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Chapter 1Introdution
In this hapter we present the problem of robustness in omputational geometry ingeneral and review work that has been done in this �eld. We fous on the subjetof our researh, Finite-Preision Approximation for arrangements of line segments inIR2. We onlude this hapter with an outline of the thesis.1.1 Robustness in Computational Geometry Algo-rithmsThere are two major obstales in making the implementation of omputational geom-etry algorithms and data strutures robust: the use of �oating-point arithmeti anddegeneraies (or near-degeneraies) in input data or that our during intermediateomputations. The two are losely related sine �oating-point arithmeti problems areoften aused by degenerate input data. When using �oating-point arithmeti, a de-generate ase is indued not only by degenerate data, but also by lose-to-degeneratedata. Sine �oating-point arithmeti is impreise, we annot tell for sure whethera ertain ase is degenerate or lose to be one. Thus we use the term potential de-generay. In what follows we sometimes drop the word potential before the worddegeneray. We refer by robustness to the general goal of making geometri algo-rithms robust to the above obstales, namely making the implementations reliableand insensitive to them. For more details on robustness see, e.g., [23, 33, 35, 42℄.Many algorithms in omputational geometry are designed and proven in a ompu-tational model that assumes exat arithmeti, while built-in number types are �niteand thus impreise. While the use of �nite-preision arithmeti is often e�ient, itis not robust when dealing with degenerate ases or near-degenerate ones. In suhases the primitives may lead to erroneous results. This problem is espeially ompli-ated for geometri algorithms beause they operate on a mixture of numerial andombinatorial data, whose onsisteny might be lost when using limited preisionarithmeti. 4



1.1. Robustness in Computational Geometry Algorithms 5Exat arithmeti number types have been developed in reent years to ope withrobustness in omputational geometry [3, 29, 40℄. They provide exat and more robustimplementations but su�er from two major disadvantages. The �rst one is that theyare more ostly in time and spae. The seond is that ertain primitives (suh astrigonometri funtions) are very hard to implement and are often not implementedat all.There are adaptive evaluation shemes that try to speed up running time andmaintain exatness at the same time. One form is the �oating-point �lter whihapplies exat arithmeti only when determining answers with �oating-point is notpossible [10, 17, 28, 29, 37℄.Degeneraies our when the algorithm needs a speial treatment (for examplethe ollinearity of three points). While most algorithms assume general position,namely assume that degeneraies do not our, the problem of dealing with degen-eraies is left to the implementor who �nds that this problem is very ompliated,and requires onsiderable resoures. An e�ort to deal with degeneraies diretly forertain problems is sometimes a viable solution [4, 15℄.Another kind of e�ort to deal with degeneraies is by symboli perturbation. Theidea is to remove degenerate ases by replaing eah oordinate of every input objetby a polynomial in a su�ient small " symbolially, while maintaining onsisteny ofthe input data [11, 12, 36, 41℄.Heuristi Epsilon is another approah to oping with robustness issues. The ideais to treat the values whose di�erene is smaller than a small parameter " as equal.It is very simple to implement, but su�ers from the fat that the relation of equalityis not transitive [22, 40℄.Finite-Preision Approximation The fous of the thesis. A Finite-PreisionApproximation is a lass of preproessing proedures that perturb the input data tomake it more robust for the algorithm. The goal of most of them is to remove degen-eraies whose identi�ation is not de�nite. Thus the algorithms an in fat assumegeneral position. Often suh preproessing proedures are used to onvert the inputdata into a low-preision representation (suh as Snap Rounding � see Chapter 2).A justi�ation for this sheme is that most likely the input data are obtained bymeasuring real world objets whih might be impreise. Thus, if the perturbation issigni�antly smaller than the possible measurement errors, it should not e�et theorretness of the algorithm. Unlike other tehniques to deal with robustness issues,suh as arbitrary preision number types, �nite-preision approximation algorithmsare designed only for ertain types of objets. There are �nite-preision approxima-tion algorithms that may also hange the type of the data. For example in SnapRounding (see Chapter 2), a segment might be transformed into a polygonal hain.It requires that algorithms that follow an ope with the new type of objets. In thesequel we survey related work done in spei� areas of �nite-preision approximation.In Chapter 2 we desribe work done on Snap Rounding and in Chapter 7 we refer



1.2. Software Libraries for Robust Geometri Computing 6to work on Controlled Perturbation. Additional tehniques that fall in this ategoryappear, for example, in [31, 32, 39℄.1.2 Software Libraries for Robust Geometri Com-putingIn order to support the robust use of geometri algorithms, several omputationalgeometry groups have implemented robust geometri libraries. We fous on twowhih are losely related to the work of this thesis.CGAL - the Computational Geometry Algorithm Library. Cgal is a ol-laborative e�ort of several aademi institutes in Europe and Israel to develop a C++software library of robust geometri data strutures and algorithms [6, 14, 13℄. Themajor goals of the library are robustness, generality, �exibility, e�ieny and ease-of-use. The goals are ahieved by applying both objet-oriented programming and thegeneri programing paradigm. The algorithms we desribe in this work have beenimplemented with a substantial use of Cgal apabilities � see Chapter 5 for details.Our Iterated Snap Rounding pakage has been ompletely �Cgalized� as a part ofthe e�ort of supplying robust implementation of geometri algorithms. For additionalexperimental researh whih extensively uses the Cgal library see [15, 23, 26, 33, 34℄.LEDA - the Library of E�ient Data Strutures and Algorithms. A libraryof e�ient data strutures and algorithms and a platform for ombinatorial and ge-ometri omputing on whih appliation programs an be built [29, 30℄. It suppliesmodules suh as graph algorithms, geometri objets and algorithms or graphialI/O whih over a onsiderable part of ombinatorial and geometri omputing. Ourimplementations mainly use LEDA's arbitrary preision number types, graphial win-dow and graphial output to a postsript �le. These apabilities are used extensivelyby other Cgal implementations too.1.3 Thesis OutlineIn this thesis we present two algorithms to perturb arrangements of line segments inIR2 in order to make them more robust for further manipulation. Line segments inIR2 are the basis of a huge number of algorithms in omputational geometry as wellas other �elds that deal with geometri data suh as omputer graphis, omputer-aided geometri design, and more. Our perturbation algorithms are ategorized as�nite-preision approximation algorithms. Both of them serve as a preproessing stepfor geometri algorithms. We implemented both algorithms and present experimentalresults obtained with the implementation. The �rst one, Iterated Snap Rounding, is



1.3. Thesis Outline 7a variant of the well known Snap Rounding algorithm and the seond one, ControlledPerturbation of Line Segments, is an instane of the Controlled Perturbation sheme,whih follows other instanes that deal with di�erent kinds of geometri objets.Below we outline both new algorithms.Iterated Snap Rounding. We point out that in a snap-rounded arrangement (seeChapter 2) the distane between a vertex and a non-inident edge an be extremelysmall ompared with the width of a pixel in the grid used for rounding. We proposeand analyze an augmented proedure, Iterated Snap Rounding, whih rounds the ar-rangement suh that eah vertex is at least half-the-width-of-a-pixel away from anynon-inident edge. Iterated snap rounding preserves the topology of the original ar-rangement in the same sense that the original sheme does. However, the guaranteedquality of the approximation degrades. Thus eah sheme may be suitable in di�erentsituations. We desribe an implementation of both shemes. In our implementationwe substitute an intriate data struture for segment/pixel intersetion that is usedto obtain good worst-ase resoure bounds for Iterated Snap Rounding by a simpleand e�etive data struture whih is a luster of kd-trees. A paper desribing IteratedSnap Rounding was aepted for publiation [24℄.Controlled Perturbation of Line Segments. We present a perturbation shemeto overome degeneraies and preision problems in omputing an arrangement ofline segments in IR2. The idea behind this sheme is that the output set of linesegments (set, for brevity) is built inrementally by inserting the segments to the set,eah one in its turn, after possibly perturbing them in order to remove degeneraiesthat they indue. Thus the arrangement of the set that we build is degeneray-free.The algorithm follows a sheme named Controlled Perturbation � see Chapter 7 fordetails.The rest of the thesis is organized as follows. We divide it into two main parts:Iterated Snap Rounding and Controlled Perturbation of Line Segments. In the nexthapter we desribe the Snap Rounding sheme and the work that has been done inthis area. In Chapter 3 we present our novel sheme whih we all Iterated SnapRounding. In Chapter 4 we present -Oriented kd-Trees whih onstitute an e�ientsearh struture we use in the implementation of Iterated Snap Rounding, and de-sribe other implementation details in Chapter 5. In Chapter 6 we experimentallyompare Snap Rounding and Iterated Snap Rounding. In Chapter 7 we desribe theControlled Perturbation sheme and the work that has been done in this area. InChapter 8 we present Controlled Perturbation of line segments in IR2 and desribeimplementation details in Chapter 9. In Chapter 10 we present experimental resultsfor Controlled Perturbation of line segments. Conluding remarks and possible di-retions for future work are given in Chapter 12. In Apendix A we supply furthertehnial details onerning the analysis of the Controlled Perturbation algorithm.





Part IIterated Snap Rounding
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Chapter 2Snap Rounding
Snap Rounding is a method that belongs to the family of �nite-preision approxi-mation of geometri strutures. It onverts an arrangement of line segments into alow-preision representation.Given a �nite olletion S of segments in the plane, the arrangement of S, de-noted A(S), is the subdivision of the plane into verties, edges, and faes indued byS. A vertex of the arrangement is either a segment endpoint or the intersetion oftwo or more segments. Given an arrangement of segments whose verties are repre-sented with arbitrary-preision oordinates, Snap Rounding (SR, for short) proeedsas follows [19, 27℄. We tile the plane with a grid of unit squares, pixels, eah enteredat a point with integer oordinates. A pixel is hot if it ontains a vertex of the ar-rangement. Eah vertex of the arrangement is replaed by the enter of the hot pixelontaining it and eah edge e is replaed by the polygonal hain through the entersof the hot pixels met by e, in the same order as they are met by e. See Figure 2 foran illustration.In the proess, verties and edges of the original arrangement may have ollapsed.However, the rounded arrangement preserves ertain topologial properties of the orig-inal arrangement: The rounding an be viewed as a ontinuous proess of deformingurves (the original segments into hains) suh that no vertex of the arrangement everrosses through a urve [21℄ (see Figure 2.2 for an illustration). The rounded versions0 of an original segment s approximates s suh that s0 lies within the Minkowski sumof s and a pixel entered at the origin.RelatedWork. Greene and Yao [20℄ were the �rst to propose a rounding sheme forpolygonal subdivisions. They show that a simple rounding to the losest grid pointsviolates topologial properties and therefore a more sophistiated approah should betaken. They developed a method for perturbing lines slightly at grid points. They dothat by introduing the notion of hooks. A hook is a vetor from a point to its nearestgrid point. The idea behind their method is that intersetions between segments, aswell as intersetions between segments and hooks, are rounded. This rounding sheme10
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(a) (b)Figure 2.1: An arrangement of segments before (a) and after (b) snap rounding (hotpixels are shaded)

