Separating a Polyhedron from Its Single Part Mold: Optimal Algorithms

Computational Geometry, Spring 2020
Dan Halperin
Tel Aviv University

Overview

- the casting problem, a reminder
- Helly's theorem
- arrangements on the sphere
- alternative approach to the casting problem

Credits

- CGAA: some figures are taken from Computational Geometry Algorithms and Applications by de Berg et al
- the original figures are available at the book's site: www.cs.uu.nl/geobook/
- L5vK: Lecture 5 in Computational Geometry, Casting a polyhedron, by Marc van Kreveld

The casting problem

First the 2D version: can we remove a 2 D polygon from a mold?

A polygon can be removed from its cast by a single translation if and only if there is a direction so that every polygon edge does not cross the adjacent mold edge

Sequences of translations do not help; we would not be able to construct more shapes than by a

[L5vK] single translation

We need a representation of directions in 2D

Every polygon edge requires the removal direction to be in a semi-circle
\Rightarrow compute the common intersection of a set of circular intervals (semi-circles)

[L5vK]

We only need to represent upward directions: we can use points on the line $y=1$

Every polygon edge requires the removal direction to be in a half-line \Rightarrow compute the common intersection of a set of half-lines in 1D

[L5vK]

In 3D, for a candidate top facet

Consider the outward normal vectors of all facets

An allowed removal direction must make an angle of at least $\pi / 2$ with every facet (except the topmost one)
\Rightarrow every facet in 3D makes a half-plane in $z=1$ invalid

For every candidate top facet

We get: common intersection of half-planes in the plane
The problem of deciding castability of a polyhedron with n facets, with a given top facet, where the polyhedron must be removed from the cast by a single translation, can be solved by computing the common intersection of $n-1$ half-planes

The (previous) solution

- all directions for every valid top facet in $O\left(n^{2} \log n\right)$ time: intersection of half-planes per candidate top facet
- one direction for every valid top facet in $O\left(n^{2}\right)$ time: Linear Programming per candidate top facet
- can we do better?

Helly's theorem

Statement

- Let X_{1}, \ldots, X_{n} be a finite collection of convex subsets of R^{d}, with $n>d+1$. If the intersection of every $d+1$ of these sets is nonempty, then the whole collection has a nonempty intersection.

In the plane

Helly's theorem for the Euclidean plane: if a family of convex sets has a nonempty intersection for every triple of sets, then the whole family has a nonempty intersection.

Arrangements on the sphere

Arrangements of great circles

- n great circles
- the arrangement has at most $n(n-1)$ vertices, $2 n(n-1)$ edges, and $n^{2}-n+2$ faces
- the central projection of the arrangement on a hemisphere onto a tangent plane is an arrangement of lines

A different approach to the casting problem

Outline and notation

- we consider all valid top facets simultaneously
- we will use the entire sphere of directions S^{2}
- (for convenience of arguing we will project it onto the plane $z=1$, as before, but also onto the plane $z=-1$, and handle the equator separately)
- fix the orientation of our polyhedron P, arbitrarily
- $F_{1}, F_{2}, \ldots, F_{n}$: the facets of P
- $v\left(F_{i}\right)$: the normal of F_{i} pointing into the polytope P

The pair $\left(F_{i}, \vec{d}\right)$

- $\left(F_{i}, \vec{d}\right)$: \vec{d} represents a pullout direction when F_{i} is the top facet of the mold - should be interpreted as follows: P is rotated such that F_{i} becomes the top facet and \vec{d} is rotated accordingly
- the key observation:
$\left(F_{i}, \vec{d}\right)$ represents a valid mold and pullout direction iff:
- $\vec{d} \cdot v\left(F_{i}\right)<0$
- $\forall j \neq i, \vec{d} \cdot v\left(F_{i}\right) \geq 0$
- (we proved a similar claim for the original solution)

