-20$ (proof uses backward analysis similarly to what we have seen in other algorithms)
- the overall expected size of the list of conflicts (visible points) of horizon edges is $O(n \log n)$ (proof has novel components)
- in summary: the convex hull of n points in R^{3} can be computed in expected $O(n \log n)$ time

Remarks

- the algorithm is due to Clarkson and Shor, Test of Time Award, SoCG 2020 (together with Haussler and Welzl)
- the analysis as presented in [CGAA] is due to Mulmuley
- the algorithm extends to higher dimensions and runs in expected $\Theta\left(n^{\lfloor d / 2\rfloor}\right)$ time in R^{d}, for $d>3$

THE END