Figure 2.2: Two examples of topology violation that are ruled out in SR



12is aomplished without violating many of the topologial properties. This methodprovides a link between the ontinuous and the disrete domain. The problematiaspet is that the number of links of a polyline (namely the number of segments thepolyline is omposed of), whih is the output for a segment, an be large. It an bemuh greater than the same number for SR sine the idea of SR to break segmentswhere they interset hot pixels eliminates the extraneous intersetions. The timeomplexity of the method is O((n + k) logn + hi) where n is the number of inputsegments, k is the number of intersetions among the input segments and hi is thenumber of indued hooks.Hobby [27℄ and Greene [19℄ proposed the SR paradigm. Hobby's algorithm [27℄ forSR is based on the Bentley-Ottmann sweep line algorithm for �nding intersetions ofline segments (although other algorithms an be applied as well). During the sweepthey round the arrangement by utilizing many properties of the hot pixels. The timeomplexity of the algorithm is O((n+ k) logn+Ph2H jhj) where n is the number ofinput segments, k is the number of intersetions among the input segments, H is theset of hot pixels and jhj is the number of segments interseting a hot pixel h.Guibas and Marimont [21℄ give a dynami algorithm for snap rounding an arrange-ment of segments in the sense that segments an be inserted or removed dynamiallyfrom the SR representation. They do it by using ideas from Mulmuley's dynamiinremental onstrution algorithm of a point loation struture based on trapezoidaldeomposition of the arrangement, while maintaining (and produing) only the SRrepresentation of the arrangement of the urrent segments. They also give elementaryproofs of the topologial properties maintained by SR.Goodrih et al. [18℄ present an output sensitive algorithm for SR without �rstdetermining all the intersetion pairs of segments in the input. The main idea isto improve the running time of the algorithm when many segments interset in ahot pixel. Let b be the number of segments interseting inside a pixel. The formermethods had a overhead time of 
(b2) while here the overhead time is O(b log b). Thusthe time omplexity depends on the number of segments and the omplexity insidehot pixels and it is O(n logn +Ph2H jhj logn) where the parameters are de�ned asabove. They present two algorithms: the �rst one is deterministi with the abovetime omplexity and the seond one is randomized with the same expeted runningtime. The �rst one is based on a plane sweep strategy with speial treatment tohot pixels in order to �nd all the segments that interset it. The seond one isbased on dynamially maintaining a trapezoidal deomposition of both segments andboundaries of hot pixels. They also extend SR to a set of line segments in IR3 andgive an output-sensitive algorithm to ompute rounded arrangements. The idea is toround segments to voxels grid. Unlike snap rounding in IR2, segments that almostinterset might indue a hot voxel and thus are rounded to its enter. It is done byde�ning a onnetor to be the smallest segment onneting two given segments. Hotvoxels are de�ned as the ones that ontain segments' endpoints or onnetors whihare smaller than one unit. Then all segments are rounded to hot voxels.Fortune [16℄ extends SR to three dimensions. The input to his algorithm is a



13polyhedral subdivision P in IR3 with a total of n faets. He shows that there is anembedding of the verties, edges, and faets of P into a subdivision Q, where everyvertex oordinate of Q is an integral multiple of 2�dlog2 n+2e. The embedding preservesor ollapses vertial order on faes of P . The subdivision Q has O(n4) verties in theworst ase, and an be omputed in the same time.



Chapter 3Iterated Snap Rounding
3.1 The Distane Between a Vertex and a Non-InidentEdgeWe �rst laim that degeneraies may be indued in the output of SR. The main moti-vation of the ISR algorithm that we present next, is to eliminate those degeneraies.Consider the two segments s; t displayed in Figure 3.1 before and after SR. Wedenote the right endpoint of s0 by s0r. (Reall that u0 is the rounded version of u.)After rounding, t0 penetrates the hot pixel ontaining s0r, but it does not pass throughits enter.We an modify the input segment t so that t0 beomes very lose to s0r: we movethe left endpoint of t arbitrarily lose to the top right orner of the pixel ontainingit. We vertially translate the right endpoint of t far downwards (outside its originalpixel) �the farther down we translate it, the loser t0 will be to s0r.

(a) (b)

t s0 t0s
Figure 3.1: A vertex beomes very lose to a non-inident edge after (b) snap roundingWe annot make t0 arbitrarily lose to s0r. If they are not inident then there isa lower bound on the distane between them. This distane, however, an be rathersmall. Let b denote the number of bits in the representation of the vertex oordinatesof the output hains of SR. We tile a bounding square of the arrangement with 2b�2bunit pixels. In this setting the distane between t0 and s0r an be made as small as14



3.2. Algorithm 15
(b) () (d)(a)

s01 s11 s2;11 s2;21 s3;11 s3;21s3;31
Figure 3.2: Iterated snap rounding for the input (a) results in (d)1=p(2b � 1)2 + 1 � 2�b.One ould argue that although SR produes near-degenerate output, it is still pos-sible, during the rounding proess, to determine the orret topology of the roundedarrangement in the hot pixel ontaining s0r. However, this requires that the outputof SR should inlude additional information beyond the simple listing of polygonalhains spei�ed by their rounded verties, making it more umbersome to use andfurther manipulate.3.2 AlgorithmWe augment SR to eliminate the near-degeneraies mentioned above. Our proedure,whih we all iterated snap rounding (ISR, for short), produes a rounded arrangementwhere an original segment is substituted by a polygonal hain eah vertex of whih isat least 1=2 a unit distant from any non-inident edge.Let S = fs1; s2; : : : ; sng be the olletion of input segments whose arrangementwe wish to round. Reall that a pixel is hot if and only if it ontains a vertex of theinput arrangement. Let H denote the set of hot pixels indued by A(S).Our goal is to reate hains out of the input segments suh that a hain that passesthrough a hot pixel is re-routed to pass through the pixel's enter. The di�ulty isthat one we reroute a hain it may have entered other hot pixels and we need tofurther reroute it, and so on.Our rounding algorithm onsists of two stages. In a preproessing stage we om-pute the hot pixels (by �nding all the verties of the arrangement) and prepare asegment intersetion searh struture D on the hot pixels to answer queries of thefollowing type: Given a segment s, report the hot pixels that s intersets. In theseond stage we operate a reursive proedure, Reroute, on eah input segment.We postpone the algorithmi details of the preproessing stage to the next setionsand onentrate here on the rerouting stage.Reroute is a �depth-�rst� proedure. As we show below, the rerouting that we



3.2. Algorithm 16propose does not add more hot pixels, so whenever we refer to the set of hot pixelswe mean H. The input to Reroute is a segment s 2 S. The output is a polygonalhain s� whih approximates s. Whenever s� passes through a hot pixel, it passesthrough its enter. See Figure 3.2 for an illustration.We next desribe the ISR algorithm. The routine Reroute will produe anoutput hain s�i in the global parameter output_hain as an ordered list of links.If a segment is ontained inside a single pixel, the hain degenerates to a single point.ISRInput: a set S of n segmentsOutput: a set S� of n polygonal hains; initially S� = ;/* stage 1: preproessing */1. ompute the set H of hot pixels2. onstrut a segment intersetion searh struture D on H/* stage 2: rerouting */3. for eah input segment s 2 S4. initialize output_hain to be empty5. Reroute(s)6. add output_hain to S�7. end forReroute(s)/* s is the input segment with endpoints p and q */1. query D to �nd Hs, the set of hot pixels interseted by s2. if Hs ontains a single hot pixel /* s is entirely inside a pixel */3. then add the enter of the hot pixel ontaining s to output_hain4. else5. let m1; m2; : : : ; mr be the enters of the r hot pixels in Hs in the orderof the intersetion along s6. if (r = 2 and p; q are enters of pixels)7. then add the link m1m2 to output_hain8. else9. for i = 1 to r � 110. Reroute(mimi+1)We next disuss the properties of the proedure.We �x an orientation for eah input segment and its indued hains: it is orientedin lexiographially inreasing order of its verties. Thus, a non-vertial segment forexample is oriented from its left endpoint to its right endpoint. (The orientation ofa hain is well de�ned sine, as is easily veri�ed, a hain is (weakly) x-monotoneand (weakly) y-monotone.) We represent the operation of Reroute on a segmentsi as a tree Ti. The root ontains si. The leaves of the tree ontain the outputpolygonal hain s�i , one link in eah node, ordered from left to right where the �rst



3.2. Algorithm 17s01s11s2;11s3;11 s2;21s3;21 s3;31Figure 3.3: The tree T1 orresponding to Reroute(s1) for s1 of Figure 3.2. Nodesdenoted by full-line irles ontain segments with whih we query the struture D.The dashed-line irle denotes a node ontaining an exat opy of the segment of itsparent.link is in the leftmost leaf. Eah internal node � together with its hildren representone appliation of Reroute (without reurrene): the segment s of �, whih passesthrough the hot pixels with enters m1; m2; : : : ; mr, is transformed into the linksmqmq+1; q = 1; : : : ; r � 1 whih are plaed in the hildren of � ordered from left toright to preserve the orientation of the hain. We denote all the segments in the nodesat the jth level from left to right by sj;1i ; sj;2i ; : : : ; sj;li;ji , where li;j denotes the numberof nodes at this level. We denote the hain onsisting of all the links at level j orderedfrom left to right by sji . Thus s0i = si. We denote by ki the depth of the tree for si,and let k := maxni=1 ki. For notational onveniene, if a leaf � is at level k� < k thenwe add a linear path of ki � k arti�ial nodes desending from � and all ontainingthe same link that � ontains (we denote it di�erently at any level aording to thelevel). See Figure 3.3 for an illustration of the tree T1 orresponding to segment s1 ofFigure 3.2. We denote by s(�) the segment (or link) that is ontained in the node �.The next lemma gives an alternative view of ISR.Lemma 3.1 Given a set of segments S, the output of ISR is equivalent to the �naloutput of a �nite series of appliations of SR starting with S, where the output of oneSR is the input to the next SR.Proof: One we determine the hot pixels H, snap rounding an input segment s (i.e.,by the standard SR) an be done independently of the other segments. That is, theinformation neessary for rounding is in H. Notie that the hains s1i ; i = 1; : : : ; nare the result of applying SR to the original input segments S.The ruial observation is that SR does not reate new hot pixels. It an breaka segment into two segments that meet at the enter of an existing hot pixel, but itannot reate a new endpoint nor a new intersetion point (with another segment)



3.2. Algorithm 18whih are not at the enter of an existing hot pixel�this would violate the topologypreservation properties of SR [21℄.It follows that with the same set H of hot pixels, the hains sj+1i ; i = 1; : : : ; n arethe result of applying SR to the links in the hains sji ; i = 1; : : : ; n, and so on.The proess terminates when the link in eah leaf of the tree has its endpointsin the enter of hot pixels and it does not ross any other hot pixel besides the hotpixels that ontain its endpoints.The tree ontinues to grow beyond level j only as long as for at least one node �in level j when we query with s(�) we disover a new hot pixel through whih s(�)passes. We laim that a hot pixel is not disovered more than one per tree. This isso sine, as already mentioned, eah hain sji is (weakly) x-monotone and (weakly)y-monotone. Sine there are at most O(n2) hot pixels, the proess will stop after a�nite number of steps. �The lemma's algorithmi interpretation is ine�ient, but it is useful for provingsome of the following properties.Corollary 3.2 ISR preserves the topology of the arrangement of the input segmentsin the same sense that SR does.Proof: The topologial properties that are preserved by SR an be summarized byviewing SR as a ontinuous proess of deforming urves (the original segments intohains) suh that no vertex of the arrangement ever rosses through a urve [21℄.Sine SR does not reate new verties, the assertion follows from Lemma 3.1. �Lemma 3.3 (i) If an output hain of ISR passes through a hot pixel then it passesthrough its enter.(ii) In the output hains eah vertex is at least 1/2 a unit away from any non-inidentsegment.Proof: Claim (i) follows from the de�nition of the proedure Reroute. Sine allthe verties of the rounded arrangement are enters of hot pixels, laim (ii) is animmediate onsequene of (i). �A drawbak of ISR is that an output hain s�i an be farther away from theoriginal segment si ompared with the hain produed for the same input segment bySR. Reall that ki denotes the depth of the reursion of Reroute(si).Lemma 3.4 A �nal hain s�i lies in the Minkowski sum of si and a square of sidesize ki entered at the origin.