The hemispheres induced by F_{i}

- every facet F_{i} of P splits S^{2} into the disjoint union of: (i) a closed hemisphere of forbidden pullout directions, and (ii) the complementary open hemisphere of potential pullout directions, when F_{i} is the top facet
- $h_{i}:=h\left(F_{i}\right)$ is the closed hemisphere $\vec{d} \cdot v\left(F_{i}\right) \geq 0$
- \bar{h}_{i} is the complement open hemisphere $\vec{d} \cdot v\left(F_{i}\right)<0$

The different roles of \bar{h}_{i}

- when we consider F_{i} to be the top facet, \bar{h}_{i} represents the valid pullout directions
- when we consider F_{j} to be the top facet for $j \neq i$, the same \bar{h}_{i} represents forbidden pullout directions

- hence we look for points on S^{2} that are covered by exactly one hemisphere \bar{h}_{i}

Arrangements on the sphere

- the n boundary great circles of the h_{i} 's partition S^{2} into faces
- this is an arrangement of great circles (which, as mentioned, behaves similarly to an arrangement of lines in the plane)
- the constraints $\vec{d} \cdot v\left(F_{i}\right)<0$ (namely the hemispheres \bar{h}_{i}) are the same in each face of the arrangement!
- we look for a face of the arrangement that is covered by exactly one constraint \bar{h}_{i} : it will represent valid directions for F_{i} as a top facet and no other facet precluding its validity
- can easily be found in $O\left(n^{2}\right)$ time

The depth of a face in an arrangement of hemispheres

- the depth of a face: the number of \bar{h}_{i} 's that cover it
- we look for a face of the arrangement of depth 1 , covered by exactly one constraint \bar{h}_{i} : it will represent valid directions for F_{i} as a top facet and no other facet precluding its validity
- it will be more convenient to transform this arrangement to planar arrangements (as promised): we will project the arrangement onto the plane $z=1$ and the plane $z=-1$, and handle the equator separately
- on each plane we now have an arrangement of half-planes
- we focus on $z=1$

Covering set

- we will look for a small set of candidates to be valid top facets and then check each candidate
- covering set: Let B be a set of regions in the plane, whose union covers the entire plane. A subset $S \subseteq B$ is a covering set if the union of regions in S covers the entire plane.

Lemma

- Let B be a set of half-planes in the plane, whose union covers the entire plane. Then, there is a covering set $S \subseteq B,|S|=3$.
- Proof:

$$
\begin{aligned}
& \cup_{b \in B} b=R^{2} \Rightarrow \\
& \cap_{b \in B} \bar{b}=\emptyset \Rightarrow \\
& \exists b_{i}, b_{j}, b_{k} \in B \text { s.t. } \bar{b}_{i} \cap \bar{b}_{j} \cap \bar{b}_{k}=\emptyset
\end{aligned}
$$

(otherwise, by Helly, $\cap_{b \in B} \bar{b} \neq \emptyset$) \Rightarrow
$b_{i} \cup b_{j} \cup b_{k}=R^{2}$
QED

Finding the covering set

- we look for $\bar{h}_{i}, \bar{h}_{j}, \bar{h}_{k}$ such that $\bar{h}_{i} \cup \bar{h}_{j} \cup \bar{h}_{k}=R^{2}$
- readymade procedure: find h_{i}, h_{j}, h_{k} such that $h_{i} \cap h_{j} \cap h_{k}=\varnothing$
- where do we have such a procedure?
- when we find that a 2D linear program is infeasible
- can be determined in linear time
skipping various details ...

Results

- $O(n \log n)$ time algorithm to find all possible pullout directions for all valid top facets
- this is optimal in the worst case [Geft]
- $O(n)$ time algorithm to find one pullout direction for each possible valid top facets
- $O(n)$ time algorithm to find all possible pullout direction for all valid top facets when P is convex
- for any polytope, there are at most six valid top facets and this bound is tight: there are polytopes with six valid top facets

For more details

Prosenjit Bose, Dan Halperin, Shahar Shamai: On the separation of a polyhedron from its single-part mold. CASE 2017: 61-66

THE END

