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Credits

• figures and pseudocode pieces are taken from 
Chapter 11, Convex Hulls, in Computational 
Geometry Algorithms and Applications by de Berg et 
al [CGAA]

• the original figures and pseudocode are available at 
the book’s site: www.cs.uu.nl/geobook/
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Convex hull in 3D

• the convex hull of a set 𝑃 of 𝑛 points in 𝑅3 is 
a convex polytope whose vertices are points 
in 𝑃

• it therefore has at most n vertices

• its vertices and edges constitute a planar 
graph

• 𝐶𝐻 𝑃 has at most 2𝑛 − 4 faces and at 
most 3𝑛 − 6 edges

[O’Rourke]



Convex polytopes and planar graphs

• the complexity bounds hold also for non-convex polytopes of genus
zero with 𝑛 vertices



Gift wrapping

• the convex hull of 𝑛 points in 𝑅3 can be computed in 𝑂(𝑛𝐹) time, 
where 𝐹 is the number of facets in the convex hull

• hence, the worst case running time of the gift-wrapping algorithm
is 𝑂(𝑛2)



Randomized incremental 
construction



Outline of the algorithm

• the input: a set 𝑃 of 𝑛 points in 𝑅3

• find four points not in a single plane, call them 𝑝1, 𝑝2, 𝑝3, 𝑝4
• randomly permute the remaining points: 𝑝5, 𝑝6, … , 𝑝𝑛
• let 𝑃𝑟 denote the set {𝑝1, … , 𝑝𝑟}

• at stage 𝑟 = 5,… , 𝑛 we add the point 𝑝𝑟 and compute 𝐶𝐻(𝑃𝑟)

• the output: 𝐶𝐻(𝑃𝑛)



Representation: DCEL

• 𝐶𝐻(𝑃𝑟) is a convex polytope, its boundary is a planar graph

• the vertices are points in 3-space

• the half-edges are oriented counterclockwise around the boundary 
of each face, when viewed from outside 𝐶𝐻(𝑃𝑟) 



Choosing the first four points

• choose two points arbitrarily

• choose the third point not to lie on the line through the first two
• if all the points lie on a line, report the segment that is their convex hull

• choose the forth point not to lie on the plane through the first three
• if all the points lie on a plane, apply a two-dimensional CH algorithm



Adding the next point  𝑝𝑟 to 𝐶𝐻(𝑃𝑟−1)

• if 𝑝𝑟 ∈ 𝐶𝐻(𝑃𝑟−1) we do nothing (also when 𝑝𝑟 is on the boundary of 
𝐶𝐻(𝑃𝑟−1) )

• else



Adding the next point  𝑝𝑟 , details

• if 𝑝𝑟 ∉ 𝐶𝐻(𝑃𝑟−1) we distinguish 
between visible facets of 
𝐶𝐻(𝑃𝑟−1) and invisible facets 
(w.r.t. 𝑝𝑟)

• in-between visible and invisible 
facets lies the horizon

• the invisible facets will move on 
to 𝐶𝐻 𝑃𝑟

• the visible facets will be replaced 
by triangles between 𝑝𝑟 and 
edges of the horizon



When is a face of 𝐶𝐻(𝑃𝑟−1) visible from  𝑝𝑟?

• let ℎ𝑓 be the plane through the 
facet 𝑓 of 𝐶𝐻(𝑃𝑟−1)

• 𝐶𝐻(𝑃𝑟−1) is on one side of ℎ𝑓

• the facet 𝑓 is visible from 𝑝𝑟 if 
𝑝𝑟 is on the other side of ℎ𝑓
(not the side of 𝐶𝐻(𝑃𝑟−1) )



Co-planar facets

• if 𝑝𝑟 lies on the plane ℎ𝑓 of an invisible facet 𝑓, we will add triangles 
from 𝑝𝑟 to boundary edges of 𝑓 that lie on the horizon: 𝑓 needs to be 
merged with these triangles into a single facet  



Cost of modifying 𝐶𝐻(𝑃𝑟−1) into 𝐶𝐻(𝑃𝑟)

• the visible facets are removed 
and triangles between 𝑝𝑟 and 
edges of the horizon are added

• assuming we are given the 
horizon, this process takes time 
linear in the number of removed 
facets



How to find the horizon relative to the next point?

• can be done naively in 𝑂(𝑟) time

• this will lead to an 𝑂(𝑛2) time algorithm

• we will maintain conflict lists

• a point 𝑝𝑡 is in conflict with a face 𝑓 of 
𝐶𝐻(𝑃𝑟) iff 𝑓 is visible from 𝑝𝑡

• for each point 𝑝𝑡 , t > r, we will maintain 
the list of facets visible from 𝑝𝑡

• for each facet 𝑓 of 𝐶𝐻(𝑃𝑟) we will 
maintain the list of points visible from 𝑓



Conflict graph

• a point 𝑝𝑡 is in conflict with a face 𝑓 since 
they cannot co-exist in a convex hull

• we initialize the conflict graph for 𝐶𝐻(𝑃4) in 
linear time

• updating the graph I, removing visible facets 
when adding 𝑝𝑟: we remove their nodes 
from the graph as well as the arcs incident 
to these nodes; we also remove the node 
𝑝𝑟

• the visible facets are the neighbors of 𝑝𝑟 in 
the graph, and so this update is easy



Updating the conflict graph, II

• we add new nodes for the newly created 
facets─those that connect 𝑝𝑟 to the edges 
of the horizon

• it remains to find the conflicts of these new 
facets, and record them in the conflict 
graph─this is the tricky part of the 
algorithm!

• let 𝑓 be one of the new facets─it is a 
triangle connecting 𝑝𝑟 to an edge 𝑒 of the 
horizon …



Updating the conflict graph, II, cont’d

• let 𝑓 be one of the new facets─it is a 
triangle connecting 𝑝𝑟 to an edge 𝑒 of the 
horizon

• if 𝑓 sees a point 𝑝𝑡, then the edge 𝑒 sees it 
as well

• the edge 𝑒 sees whatever the incident 
facets 𝑓1 or 𝑓2 see, so we only need to check 
the current conflicts of these two facets 

• (if 𝑓 merges with an existing invisible facet 
𝑔, the new merged facet inherits 𝑔’s 
conflicts)



The algorithm, initial steps



The algorithm, 
inserting new 
points

• DCEL operations 
are omitted─they 
are fairly 
straightforward



Analysis

• see Section 11.3 in [CGAA]

• the expected number of facets created during the algorithm for 𝑛
input points is 6𝑛 − 20 (proof uses backward analysis similarly to 
what we have seen in other algorithms)

• the overall expected size of the list of conflicts (visible points) of 
horizon edges is 𝑂(𝑛 log 𝑛) (proof has novel components)

• in summary: the convex hull of 𝑛 points in 𝑅3 can be computed in 
expected 𝑂(𝑛 log 𝑛) time 



Remarks

• the algorithm is due to Clarkson and Shor, Test of Time Award, SoCG
2020 (together with Haussler and Welzl)

• the analysis as presented in [CGAA] is due to Mulmuley

• the algorithm extends to higher dimensions and runs in expected 
Θ(𝑛 𝑑/2 ) time in 𝑅𝑑, for 𝑑 > 3



THE END

[Jeb Gaither, CGAL arrangements]