3.3. Algorithmi Details and Complexity Analysis 19Proof: In SR, a rounded segment s0 lies inside the Minkowski sum of the inputsegment s and a unit square entered at the origin. Sine ISR is equivalent to kiappliations of SR, the laim follows. �This deviation may be aeptable in situations where the pixel size is su�ientlysmall or when k := maxni=1 ki is small.3.3 Algorithmi Details and Complexity AnalysisLet I denote the number of intersetion points of segments in the original arrange-ment A(S). We �rst ompute the set H of hot pixels. For that we use an algorithmfor segment intersetion. This ould be done with a plane sweep algorithm, or moree�iently in O(I + n logn) time by more involved algorithms [2, 7℄. To ompute thehot pixels, the algorithm should also be given a pixel's width w and a point p thatwill be assigned the oordinate (0; 0). The plane will be tiled with pixels that wewill onsider to be of unit width, and their enters will have integer oordinates. Wedenote the number of hot pixels by N . Notie that N is at most O(n+ I).Remark. One ould alternatively detet the hot pixels by the SR algorithm ofGoodrih et al. [18℄ and thus get rid of the dependene of the running time of thealgorithm on the number of intersetions I. Notie however that for this step alone(namely for deteting the hot pixels) and for ertain inputs (e.g., the input depitedin Figure 3.4 and desribed below) this alternative is ostly.Next we prepare the data struture D on the hot pixelsH to answer segment inter-setion queries. We onstrut a multi-level partition tree [1℄ on the vertial boundarysegments of the hot pixels, and an analogous tree for the horizontal boundary seg-ments. The partition trees report the segments interseted by a query segment sfrom whih we dedue the hot pixels interseted by s. Eah tree requires O(M1+")preproessing time when allowedM units of storage for N �M � N2. A query takesO(N1+"=pM + g) time, where g is the number of hot pixels found [1℄.How many times do we query the struture D for segment intersetion?Lemma 3.5 If an output hain s�i onsists of li links then during Reroute(si) thestruture D is queried at most 2li times.Proof: During Reroute(si) when we query with a link (line 1 of Reroute) eitherwe do not �nd new hot pixels (new for the rounded version of si) in whih ase weharge the query to the link whih is then a link of the �nal hain, or we harge it tothe �rst new hot pixel (reall that we assigned an orientation to eah segment and toeah link). Eah �nal link is harged exatly one and eah vertex of the �nal hainis harged at most one, besides the last vertex whih is never harged. The bound



3.3. Algorithmi Details and Complexity Analysis 20follows. �Let L denote the overall number of links in all the hains output by ISR. Wesummarize the performane bounds of ISR in the following theorem.Theorem 3.6 Given an arrangement of n segments with I intersetion points, theiterated snap rounding algorithm requires O(n logn + I + L2=3N2=3+" + L) time forany " > 0 and O(n + N + L2=3N2=3+") working storage , where N is the number ofhot pixels (whih is at most 2n+ I) and L is the overall number of links in the hainsprodued by the algorithm.Proof: To �nd the intersetions of the input segments we use Balaban's algorithmwhih requires O(n logn + I) time and O(n) working storage. When an intersetionis found we simply keep its orresponding hot pixel. For onstruting and queryingthe multi-level partition trees (by Lemma 3.5 we perform at most 2L queries overall)we use a standard trik that balanes between the preproessing time and the overallquery time, and does not require that we know the number of queries in advane.See, e.g., [8℄. �Next we disuss ombinatorial bounds on the maximum omplexity of the roundedarrangements. Interestingly, as shown next, there is no di�erene between the maxi-mum asymptoti omplexity of the rounded arrangements between SR and ISR.Theorem 3.71 Given an arrangement of n segments in the plane, in its roundedversion: (i) the maximum number of hot pixels through whih a single output hainpasses is �(n2), and (ii) the maximum overall number of inidenes between outputhains and hot pixels is �(n3). (iii) The maximum number of segments in the roundedarrangement (namely without ounting multipliities) is �(n2), and if the input seg-ments indue N hot pixels then this number is �(N). All these bounds apply both toSR and to ISR.Proof: The upper bounds in laims (i) and (ii) are obvious. To see that thesebounds are tight onsider the following onstrution (see Figure 3.4). We take n=2long horizontal segments spanning a row of n2=4 pixels. Next we take n=2 short,slightly slanted segments, eah spanning n=2 pixels suh that overall eah pixel in therow is interseted by exatly one short segment. The short segments are slanted suhthat in eah pixel that they ross they interset exatly one of the long segments.Eah pixel in the row is now a hot pixel, and eah of the long segments rosses allthe hot pixels. The rounding obtained with both SR and ISR is the same.1The slanted version of our horizontal onstrution was suggested to us by Olivier Devillers.Claim (iii) is due to Mark de Berg.



3.3. Algorithmi Details and Complexity Analysis 21
Figure 3.4: �(n) hains in the rounded arrangement are eah inident to �(n2) hotpixels

Figure 3.5: The slanted version yields �(n) rounded segments with �(n2) links eahThe onstrution yields a degenerate rounded arrangement. Eah of the outputhains is in fat a horizontal line segment. This onstrution an be slanted so thateah rounded version of a long segment is a hain with �true� 
(n2) links. In theslanted version we use n2=2 pixels arranged in n2=4 rows. In eah row at least onepixel is hot. See Figure 3.5 for an illustration.Finally, we ignore the hains, and we ask how omplex an the rounded arrange-ment be, that is, we ignore multipliities (overlap) of hains. Obviously, the roundedarrangement an have 
(n2) omplexity. But this is also an upper bound sine the(rounded) arrangement has N verties and it is a planar graph. Therefore the numberof edges an be at most O(N). N an be at most O(n2). Again, our arguments donot depend on how the rounding was done (by SR or ISR). �We onlude this setion with a worst-ase tight bound on the distane betweenan original segment and its output hain produed by ISR.Theorem 3.8 The maximum distane between an input segment and its output hainis �(n2).Proof: Reall that n is the number of segments in the input. Let d be the distanebetween a ertain input segment and its output hain. Sine there are at most O(n2)hot pixels and eah one may add at most p2=2 units to d, the upper bound follows.To see that this bound is tight, onsider Figure 3.6(a)2. There are n� 1 segments ar-ranged vertially similar to the onstrution in Figure 3.4, induing �(n2) hot pixels.2A similar idea that is improved by this example was suggested by Shai Hirsh.



3.3. Algorithmi Details and Complexity Analysis 22We refer to this onstrution asW. The segments ofW together with the segment weadd below ompose the input. The enter of the lowest hot pixel inW is at (0; 0) whilethe highest one is at (0; a) where a = �(n2) and even. We add a segment with integeroordinates s = ((0; a); (b; 0)) (meaning that the endpoints of s are (0; a) and (b; 0))where b = a2 . There are no other segments in the input besides the ones involved inWand s. Thus there are no hot pixels lying to the right ofW beside the one entered at(b; 0). Let s� be the output hain for s. Notie that for eah , b �  � a, the segment((0; ); (b; 0)) intersets the hot pixel whose enter is at (0;  � 1). Therefore duringthe proess of ISR, s� will slide down W, eah time penetrating more hot pixels frombelow. The work on s� stops when reahing the hot pixel whose enter is at (0; b�1).Thus s� will be omposed of the hain (0; a); (0; a � 1) : : : (0; b); (0; b � 1); (b; 0) (seeFigure 3.6 for an illustration). It is easy to verify that the distane from (0; b � 1)(whih is a vertex of s�) to s is 
(n2). The laim follows. �

(b)
s0s

(a)Figure 3.6: An input example for whih the maximum distane between the input(a) and the output hain of ISR (b) is 
(n2)



Chapter 4-Oriented Kd-Trees
In our implementation we use a plane sweep algorithm to �nd the intersetions be-tween segments in S and thus we identify the hot pixels. The non-trivial part toimplement is the searh struture D with whih we answer segment/pixel interse-tion queries. In the theoretial analysis we use partition trees for D, as these lead toasymptotially good worst-ase omplexity. In pratie, (multi-level) partition treesare di�ult to implement. Instead, we implemented a data struture onsisting ofseveral kd-trees. Next we explain the details.Observation 4.1 A segment s intersets a pixel p of width w, if and only if theMinkowski sum of s with a pixel of width w entered at the origin ontains the enterof p.We ould use Observation 4.1 in order to answer segment intersetion queries inthe following way: build a range searh struture on the enters of the hot pixels.Let s be the query segment and M(s) be its Minkowski sum with a pixel entered atthe origin. Then query the struture with the range M(s). Unfortunately, the knowndata strutures for this type of queries are similar to the multi-level data struturesthat we have used in Chapter 3.Instead we use kd-trees as an approximation of this sheme. A kd-tree answersrange queries for axis-parallel retangles [9℄. Its guaranteed worst-ase query time isfar from optimal but it is pratially e�ient. A trivial solution would be to querywith the axis-parallel bounding box ofM(s), whih we denote by B(s); see Figure 4.1.This may not be su�iently satisfatory sine the area of B(s), whih we denote byjB(s)j, may be muh larger than the area of M(s).If we rotate the plane together with M(s) the (area of the) axis-parallel boundingbox hanges whereas M(s) remains �xed. The di�erene between the bounding boxesfor two di�erent rotations an be huge. Our goal is to produe a number of rotatedopies of the set of enters of hot pixels so that for eah query segment s there will beone rotation for whih the area of the bounding box is not too muh di�erent from23
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Figure 4.1: The bounding box of the Minkowski sum of a segment with a pixelentered at the origin. The shaded area is the redundant range.the area of M(s). Notie that if a segment s is rotated by �=2 radians, the size of therelevant bounding box remains the same. Sine the determination of whih rotationto hoose is dependent only on the size of the respetive bounding box, the range ofrotations should be the half-open interval [0 : �=2).We onstrut a olletion of kd-trees eah serving as a range searh struture for arotated opy of the enters of hot pixels. We all this luster -oriented kd-trees. Let be a positive integer and let �i := (i� 1) �2 for 1 � i � . The struture onsistsof  kd-trees suh that the i-th kd-tree, denoted by kdi, has the input points rotatedby �i. Let Ri(s) be the segment s rotated by �i. For eah query with segment s wedo the following: for eah kdi; 1 � i � , we ompute jB(Ri(s))j. Let 1 � h �  bethe serial number of the kd-tree for whih jB(Rh(s))j = mini=1 jB(Ri(s))j. Then weuse the h-th kd-tree to answer the query with the segment s rotated by �h. Finally,we disard all the points for whih the segment does not interset the respetive hotpixels.We next disuss a few important issues regarding the implementation and usageof this struture.
Exat rotations. We used exat arithmeti to implement ISR. Unfortunately, theavailable exat arithmeti number types do not support the alulations of sines andosines whih are neessary for alulating rotations. Instead we use only anglesfor whih the sines and osines an be expressed as rational numbers with smallenumerator and denominator [5℄. We keep an array Z of approximations to the sinesof integer degree angles between 0 � 89. We emphasize that one we �x an angle� we have the exat sine and osine of �. What we annot do is obtain the exatvalues of the trigonometri funtions of a presribed arbitrary angle. Sine our hoieof rotation angles is heuristi to begin with, the preise angle is immaterial, and theangle we use is never more than one degree o� the presribed angle. Moreover, thereare tehniques to ahieve better approximations [5℄, but we prefer not to use thembeause of performane reasons.



25How big should  be? There are advantages and drawbaks in using few kd-tress,say even one kd-tree ompared to using many. When using one kd-tree, we are proneto get many false points in the range queries, resulting in more time to �lter out theresults. When using many kd-trees, we need to invest time in their onstrution anda little more time per query to �nd the best rotation. Our experiments show that inmany ases a small number of trees su�es. Consider for example the numerial table�di�erent number of kd-trees� in Figure 6.1. (The rounding example in this �gure aswell as the other examples are explained in detail in Chapter 6; here we only refer tothe number of kd-trees used in their omputation.) The �rst olumn shows how manykd-trees were used and the last olumn shows how muh time the overall reroutingstage took ompared with the time when using only one kd-tree (the full legend isgiven in Table 10.1). The best performane is obtained when we use 7 kd-trees. Thetime savings in this ase is 17% over using a single kd-tree. The analogous table inthe next example (Figure 6.2) shows that in that example there is no bene�t in usingmore than one kd-tree.1 In the next paragraph we present a heuristi improvementof the number of kd-trees. However, we leave the omputation of the best number ofkd-trees together with the best rotation angles of eah one for further researh.Skipping kdi's. Sine  should be small, we expet most of the links of a ertaininput segment to have the same rotation as the input segment, sine they should allhave nearby slopes. Let Ji be the number of input segments that are rotated by �i.If Ji is very small, it is not e�etive to reate the respetive kd-tree. Thus we �xa lower limit � , and onstrut a kd-tree kdi only if Ji � � . Obviously � should bea funtion of , and be su�iently small to ensure that at least one kd-tree will beonstruted. We hose to use � = n2 . In the examples of Figures 6.1 and 6.2 Ji isalways greater than n2 . In other examples, suh as geographi data, not all  treesare always onstruted�in Figure 6.3, when the algorithm is given  > 7 it hoosesto skip some of the kdi's. In this example, using more than one kd-tree is wastefulsine the map is relatively sparse, most of the segments are relatively small omparedto the whole map and the bounding box of their Minkowski sum with a unit pixeldoes not interset many hot pixels enters.

1The running time indiated in the tables is in seonds while using arbitrary preision rationalarithmeti. The pixel size in the �rst example is 1 and in the seond example is 15.



Chapter 5Implementation Details
We implemented ISR in C++, using many apabilities of Cgal [6℄. The pakagede�nes a C++ lass to work on [38℄. The programmer uses our pakage by reatinginstanes of the lass. The implementation is generi in the sense that eah lassis templated with a number type of whih the data are omposed. The user of oursoftware hooses whih number type to apply with the template mehanism of theC++ language.The main input of the pakage is a set of line segments while the output is a setof polygonal hains.The user an hoose the output format. It an be either a text �le desribing theoutput or a graphi window in whih both the input and the output are drawn (thegraphi window is the Leda window [29℄).Exept for Cgal apabilities that we expliitly mention, we applied other Cgalelements suh as geometri prediates, points, segment, vetor and intersetion oper-ations.The pakage supports both ISR and SR. It is up to the user to deide whihone to apply. The way to onvert the ISR algorithm to SR is simply to onstrainthe reursion depth of the Reroute routine to one (see Chapter 3), meaning thatthe output polygonal hains are determined immediately by the hot pixels that theoriginal segments interset.ISR and SR are onveniently implemented with an exat number type, otherwisethe topology of the input line segments may be violated. We implemented ISR withthe Leda rational number type [29℄. It is possible that under ertain assumptions, SRand ISR may be implemented with �nite-preision arithmeti.Reall that we use the -oriented kd-trees as our searh struture (see Chapter 4).As a �rst step for reating the -oriented kd-trees, we have to �nd the hot pixels.This is done by applying a plane sweep algorithm [6℄. For that we use the planesweep pakage of Cgal. Reall that the -oriented kd-trees are omposed of severalkd-trees. We use the kd-tree pakage of Cgal to implement that. The user an26



27hoose the number of trees to use.The ISR pakage has beome a part of Cgal.



Chapter 6Rounding Examples: SR vs. ISR
To give the �avor of how the output of ISR di�ers from that of SR we present therounding results for three input examples; see Figures 6.1, 6.2, and 6.3. For eahexample we display the input, the SR result and the ISR result. Then we zoom inon a spei� area of interest in these three drawings�an area where the roundingshemes di�er notieably. A square near a drawing represents the atual pixel sizeused for rounding. Then we provide two tables of statistis. The �rst one refers tothe best number of kd-trees as related to the disussion in the previous setion. Theseond table summarizes the di�erenes in the rounding for di�erent pixel sizes. Theabbreviations we use in these two tables are explained in Table 6.1. The deviation ofa hain from its induing segment s is the maximal distane of a point on the hainfrom s.6.1 Congestion DataThe data ontains 200 segments with 18; 674 intersetions; see Figure 6.1. (For larity,the pitures in Figure 6.1 depit a similar example with only 100 segments.) Thebottom left part of the arrangement is zoomed in.Both rounding shemes will ollapse thin triangles that have two orners loseby. However, not allowing proximity between verties and non-inident edges, ISRollapses `skinny' faes of the arrangement that SR does not (see the bottom of thezoomed-in area), for example triangles that have one orner lose to the middle ofthe opposite edge.For pixel size 1, SR and ISR are very di�erent and the number of verties thatare less than half a unit away from a non-inident edge in the SR output is in thehundreds. The average deviation in ISR in this example is never more than 2.5times that of the orresponding SR output. For pixel size greater than 1 the averagedeviation of a hain in ISR is almost the same as in SR. However, for pixel size smallerthan 1, the average deviation is larger in the ISR output than in the SR output.28



6.2. Triangulation Data 29Abbreviation Explanationinkd input number of kd-treesnkd atual number of kd-trees reatednfhp overall number of false hot pixels in all the queriestt total time relative to using one treemd maximum deviation over all hainsad average deviationmnv maximum number of verties in an output hainanv average number of verties in an output hainmdvs minimum distane between a vertex and a non-inident edgenvs number of pairs of a vertex and a non-inident edgethat are less than half the width of a pixel apartps pixel sizenhp number of hot pixelsTable 6.1: AbbreviationsIn terms of ombinatorial omplexity the results are similar and the average num-ber of verties per hain is roughly the same in both outputs. This is a phenomenonwe have observed in all our experiments.6.2 Triangulation DataFigure 6.2 shows a set of input points (ourtesy of Jak Snoeyink) and a triangulationof this set. The triangulation onsists of 906 segments. The zoomed in pitures showa part of the triangulation for whih there is onsiderable di�erene between SR andISR.Again ISR ollapses thin polygons that SR does not ollapse. The seond table inFigure 6.2 shows that in this ase the average deviation of a hain in both shemesdoes not di�er by muh. The maximum deviation in ISR is always less than twiethe pixel width. Here also the average number of links per hain is almost the samefor the output of SR and ISR.6.3 Geographi DataWe ran both shemes on several geographi maps of ountries and ities whih are lessluttered than the examples above. The experiments for this type of data typiallyshow little di�erene between the SR and ISR results. Figure 6.3 depits the resultfor a map of the USA. The data ontains 486 segments interseting only at endpoints.The seond table in Figure 6.3 shows the di�erene of using SR and ISR. In most



6.3. Geographi Data 30of the tests, there are oasional ases in whih the distane between a vertex and anon-inident segment is shorter than half the size of a pixel. Thus there are di�erenesbetween the SR and the ISR output. These di�erenes are however minor. In theISR output the maximum deviation is no more than twie that of the SR output.The average deviation in both the SR and ISR output is similar.



6.3. Geographi Data 31

Input SR output ISR output
Input zoom in SR output zoom in ISR output zoom ininkd nkd nfhp tt1 1 613477 100% = 213.2 s2 2 513551 87.2%3 3 474997 83.6%4 4 478749 84%5 5 479507 84.3%6 6 463025 83.4%7 7 456882 83%8 8 456269 84%9 9 455334 84.8%10 10 456196 86.3%Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs nvs md ad mnv anv mdvs nvs0.125 8488 1.01 0.19 120 90.96 0.08 0 0.09 0.09 106 87.95 0.04 170.25 8261 1.5 0.41 124 94.15 0.15 0 0.17 0.17 112 89.16 0.06 580.5 7711 1.68 0.67 135 97.9 0.28 0 0.35 0.35 126 91.66 0.08 1351 6003 1.58 0.99 154 101.85 0.55 0 0.71 0.71 153 95.99 0.07 3282 2538 1.51 1.41 101 72.9 1.26 0 1.41 1.41 101 72.87 0.88 33 1143 2.12 1.84 67 49.1 2.12 0 2.12 1.84 67 49.09 1.34 14 673 2.82 2.7 51 37.56 2.82 0 2.82 2.7 51 37.56 2.82 05 439 3.53 3.32 41 30.31 3.53 0 3.53 3.32 41 30.3 2.23 110 120 7.07 6.6 21 15.58 7.07 0 7.07 6.6 21 15.58 7.07 0ISR and SR omparison (n = 200)Figure 6.1: Congestion data
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Input points Input triangulation SR output ISR output
Input zoom in SR output zoom in ISR output zoom ininkd nkd nfhp tt1 1 4872 100% = 15.4 s2 2 4789 103.2%3 3 4852 102.6%4 4 4597 101.9%5 5 4487 102.6%6 6 4349 103.2%7 7 4349 102.6%8 8 4399 102.6%9 9 4419 103.2%10 10 4358 102.6%Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs nvs md ad mnv anv mdvs nvs2 306 2.231 0.825 6 2.219 1.223 0 1.341 0.812 6 2.198 0.318 95 300 9.804 2.691 7 2.625 3.14 0 3.494 2.442 6 2.48 0.741 5010 249 17.194 5.18 9 2.761 5.368 0 7.028 4.847 7 2.637 1.414 4515 195 22.088 6.985 10 2.75 9.486 0 10.559 6.512 10 2.622 2.631 6720 162 32.207 7.614 9 2.621 11.767 0 13.914 7.19 8 2.532 4.85 45ISR and SR omparisonFigure 6.2: Triangulation data



6.3. Geographi Data 33
Input SR output ISR output

Input zoom in SR output zoom in ISR output zoom ininkd nkd nfhp tt1 1 293 100% = 9.11 s2 2 306 102%3 3 302 103.1%4 4 284 103.8%5 5 293 105%6 6 275 106%7 7 260 106.8%8 6 269 106.1%9 8 272 107.9%10 8 253 107.9%Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs nvs md ad mnv anv mdvs nvs0.125 486 0.097 0.088 4 2.098 0.111 0 0.088 0.088 4 2.096 0.045 10.25 485 0.353 0.177 5 2.113 0.196 0 0.176 0.176 5 2.107 0.039 20.5 480 0.392 0.353 4 2.104 0.377 0 0.353 0.353 4 2.100 0.039 21 475 1.414 0.715 5 2.137 0.569 0 0.707 0.707 5 2.115 0.196 32 432 2.236 1.063 5 2.137 1.264 0 1.414 1.043 5 2.102 0.392 93 379 3.807 1.353 5 2.037 2.121 0 2.121 1.336 5 2.020 1.341 24 338 3.333 1.764 6 1.991 2.828 0 2.828 1.758 5 1.983 1.264 25 299 4.735 2.124 5 1.897 3.535 0 3.535 2.110 4 1.884 1.581 310 177 10.606 3.732 5 1.615 7.071 0 7.071 3.696 5 1.602 7.071 0ISR and SR omparisonFigure 6.3: Geographi data
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Part IIControlled Perturbation of LineSegments
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Chapter 7Controlled Perturbation
Controlled Perturbation is another kind of �nite-preision approximation tehnique.More preisely, it is a framework whose details need to be worked out for di�erentkinds of objets. The name of this sheme is Controlled Perturbation sine it isontrolled in two aspets. First, by determining the size of the perturbation, weontrol the running time of the perturbation sheme and set a tradeo� between themagnitude of the perturbation and the e�ieny of the omputation. Seond, aftereah objet is proessed, the perturbation algorithm guarantees that it indues nodegeneraies. Generally, the sheme proeeds as follows.Let S = fs1; s2; : : : ; sng be the set of input objets. Eah objet s 2 S is inserted inits turn. Possibly, eah s 2 S is further divided into m � 1 parts, Q(s) = q1; q2 � � � qm,ordered in a spei� order determined by the algorithm. Then eah part q 2 Q(s)is inserted in its turn. In eah insertion we hek if q indues degeneraies with thealready inserted objets. (In what follows �an objet indues degeneraies� alwaysrefers to �with the already inserted objets�.) If not, it is inserted. Otherwise we haveto perturb q. We next desribe how to do so in our algorithm (other algorithms ofthis sheme apply similar ideas). We de�ne the set Q(s) suh that eah q 2 Q(s) hasa unique vertex, vq, whih is perturbed if neessary in order to remove degeneraies.We perturb vq in the following way. We de�ne a dis C, entered at vq with a radiusr. r is omputed suh that when piking up a point p randomly inside C, we areguaranteed that with a reasonable probability, ' (for example 12), if we plae vq atp then the objet q attahed to vq will not indue any degeneraies. We pik up aplaement for vq randomly inside C and hek if any degeneray is indued. If not, q isinserted. Otherwise we ontinue hoosing plaements for vq in the same way until we�nd a degeneray-free plaement. Sine the probability to indue no degeneraies is', we �nd a degeneray-free perturbation after 1' trials on the average. The seletionof the parameter ' is a tradeo� between the size of the perturbation and the e�ienyof the omputation. The larger ' is, the bigger the perturbation magnitude is, butthe probability of �nding degenerate-free plaement is greater, thus less trials on theaverage should su�e. We set ' = 12 in our implementation.36



37Related Work. Halperin and Shelton [25℄ were the �rst to propose a ControlledPerturbation algorithm. Their goal was the elimination of degeneraies indued byolletions of spheres in IR3. They desribed a software pakage for omputing andmanipulating the subdivision of a sphere and for omputing the boundary surfae ofthe union of spheres. Their implementation was a omponent in a pakage aimed tosupport geometri queries on moleular models. The exuse for the perturbation isthat the model is approximate to begin with. The time omplexity of their methodis linear in the number of spheres in the input.It was followed by Raab in [33, 34℄ who proposed a Controlled Perturbation algo-rithm to eliminate degeneraies indued by polyhedral surfaes in IR3. The motivationwas to reate a robust model for swept volume appliations. A swept volume is de�nedas the geometri spae oupied by an objet moving along a trajetory in a giventime interval. Her swept volume appliation omputes the boundary of a olletionof three-dimensional polyhedra and employs vertial deomposition as its �nal step.



Chapter 8Controlled Perturbation of LineSegments
8.1 IntrodutionIn this hapter, we propose a Controlled Perturbation algorithm for arrangement ofline segments in IR2 (CPLS for short). CPLS follows the framework desribed inChapter 7. While this framework has been applied for olletion of spheres [25℄ andpolyhedral surfaes [34℄, we propose a novel sheme of the framework, for arrange-ments of line segments in IR2.The idea of CPLS is to perturb the above arrangement into a robust representationfor further manipulation. This is done by eliminating degeneraies indued in thearrangement. Degeneraies are eliminated by slightly perturbing some of the linesegments induing them, reating degeneray-free data.8.2 Preliminaries and Key IdeasWe use the following notation throughout the hapter. S = fs1; s2; : : : ; sng is the setof input line segments ordered arbitrarily. Si denotes the set of the �rst i segmentsof S. For eah si 2 S we denote its endpoints by pi and qi (we relate to pi as the �rstendpoint, and to qi as the seond one; this hoie is arbitrary). As we show later, theperturbation of eah s 2 S has two phases. In the �rst one pi is possibly perturbed.We denote by p0i the result of the �rst phase on pi, either perturbed or not. We denoteby s0i the segment p0iqi. In the seond phase, qi is possibly perturbed. We denote byq0i the result of the seond phase on qi, either perturbed or not. We denote by s00i thesegment p0iq0i. s00i is the CPLS output for si. Let S 00i = fs001; s002 : : : s00i g and A = S 00n.Then A is the output of CPLS, namely the set of the output segments produed byCPLS. 38



8.2. Preliminaries and Key Ideas 39The goal of CPLS is to eliminate degeneraies indued in arrangements of linesegments so that the algorithms that manipulate the input further will be robust. Inorder to de�ne a degeneray formally, we use a resolution parameter, "0 > 0, whihis another input of the algorithm. Two features are degenerate if they are not "0-away from eah other (i.e, the distane between them is less than "0). We need touse other two arti�ial resolution parameters whih annot be smaller than "0. Theyare denoted by �1 and �2. The idea is that when perturbing a segment si, �1 is theresolution parameter of p0i (more preisely, we demand that a dis entered at p0i witha radius �1 is empty) and �2 is the resolution parameter of q0i and s00i (more preisely,we demand that a dis entered at q0i with a radius �2 is empty and that the distanebetween s00i and any vertex indued by S 00i�1 is at least �2). We need two di�erentresolution parameters for the endpoints sine as we show below, the work on p0i isdi�erent from the work on q0i. They also di�er from "0 sine "0 is used for a ertaindegeneray whih must have smaller perturbation magnitude than �1 and �2 � seeAppendix A.2.4. We disuss the exat relations among the resolution parameters inSetion 8.7 and Appendix A.2.4.In order to eliminate degeneraies we use the following perturbation proess. Weorder the line segments arbitrarily and possibly perturb eah one in its turn. Foreah line segment si, we possibly perturb pi and qi several times. If pi indues degen-eraies, it is perturbed in order to �nd a plaement in whih it does not indue anydegeneray. The perturbation of qi is di�erent sine its goal is not only to eliminatethe degeneraies indued by qi, but also to eliminate the ones indued by the wholes0i. If qi or s0i indue degeneraies, we perturb qi until all degeneraies are eliminated.One the work on an endpoint is done, its plaement is determined and it is neverperturbed again. Eah endpoint is perturbed inside a dis whose enter is the orig-inal endpoint and whose radius is alled a perturbation radius. Sine the goals ofthe perturbations of pi and qi are di�erent, di�erent perturbation radii are used foreah one. We denote the perturbation radii by Æ1 and Æ2 for pi and qi respetively.The radii are determined suh that the probability that a plaement of an endpointindues a degeneray is no more than 12 . We hoose a plaement for the endpointat random (inside the dis) until no degeneray is indued. Sine the probability toindue degeneraies after the perturbation is no more than 12 , after no more than 2perturbations on the average we �nd a degenerate-free plaement. The determinationof the values of Æ1, Æ2, �1 and �2 are tehnial (and tedious) and hene postponed toAppendix A.Previous Controlled Perturbation algorithms [25, 34℄ applied optimization teh-niques in order to make the work and the outome of the algorithm more e�ient. Weimplemented these optimizations and desribe how we apply them in our algorithm� see Setion 8.5.A ritial deision when designing a geometri algorithm is whether to use �nite-preision arithmeti or exat arithmeti. We desribe the advantages and disad-vantages of using eah one and explain why we hoose to implement CPLS with�nite-preision arithmeti. Other Controlled Perturbation algorithms [25, 34℄ used



8.2. Preliminaries and Key Ideas 40�nite-preision arithmeti as well.Throughout the algorithm we use the following atomi operations (we assume thateah operation takes O(1) time):� Finding an intersetion between two line segments.� Finding the distane between a segment and a point.� Piking up a random point inside a dis.We expet the perturbation radii and the resolution parameters to be muh smallerthan the length of the input line segments. Otherwise CPLS is not aeptable for theinput sine line segments may be perturbed signi�antly. In that ase, the user shouldrefrain from using CPLS and resort to other �xed-preision approximation shemes.We next give a formal de�nition of this issue.De�nition 8.1 CPLS is onsidered �-aeptable for an input set S of segments andfor a parameter � if and only if Æ=L � � where Æ is the largest perturbation radiusand L is the length of the longest input line segment in S.Note that the biggest perturbation radius is bigger than any resolution parameter(see Equation A.6 and Theorem A.4). Thus if the perturbation is �-aeptable,then for eah resolution parameter ", "=L � � holds. We get that CPLS is �-aeptable if any resolution parameter and perturbation radius is at least 1� timessmaller than the longest input segment. Thus the perturbation magnitudes will berelatively small, provided that � is small enough. We arbitrarily hoose � = 110 in ourimplementation. Our experiments have shown that with a reasonable input resolutionparameter and input that is not extremely ongested, CPLS is found �-aeptable.The above de�nition is ruial for both the CPLS algorithm and its analysis, as weshow below.Disussion: CPLS vs. SR and ISR. SR (see Chapter 2), as well as ISR (seeChapter 3), have basially the same goal as CPLS, but the results of SR and ISRompared with CPLS are quite di�erent. Both make the verties of the originalarrangement well separated. In SR and ISR all verties inside a ertain pixel areollapsed to the enter of it, possibly introduing new degeneraies. The situation isdi�erent in CPLS. Here verties of the original arrangement are perturbed to maketheir distane not less than a given threshold. In that sense, the results are somewhatopposite to SR and ISR. An advantage of SR and ISR over CPLS is that they preserveertain topologial features while CPLS does not. On the other hand, an advantage ofCPLS over SR and ISR is that the output type is maintained (line segments) while SRand ISR transform segments into polygonal hains. While SR has the property that anoutput hain is very lose to its original segment this is not the ase for ISR and CPLS



8.3. The Degeneraies 41where the distane between an original segment and its output depends on the inputsegments and the parameters of the algorithm. In SR the distane between a vertexand a non-inident edge an be extremely small induing potential degeneraies. Thisis not the ase for ISR and CPLS. While ISR and SR an maintain planar subdivisions,CPLS is onstrained to work with segments. The above disussion implies that CPLSprovides another sheme to reate a robust approximation of an arrangement of linesegments in IR2 beyond the well known SR and our ISR. Eah sheme may be suitablein di�erent situations.8.3 The DegeneraiesReall that a vertex of an arrangement of line segments is either an endpoint, e, or anintersetion point i of two segments. Let s be a segment. Three types of degeneraiesare possible in an arrangement of line segments:D1 : endpoint - line segment It takes plae when the distane between e ands (where e is not an endpoint of s) is smaller than a given threshold.D2 : intersetion - line segment It takes plae when the distane between i ands (where s is not one of the segments that indue i) is smaller than a given threshold.D3 : two endpoints It takes plae when s is short enough suh thatits endpoints indue degeneraies.8.4 AlgorithmAs we desribed earlier, eah line segment is proessed in two phases, one for eahendpoint. Next we explain the details of eah phase. For brevity we omit the speialase of s1 whih involves only perturbations due to degeneraies of type D3 in whihonly q1 might be perturbed suh that it is su�iently far from p01 = p1.First phase. In this phase pi is possibly perturbed. The possible degeneraies inthis ase are of type D1. We �rst hek whether no s00j 2 S 00i�1 indues a degeneraywith pi. If so, we set p0i = pi. Otherwise we have to perturb pi. The perturbationis done as follows. We perturb pi randomly in a dis entered at pi with a radiusÆ1, giving p0i. We hek if p0i indues degeneraies of type D1. If not, the work onp0i is done. Otherwise, we ontinue hoosing plaements at random inside the samedis entered at pi until we �nd a plaement for whih p0i indues no degeneraies.Reall that Æ1, the radius of the dis, is determined suh that the probability that aplaement of an endpoint indues degeneraies is no more than 12 . In Appendix A weshow that this holds for any Æ1 � 8mR�2� , where m is the maximum number of linesegments that were inserted into A by the time that a ertain s 2 S is inserted, whihan be very lose to s or interset it (we desribe how to estimate m in Setion 8.6),



8.5. Optimizations 42R is the ratio �1�2 (the size of �1 is determined in this way, namely we set �1 to be R�2;we give the details in Setion 8.7), and �2 is the resolution parameter for the seondphase (see Theorem A.4).Seond phase. In this phase, s00i is inserted into A. Sine the loation of p0i isalready determined, only qi may be perturbed suh that none of the following typesof degeneraies arise:D3 between p0i and q0i.For eah s00j 2 S 00i�1:D1 indued by either p0j or q0j and s00i .D1 indued by q0i and s00j .For eah s00j ; s00k 2 S 00i�1; j 6= k (the order of j and k is not important):if s00j intersets s00k, D2 indued by this intersetion and s00i .For eah s00j ; s00k 2 S 00i�1; j 6= k (the order of j and k is important):if s00j intersets s00i , D2 indued by this intersetion and s00k.We hek if s0i indues degeneraies. If not, q0i = qi and s0i is inserted into A. Oth-erwise, we perturb qi inside a dis entered at qi with a radius Æ2 in the same manneras done for pi above. Reall that Æ2 is determined suh that the probability that aplaement of an endpoint indues a degeneray is no more than 12 . In Appendix A weshow that this holds for any Æ2 � 4�2� (m(m+3)(L+ 8mR�2� )�2pR2�1 + 2(m + 1)), where m, R and�2 are de�ned as in the �rst phase and L is the length of the largest line segment inS. Figure 8.1 depits two results of Controlled Perturbation of an arrangement offour line segments. Notie that both degeneraies of types D1 and D2 are eliminated,but the topology of the original arrangement may not be preserved.The omplexity of the proedure is analyzed in Setions 8.5, 8.6, 8.7 and in Ap-pendix A, and is summarized in Theorem 8.8.
8.5 OptimizationsWe desribe two typial optimization tehniques to improve the quality of the outputand the performane of the algorithm. These tehniques were previously applied inthe ontext of Controlled Perturbation [25, 34℄. The �rst one deals with a usefultehnique to �nd a group of andidate segments for the degeneraies tests. By thatwe improve the performane of CPLS sine we prevent many possibly redundant tests



8.5. Optimizations 43
(a) (b) ()Figure 8.1: An arrangement of line segments (a) and two di�erent results of CPLS(b),()of degeneraies. The seond one deals with reduing the perturbation magnitudes.By ahieving smaller perturbations we improve the quality of the output sine theoutput line segments are loser to the original ones. Our CPLS implementation usesthese tehniques and we base our analysis on them.8.5.1 Tiling the PlaneLet si 2 S be a segment that is urrently perturbed. We need to �nd the segmentsthat indue degeneraies with si. We ould hek all the segments in Si�1 for thatbut in pratie we an do better. Let U(si) � Si�1 be the set of segments that mayindue degeneraies with si, after possibly perturbing the segments. Then it su�esto work only with segments of U(si). We next desribe a way to �nd a superset ofU(si), whih may still be muh smaller than Si�1.Let � be the smallest magnitude that satis�es the following ondition: if the dis-tane between two line segments is equal or greater than � , then there is no possibilitythat a degeneray whih is a result of both is indued. In Setion 8.6 we show that� = 2max(Æ1; Æ2) + �1. We use the following de�nition throughout this setion.De�nition 8.2 Let o1 and o2 be two geometri objets and d(o1; o2) be the minimaldistane between them. We say that two objets are �-lose if d(o1; o2) < �.Let V (si) = fs 2 Sjsi and s are � -lose}. The following learly holds:Observation 8.3 U(si) � V (si).Reall that L is the maximum length of a segment in S. We tile the plane witha grid of squares, H, whose edge length is L suh that the point (0; 0) is a vertexof the tiling. We keep the squares that are used (as desribed below) in a balaned



8.5. Optimizations 44binary tree. Let Hsi � H be the squares that are interseted by si or are � -lose tosi. Let S(Hsi) � Si�1 be the set of segments that interset Hsi or are � -lose to Hsi.Obviously eah segment s 2 V (si) intersets at least one square h 2 Hsi or is � -loseto it but possibly other segments that are not � -lose to s may also interset Hsi. Weget the following.Observation 8.4 V (si) � S(Hsi).From observations 8.3 and 8.4 we get that U(si) � S(Hsi). Thus the tests for de-generaies with si an be restrited to the segments of S(Hsi). Now the problemis restrited to �nding S(Hsi). We desribe next how we do that. Then the workfor �nding S(Hsi) for all the segments is done as a preproessing step when all theparameters neessary for omputing the resolution parameters are determined (morepreisely after the work desribed in Setions 8.6 and 8.7). During the perturbationproess, eah segment si points to S(Hsi) and we use the segments of S(Hsi), afterbeing possibly perturbed, when testing for degeneraies with Si.Notie that if CPLS is �-aeptable then � � 3�L. Then, if CPLS is �-aeptable,for eah � we an bound the number of squares whih si intersets or that are � -loseto si by a onstant (reall that the edge length of the square is L). Reall that wehoose � = 110 . With that value the bound of the number of suh grid squares is 7.It follows that if we denote by w the maximum possible number of segments in eahsquare, then jS(Hsi)j = O(w). The algorithm proeed as follows. We �rst �nd thesquare h1 2 H that ontains pi. We insert h1 into Hsi. Then we hek eah one ofthe 8 neighboring squares of h1 to see if si intersets it or if si is � -lose to it. LetH1 � H be the group of squares that satisfy this ondition. Eah h 2 H1 is insertedinto Hsi. Then we apply the same proedure we applied to h1 to eah h 2 H1 andpossibly �nd another set H2 � H of squares. Then eah h 2 H2 is inserted to Hsi.We do not need to searh for neighbors of the squares in H2 sine by that time Hsiis omplete. The reason is that other squares are too far to interset or be � -lose tosi. Obviously we take are not to insert a square twie.For eah h 2 H let S(h) be the list of segments interseting h or that are � -loseto h (S(h) is built inrementally in the proess we desribe below). For eah h 2 Hbeing inserted to Hsi, we insert eah s 2 S(h) to S(Hsi) and insert si to S(h). Weneed to avoid inserting the same segment twie, thus the data struture that holdsS(Hsi) is implemented as a balaned binary tree. By the time we �nish the abovealgorithm, we are guaranteed that S(Hsi) is omplete.The work we desribed above is for �nding the segments that an indue degen-eraies with si, thus appropriate when inserting qi. When inserting pi the work is alittle di�erent sine we need to �nd the segments that may indue degeneraies withpi. The only di�erene is that instead of �nding Hsi, we have to �nd Hpi � H whihare the squares that are �-lose to pi where � = max(Æ1; Æ2) + Æ1 + �1 (the di�erenefrom � is that we regard the perturbation of a vertex pi and not of an entire segment).The following laim is similar to the one we desribed above for si: If CPLS is �-



8.5. Optimizations 45aeptable, then jS(Hpi)j = O(w). Thus the asymptoti omplexity of the proeduredoes not hange.Another important point is to estimate the number of degeneraies that are testedwhen proessing a ertain line segment. This estimation e�ets the omplexity of thework. For example, when testing degeneraies with intersetions of line segments,we expet that the number of degeneraies to be tested would be quadrati in thenumber of line segments that might indue degeneraies. We denote this quantity by	(w). We postpone the various estimations of 	(w) to Appendix A.The following theorem summarizes the disussion above.Theorem 8.5 Finding the set of segments that are tested with the urrently insertedsegment for degeneraies takes O(n(logn + w logw)) preproessing time and O(wn)working storage for all the inserted segments together, where w is the maximum pos-sible number of segments in eah square.Proof: Reall that n is the number of segments in the input. For a segment si,�nding and inserting squares to the squares data struture takes O(logn) time. SineS(h) and S(Hsi) are implemented as a list and a balaned binary tree respetively,the work on them takes O(w logw) time. Together the total time for n segmentsis O(n(logn + w logw)). There are at most O(n) squares, eah holds at most O(w)segments. For eah segment inserted we build the tree S(Hsi) with O(w) nodes. Thusthe working storage is O(nw). �
8.5.2 Reduing the Perturbation MagnitudeIf a vertex must be perturbed then we would like to move it as little as possible. Sineour algorithm does not �nd the smallest perturbation that removes the degeneraies,whih is a very ompliated and time onsuming task, we take another strategy. Thedisussion below is relevant both to the �rst and the seond phases. As mentionedin Setion 8.4, we hek if there is a need to perform perturbations to eliminatedegeneraies. If there is, we perturb the vertex randomly inside a dis whose enteris the original plaement of the vertex in order to �nd a degeneray-free plaement.The size of the dis (namely its radius Æ) is su�iently large so that no more thantwo perturbation trials on the average are needed. Sine Æ is an upper bound whih�ts extreme ases of ongested areas suh that the various forbidden plaements donot overlap, there is a great hane that a smaller radius is su�ient. Thus theoptimization is arried out as follows. We begin with a smaller radius, r (we hoose rto be 10 times bigger than the largest resolution parameter, �1 � see Lemma A.2 andthe details following it), making a few random trials in order to �nd a degeneray-freeplaement (let  be a parameter we �x for the number of suh trials). If we �nd one,we are done. Otherwise we double r, making at most  additional random trials inside



8.6. Computing � and m 46the larger dis. We ontinue this way until we �nd a degeneray-free plaement. Ifwe reah a point in whih r � Æ, we set r to be Æ, and ontinue with the same runtil we �nd a degeneray-free plaement. With Æ as the radius, we need at most twotrials on the average to get a degeneray-free plaement. The reason for stopping atthis radius is that we do not want the perturbation to be larger than Æ in order toonstrain the perturbation magnitude and to satisfy the perturbation analysis. Wenext give an upper bound on the expeted running time of this proedure.Theorem 8.6 Finding a degeneray-free plaement for any vertex takes O(	(w) log Æ�1 )expeted time.Proof: Let � be the largest integer that satis�es 10�2��1 < Æ. Then the series ofthe radius sizes is f10�1; 20�1; : : : ; 10 � 2��1; Æg, where for eah one  trials are arriedout exept for the last one, in whih a small onstant number of trials are arriedout. Thus the number of trials is O( log Æ�1 ). Sine eah trial involves O(	(w)) tests(reall that 	(w) is a funtion that determines the number of potential degeneraiesthat might be involved as a funtion of w), the total expeted time is O(	(w) log Æ�1 ).�
8.6 Computing � and mThis setion desribes a preproessing step of the perturbation algorithm. We de�ned� as the smallest magnitude suh that if the distane between two line segments isequal or larger than � then there is no possibility that a degeneray whih is a resultof both is indued. We start by evaluating � .Two segments annot indue a degeneray if after they are perturbed, their dis-tane is equal to or greater than some resolution parameter. The largest resolutionparameter we enounter is �1 (see Appendix A). We onlude that:� = 2max(Æ1; Æ2) + �1:We are now ready to give a formal de�nition of the parameter m whih wasmentioned above. We de�ne m to be the maximum number of line segments insertedby the time a ertain segment s 2 S is inserted, whih may indue degeneraies withs, namely the segments that are � -lose to s. Thus m strongly depends on � whihin turn depends on Æ1,Æ2 and �1. On the other hand, aording to Appendix A, Æ1,Æ2 and �1 depend on m. Therefore we need to �nd a way to determine the values ofthese parameters.Let � = fÆ1; Æ2g. Sine the smaller the value of m is, the smaller the perturbationmagnitudes are, we want to �nd the smallest m suh that together with the values of



8.7. Approximating the Best Ratio (R) 47� there are indeed no more than m segments whih are � -lose to a ertain one. Wepropose three approahes:I We begin with m = 1, ompute the values of the parameters in � and hek ifthere are at most m = 1 segments � -lose to any segment s 2 S with theappropriate values of �. If this is the ase, we set m to 1 and the values of theparameters in � aordingly. Otherwise, we inrement m by one and do theabove again. We ontinue with this sheme until there are at most m segments� -lose to a ertain segment s 2 S with the appropriate values of �. Obviouslywe are guaranteed to stop when we reah m = n. We use the tiling tehniqueas desribed in Setion 8.5.1 to �nd the potentially lose segments.Complexity. We have at the worst ase n tests for a valid m. From Theorem 8.5eah one takes O(n(logn + w logw)) time. Thus the total time omplexity isO(n2(logn + w logw)). The working storage is O(nw) as in Theorem 8.5.The problem is that this approah inreases the asymptoti time omplexity ofthe algorithm signi�antly.II We simply let m = n and alulate the values of the parameters in �.Complexity. There is a onstant number of omputations. Thus the total timeis O(1).In this way, the parameters of � get upper bound values whih are obviouslyvalid for applying CPLS. Nevertheless, this approah is problemati sine al-though we save time, we may get very big perturbation radii whih degrade thequality of the output.III We ompute the parameters of � when m = n. The values we get are valid upperbounds sine m is upper-bounded by n. With these values we �nd what is thenumber of segments whih are � -lose to a ertain segment s 2 S and set it tom. Obviously, this value is an upper bound of the real m beause the real m issupposed to be found with parameters whih are less than or equal to the oneswe get here. Now we realulate the values of the parameters in � aording tothe newly found m. We use the tiling tehnique here too.Complexity. The same as the tiling tehnique sine it is applied one: O(n(logn+w logw)) time and O(nw) working storage.This approah has a muh better time omplexity than the �rst one. Althoughwe an get larger perturbation radii, our experiments have shown that they arestill relatively small. In that sense, it is better than the seond approah. Thuswe use this approah throughout the artile and in our implementation. All theomplexity alulations are e�eted by this approah.



8.7. Approximating the Best Ratio (R) 48

lÆ1(R)
Æ2(R)

Figure 8.2: Æ1 and Æ2 as funtions of R. The thik line is GÆ(R)8.7 Approximating the Best Ratio (R)This setion desribes yet another preproessing step. Thus it is strongly related tothe proedure that is desribed in Setion 8.6. Reall that R determines the ratioof the two resolution parameters �1 and �2. A nie and simple approah would beto set R to be the one that makes the maximum of the perturbations radii minimal.For simpliity we hoose R to be an integer. It has to be bigger than 1 so the squareroot in the inequality de�ning Æ2 is real (see Theorem A.4). Notie from the valuesof Æ1,Æ2 and �2 in Theorem A.4 that if all the parameters but R are onstant, Æ1(R)is an inreasing monotone funtion and Æ2(R) is a dereasing monotone one.Let GÆ(R) = max(Æ1(R); Æ2(R)). We get that GÆ(R) has one loal minimum,l (see Figure 8.2). We are interested in �nding l sine it is exatly the value forwhih the maximum between the perturbations radii is minimal. More preisely, foronveniene we searh only for integers bigger than 1. Let l0 denote the loal minimumfor integers. We �nd l0 by applying a variation of binary searh with R, while R rangesfrom 1 to some very big value (denoted by M). M an be the maximum integer, themaximum double, or other onstants depending on the arhiteture (we hose it to bethe maximum double). For eah R being heked, we make an iteration of approahIII in order to �nd the values of the various parameters. When the binary searh isover, R is set to l0. The exeption is the following ase. Although M has a very bigvalue, there is a possibility that l0 > M . In that ase R is set to M . Exept forthis extreme ase, the deviation from the optimal R is small. The following theoremsummarizes the preproessing work of CPLS:Theorem 8.7 The preproessing work of CPLS takes O(n logM(logn + w logw))time and O(nw) working storage.



8.8. Disussion: Exat Arithmeti vs. Finite-Preision Arithmeti 49Proof: Sine we make a binary searh over M , eah time applying the approahIII, the time bound follows. The working storage is not e�eted by the searh. �
8.8 Disussion: Exat Arithmeti vs. Finite-PreisionArithmetiAn important disussion onerning the implementation of geometri algorithms iswhether to use �nite-preision or exat arithmeti. By using exat arithmeti, weare guaranteed to get aurate results. Unfortunately, by using the available exatarithmeti number types whih support square root operation (as CPLS requires),we get a huge time and spae overhead. On the other hand, under ertain assump-tions, CPLS an use �nite-preision arithmeti and still produe valid results. Theassumption is that the resolution parameter "0 is hosen su�iently big suh thatdegeneraies are not indued due to the errors with the mahine preision. (We areurrently investigating this issue to determine the relation between "0 and the mahinepreision.) We implemented our software with �oating-point arithmeti. Earlier Con-trolled Perturbation [25, 34℄ also rely on this assumption when using �oating-pointarithmeti.The idea behind our sheme is that sine the output has a �nite-preision repre-sentation and has no degeneraies, following manipulations that use �nite-preisionarithmeti an safely use it. The same assumption mentioned above regarding theresolution parameter holds here too, namely that the resolution parameter is ho-sen su�iently big so that degeneraies are not indued due to the errors with themahine preision.We next point out another problem whih may arise when using �nite-preisionarithmeti. This problem is relevant to the earlier Controlled Perturbation algorithmsas well.Points inside forbidden loi. Reall that the radius of the perturbation dis ishosen suh that the area of the dis is at least twie bigger than the sum of the areasof all possible forbidden loi (namely, those that indue degeneraies). Thus whenpiking up a point inside the dis, we have a probability of at least 12 to be outsidethe forbidden loi. If we use �nite-preision arithmeti, it is not obvious that thisis the ase. Consider the example in Figure 8.3. The point p has to be perturbedinside the dis C where the resolution parameter is ". Sine we use �nite-preisionarithmeti, we have a grid of points, K, to pik up randomly inside C (the blakpoints in Figure 8.3). The forbidden loi are indued by the �ve strings rossing C(denoted by Z). These are the shaded retangles in Figure 8.3. Note that the width ofeah z 2 Z is 2". Let Y = Z \C. Therefore, Y is the forbidden loi. The strings areplaed suh that they over all the points of K. Thus we never get a degenerate-free



8.9. The Main Theorem 50

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���C p

Figure 8.3: A ase where all the grid points are inside the forbidden loiplaement. Even if not all the points are inside forbidden loi, the probability to geta degenerate-free plaement an be signi�antly less that 12 , resulting in a hard workto �nd one.From the example in Figure 8.3 we an onlude that if there are m segmentsinduing these strings and the perturbation radius is Æ, then Æ � 2m". However, thereal magnitudes of Æ1 and Æ2 are usually muh bigger than 2m" and therefore thisexample is not realisti. Here the pratial assumption is that " is su�iently largerthan the mahine preision and hene situations as the one depited in Figure 8.3 willbe ruled out. Our experiments on�rm that this problem does not arise.8.9 The Main TheoremWe onlude this hapter by giving the main theorem of CPLS.Theorem 8.8 Given n input line segments and a resolution parameter "0, a validperturbation of the line segments an be omputed in O(n logM(logn + w logw) +nw(log Æ1�1 +w log Æ2�1 )) expeted time and O(nw) working storage, and the output sizeis n, where the parameters are desribed below. M is a big onstant that an beexpressed in the number type that is used. w is the maximum number of line segmentsin a grid square as desribed in Setion 8.5.1.  is the number of trials done in orderto �nd a degenerate-free lous before enlarging the radius of the perturbation dis.�1 = R�2 is the biggest resolution parameter related to the �rst perturbation phasewhere �2 = r (1+2�)"0Lq1��24 is related to the seond perturbation phase, R is simply theratio �1�2 , L is the length of the longest input line segment in the input and � is theaeptane parameter of CPLS. Æ1 and Æ2 are the perturbation radii for the �rst andseond verties of a line segment respetively. The values of Æ1 and Æ2 are hosen suh



8.9. The Main Theorem 51that Æ1 � 8mR�2� and Æ2 � 4�2� (m(m+3)(L+ 8mR�2� )�2pR2�1 + 2(m + 1)) where m is the maximumnumber of line segments that were inserted into the output by the time that a ertains 2 S is inserted, whih an be very lose to s or interset it (See Appendix A formore details on these magnitudes.)Proof: The omplexities above are the results of summing up the omplexitiesin Theorems 8.6, 8.7, A.1 and A.3. The output has O(n) size sine eah input linesegment ontributes one, possibly perturbed, line segment to the output. �



Chapter 9Implementation Details
The implementation details we desribed that are not spei� to ISR (see Chapter 5)are relevant here too. We next desribe more implementation details of the CPLSpakage.The main input and the main output of the pakage are sets of line segments. TheControlled Perturbation is a framework for several types of algorithms (see Chapter 7).Thus we have designed our pakage more generally for Controlled Perturbations inIR2. The main lass is a general frame to perform Controlled Perturbation algorithms.It is separated from the type of objets that use it. Its knowledge is the ControlledPerturbation framework (see Chapter 7) and the optimizations (see Setion 8.5). Inorder to use it, it has to be templated with the information of the objet, its perturba-tion details, and as other lasses of Cgal [6℄, the arithmeti number type. The objetand its perturbation are separated in order to allow di�erent perturbation shemesfor the same type of objets. The advantage of our design is that one the ControlledPerturbation frame lass is implemented, it is suitable for other kinds of objets andperturbations. Using this frame, we built the CPLS pakage by templating both linesegments and our perturbation algorithm. Future Controlled Perturbation algorithmsin IR2 will be able to apply the same frame lass, making the work easier to imple-ment and support. This was exatly the ase when we developed and implementedControlled Perturbation algorithms for both arrangements of polygonal lines and ar-rangements of polygons (whih are extensions not desribed in this thesis). We used�oating-point arithmeti for implementing CPLS.

52



Chapter 10Experimental Results
We present two kinds of experimental results obtained with the CPLS pakage. Foreah one we give quantitative magnitudes that indiate the quality of CPLS.We hoose "0 suh that the other resolution parameters (�1 and �2) will be suf-�iently large ompared with the resolution of the standard double (�oating-point)number type. Notie that the only omputation involving "0 is when we determine�2. We alulated �2 using LEDA's big�oat number type1 [30℄. We observed and on-�rmed that the omputed value �2 was the same when using either big�oat or double.The rest of the omputation was arried out with the standard mahine double.The abbreviations we use in this setion are explained in Table 10.1.
10.1 Congestion DataThe input for this example is similar to the one we used in Setion 6. The di�erene isthat this one has only 100 segments with 2150 intersetions. The segments' boundingbox lower left orner is (0; 0) and upper right orner is (100; 100). For larity, thepitures in Figure 10.1 depit a similar example with resolution 1e-15 so that theperturbations are su�iently large to be visible. In order to show the di�erenesbetween the input and the output more learly, the bottom left part of the exampleis zoomed in.Æ1 and Æ2, the number of perturbed verties and the atual size of the perturbationsare bigger as we use a bigger "0. The atual average and maximum perturbationsare muh smaller than Æ1 and Æ2. It shows that the optimization that we desribe inSetion 8.5.2 redues the perturbation magnitudes signi�antly. The average numberof trials to �nd a valid perturbation for a vertex does not exeed 3.476.1LEDA's big�oat mimis �oating-point representation with user-�xed mantissa length (we set itto 100) and arbitrary length exponent. 53



10.2. Random Data 54Abbreviation Explanationn number of input line segmentsnvp average number of perturbed vertiesap average perturbationmp maximum perturbationant average number of trials to �nd a valid perturbationfor a vertexTable 10.1: Abbreviations10.2 Random DataThe input for this example is a set of line segments whose oordinates are hosenrandomly inside a bounding retangle whose lower left orner is (0; 0) and upper rightorner is (1; 1). We divided the experiments into four di�erent numbers of segments:100, 200, 300 and 400. For eah one we reated a random set and tested eah oneseveral times, eah time with a di�erent resolution parameter. For larity the pituresin Figure 10.2 depit a similar example with only 50 segments in a bigger resolutionparameter (2e-9) so that the perturbations are su�iently large to be visible. In orderto provide a nie example with visible degeneraies elimination, the oordinates ofthree segments of the input were determined by us instead of being randomly hosen.The input-zoom-in piture shows a part of the set in whih these three line segmentsindue degeneraies with other line segments. The degeneraies and their elimination,as shown in the output-zoom-in piture, are learly visible.We tested di�erent number of line segments to see the e�et of the density on theresults. When we inrease the number of line segments, �2 does not hange while�1, Æ1, Æ2, the number of perturbed verties and the atual average and maximumperturbations beome bigger. As in the previous example, the atual average andmaximum perturbations are muh smaller than Æ1 and Æ2. The e�et of hanging theresolution parameter is also similar to the previous example. The average number oftrials to �nd a valid perturbation for a vertex does not exeed 2.01.



10.2. Random Data 55

Input Output

Input zoom in Output zoom in"0 �1 �2 Æ1 Æ2 nvp ap mp ant1e-18 9.384e-3 1.201e-8 2.365 2.365 149 0.092 0.348 3.4761e-20 2.95e-3 1.201e-9 0.743 0.743 149 0.028 0.115 3.2681e-22 9.315e-4 1.201e-10 0.234 0.234 149 9.114e-3 0.0346 3.2411e-24 2.943e-4 1.201e-11 0.074 0.074 149 2.866e-3 0.011 3.0931e-26 9.308e-5 1.201e-12 0.023 0.023 149 9.019e-4 2.904e-3 3.073Statistis (n = 100)Figure 10.1: Congestion data



10.2. Random Data 56

Input Output

Input zoom in Output zoom inn "0 �1 �2 Æ1 Æ2 nvp ap mp ant100 1e-17 5.483e-4 3.798e-9 0.138 0.138 1 3.338e-3 3.338e-3 1100 1e-18 3.021e-4 1.201e-9 0.076 0.076 1 1.986e-3 1.986e-3 1100 1e-19 1.679e-4 3.798e-10 0.042 0.042 1 1.367e-3 1.367e-3 1100 1e-20 9.384e-5 1.201e-10 0.023 0.023 1 7.109e-4 7.109e-4 1200 1e-17 8.401e-4 3.798e-9 0.425 0.425 21 6.009e-3 8.349e-3 1.428200 1e-18 4.46e-4 1.201e-9 0.226 0.226 12 3.493e-3 4.459e-3 1.416200 1e-19 2.428e-4 3.798e-10 0.123 0.123 7 1.657e-3 2.403e-3 1200 1e-20 1.34e-4 1.201e-10 0.067 0.067 5 7.78e-4 1.229e-3 1.2300 1e-17 1.145e-3 3.798e-9 0.871 0.871 50 7.679e-3 0.021 1.74300 1e-18 5.801e-4 1.201e-9 0.441 0.441 29 3.736e-3 5.633e-3 1.31300 1e-19 3.074e-4 3.798e-10 0.234 0.234 16 1.944e-3 2.97e-3 1.062300 1e-20 1.672e-4 1.201e-10 0.127 0.127 9 1.202e-3 1.518e-3 1.222400 1e-17 1.496e-3 3.798e-9 1.52 1.52 114 0.01 0.298 2.01400 1e-18 7.196e-4 1.201e-9 0.731 0.731 60 4.652e-3 7.923e-3 1.683400 1e-19 3.696e-4 3.798e-10 0.375 0.375 39 2.565e-3 6.739e-3 1.384400 1e-20 1.974e-4 1.201e-10 0.2 0.2 19 1.455e-3 1.973e-3 1.421StatistisFigure 10.2: Random data



Chapter 11Implementation Details
We implemented both ISR and CPLS with C++, using many apabilities of Cgal[6℄. Eah pakage de�nes a C++ lass to work on [38℄. The programmer uses ourpakages by reating instanes of these lasses. The implementation is generi inthe sense that eah lass is templated with a number type with whih the data areomposed of. The user of our software hooses whih number type to apply with thetemplate mehanism of the C++ language.The main input of the appliations is a set of line segments while the outputs area set of polygonal hains of segments for ISR and a set of the perturbed segments forCPLS.The user an hoose the output format. It an be either a text �le desribing thearrangements in the output or a graphi window in whih both the input and theoutput are drawn (the graphi window is the Leda window [29℄).Exept for Cgal apabilities that we expliitly mention, we applied other Cgalelements suh as geometri prediates, points, segment, vetor and intersetion oper-ations.We next disuss implementation details of eah pakage.ISR. The ISR pakage supports both ISR and SR. It is up to the user to deidewhih one to apply. Generally speaking, the way to onvert the ISR algorithm toSR is simply to onstrain the reursion depth of the Reroute routine to one (seeChapter 3), meaning that the output polygonal hains are determined immediatelyby the hot pixels that the original segments interset.Sine, as presented, ISR and SR must be implemented with an exat number type,we implemented the pakage with the Leda rational number type [29℄.Reall that we use the -oriented kd-trees as our searh struture (see Chapter 5)for ISR. As a �rst step for reating the -oriented kd-trees, we have to �nd the hotpixels. This is done by applying a plane sweep algorithm [6℄. Reall that the -57



58oriented kd-trees are omposed of several kd-trees. We use the kd-tree pakage ofCgal to implement that. The user has the ability to hoose the number of trees touse.The ISR pakage has beome a part of Cgal.CPLS. The Controlled Perturbation is a framework for several kinds of algorithms(see Chapter 7). Thus we have designed our pakage more generally for ControlledPerturbations in IR2. The main lass is a general frame to perform Controlled Pertur-bation algorithms. It is separated from the kind of objets that use it. Its knowledgeis the the Controlled Perturbation frame and the optimizations for reduing pertur-bation size and the tiling of the plane (see Chapter 8). In order to use it, it hasto be templated with the information of the objet, its perturbation details, and asother lasses of Cgal, the arithmeti number type. The objet and its perturbationare separated in order to allow di�erent perturbation shemes for the same kind ofobjets. The advantage of our design is that one the Controlled Perturbation framelass is implemented, it is suitable for other kinds of objets and perturbations. Usingthis frame, we built the CPLS pakage by templating both line segments and our per-turbation algorithm. Future Controlled Perturbation algorithms in IR2 will be able toapply the same frame lass, making the work easier to implement and support. Thiswas exatly the ase when we developed and implemented Controlled Perturbationalgorithms for both arrangements of polygonal lines and arrangements of polygons(whih are beyond the sope of this thesis).We used �oating-point arithmeti for implementing CPLS.



Chapter 12Conlusion
We presented two types of �nite-preision approximation tehniques for arrangementsof segments in the plane. The goal of these tehniques is to reate robust data forfurther manipulation of the input. Eah tehnique may be suitable in di�erent situa-tions. We implemented both tehniques and presented experimental results obtainedwith our implementation.12.1 Iterated Snap RoundingWe presented an augmented Snap Rounding proedure whih rounds an arbitrarypreision arrangement of segments in IR2 with the advantage that eah vertex in therounded arrangement is at least half a unit away from any non-inident edge. Thenew sheme makes the rounded arrangement more robust for further manipulationwith limited preision arithmeti than the output that the standard Snap Roundingalgorithm produes. We have proved that the maximum distane between an orig-inal segment and its output hain is �(n2) in the worst ase. On the other hand,many examples have demonstrated a very small deviation, no more than a small on-stant number of pixels. We believe that real-world data behave in this way and notlike pathologial examples suh as the one we used to prove the lower bound. Weimplemented ISR using exat arithmeti.We propose several diretions for further researh: (1) Can deteting all the hotpixels through whih an output hain passes be done more e�iently? (2) Extendthe sheme to non-linear urves. (3) The rounded arrangement an have at mostO(n2) segments, whereas our algorithm (as well as the known algorithms for SR)may produe 
(n3) output links. The task here is to devise an output sensitivealgorithm where the output size is the size of the rounded arrangement and not theoverall omplexity of the hains. (4) Improve the heuristis for hoosing the diretionsof the kd-trees. (5) Find a sheme that ontrols both the distane of a vertex and anon-inident edge and the maximum perturbation magnitude.59



12.2. Controlled Perturbation of Line Segments 6012.2 Controlled Perturbation of Line SegmentsWe presented an algorithm that eliminates degeneraies from an arrangement of linesegments by perturbing the endpoints of the input segments slightly. Thus makingthe rounded arrangement more robust for further manipulation. We implemented thealgorithm using �oating-point arithmeti. Our experimental results have generatedrelatively very small perturbations.We have reently also developed algorithms for Controlled Perturbations of botharrangements of polygonal lines and arrangements of polygons. We implementedboth of them and ahieved good results. We intend to report on these ControlledPerturbations algorithms in a separate report.We propose several diretions for further researh: (1) In our work we assumedthat we are given a su�iently large " so that omputing with �oating-point arith-meti an be arried out safely. To �ll up the gap here one needs to determine,given the spei� arithmeti preision, what is the smallest " > 0 with whih allthe omputations in CPLS an be done safely. (2) Reall that the perturbations ofthe �rst and seond endpoints are di�erent. The result is that it is possible thatthe output of CPLS hanges if we hange the order of the endpoints of some of theline segments. Another e�et on the result of CPLS an be indued by hanging theorder of insertion of the line segments in the input sine the perturbation of a ertainline segment depends on the segments that preede it. The task here is to devise away for determining good orders both of the line segments in the input and of theendpoints along the line segments. Good orders would be ones with whih there isa onsiderable probability that the atual perturbation magnitudes would be smallerthan the ones ahieved with random orders. (3) Apply the Controlled Perturbationsheme to other kinds of objets.



Appendix AComputing Æ1 and Æ2In this appendix we derive upper bounds on Æ1 and Æ2, the perturbation radii of the�rst and seond endpoints of a line segment respetively.We remind the reader of the notation introdued in Chapter 8. The same notationis used throughout the appendix. S = fs1; s2; : : : ; sng are the input line segmentsordered arbitrarily. We denote by si 2 S the segment that is urrently perturbed.We denote its endpoints by pi and qi (we relate to pi as the �rst endpoint, andto qi as the seond one; the order is arbitrary). Let p0i be the result of the �rstphase on pi, either perturbed or not. Let s0i be the segment p0iqi. Let q0i be theresult of the seond phase on qi, either perturbed or not. Let s00i be the segmentp0iq0i. Let S 00i = fs001; s002; : : : ; s00i g be the set of the �rst i perturbed segments. LetP 0i = fp01; : : : ; p0i; q01; : : : ; q0ig. Let A = fs00js 2 Sg. As we mentioned in Setion 8.2,A is the output of CPLS. We denote by m the maximum number of line segmentsinserted by the time any segment s is inserted, that an indue degeneraies with s.w is the maximum number of line segments that interset or are � -lose to a gridsquare as desribed in Setion 8.5.1.A.1 First Phase: Computing Æ1Reall that Æ1 is the perturbation radius of the �rst endpoint and �1 is the resolutionparameter in this ase. Eah s00 2 S 00i�1 de�nes a forbidden plaement for p0i. Thisplaement is the Minkowski sum of s00 and a dis entered at the origin with a radius�1. It is easy to show that the maximum area whih it an ut from the perturbationdis is when s00 passes through pi and intersets the perturbation dis twie. Thisarea is bounded by a retangle whose area is 2�1�2Æ1 (retangle abd in Figure A.1).There is an upper bound of m segments de�ning suh loi � see Setion 8.6. Thearea of the perturbation dis has to be at least twie bigger than the sum of the areasof all the forbidden loi. Sine the perturbation dis area is �Æ21 we get:�Æ21 � 8m�1Æ161
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pi �1Æ1


ba

d

s00Figure A.1: Forbidden loi indued by s00 2 S 00i�1
Æ1 � 8m�1� (A.1)Reall that w is the maximum possible number of segments in eah square of thetiling (see Setion 8.5.1) and  is a parameter we �x for the number of perturbationtrials we make before enlarging the perturbation radius (see Setion 8.5.2). The nexttheorem summarizes the time omplexity of the �rst phase.Theorem A.1 The �rst phase for all the segments together takes O(nw log Æ1�1 ) ex-peted time.Proof: Piking up a random point inside the dis takes O(1) time. Eah test in-volves a omputation of a random point in a dis and the distane between a segmentand an endpoint (O(1) time). There is an upper bound of O(w) segments to test (seeSetion 8.5.1). Aording to Theorem 8.6, in the worst ase we have O( log Æ1�1 ) trials,eah one onsists of at most 4w tests. We get that 	 = O(w). Thus the �rst phasefor all the segments together takes O(nw log Æ1�1 ) expeted time. �

A.2 Seond Phase: Computing Æ2As noted in Setion 8.4, there are several di�erent ases of degeneraies in the seondphase. Eah one of them indues forbidden loi. In Setions A.2.1-A.2.4 we desribethese ases. Eah test of eah of these ases takes O(1) time. In Setion A.2.5 weompute the value of Æ2 and the omplexity of the seond phase.
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Figure A.2: Forbidden loi of an endpoint/intersetionA.2.1 Computing Forbidden Loi Indued by P 0i�1 and siReall that �2 denotes the resolution parameter used in this ase. Here, s00i must notpenetrate the dis of radius �2 entered at the points of P 0i�1. This is demonstratedin Figure A.2, where s0i is the thik line whose �rst endpoint, p0i, has already beenperturbed, and f is an already inserted endpoint whih must be at least �2 awayfrom s00i in order not to indue degeneraies (we explain later why we plae f at theintersetion between s0i and the dis of radius �1 around p0i). In order to prevent s00ifrom penetrating the dis with radius �2 around f , q0i must not be loated inside thewedge dp0i. It de�nes a trapezoid whih bounds the forbidden loi (trapezoid abdin Figure A.2). This trapezoid is maximal when f is loated on s0i and on the diswith the radius �1 around p0i (this dis does not ontain anything but s0i sine pi hasalready been suessfully perturbed) and when s0i's length is maximal (L+ Æ1, whereL is the length of the longest input segment and Æ1 is the maximum perturbation thatpi ould have been perturbed in the �rst phase). This explains our hoie where toplae f .Note that g in Figure A.2 is the plae where the segment p0i is tangent to the disentered at f . We denote by D the maximum area of a trapezoid abd (the forbiddenloi). Next we ompute its magnitude.�p0igf � �p0ihb � �p0il�2jp0igj = jabj=2L + Æ1 � Æ2 = jdj=2L+ Æ1 + Æ2



A.2. Seond Phase: Computing Æ2 64jabj = 2�2(L+ Æ1 � Æ2)jp0igjjdj = 2�2(L+ Æ1 + Æ2)jp0igjD = (jabj+ jdj)Æ2D = 4�2Æ2(L+ Æ1)p�21 � �22 (A.2)We need to oordinate between �1 and �2 in order to ompute Æ1 and Æ2 in termsof the input parameters. Let R be the ratio �1�2 (we have desribed in Setion 8.7 howto determine R). Then �1 = R�2 (A.3)If �2 is not muh smaller than �1 then in Figure A.2 \dp0i is not very small.Thus the size of the trapezoid abd, whih is the forbidden loi in that ase, may beunaeptably big. So we expet �2 to be muh smaller than �1. We also annot makeit arbitrarily small beause the bigger the R is, the bigger �1 would be, resulting ina big perturbation for the �rst endpoint � see Inequality A.1. In Setion 8.7 wepropose a way to �nd an R for whih the biggest perturbation radius is small.We get that �1 must be greater than �2. Thus the square root in equation A.2 isreal. Sine there are 2m possible endpoints for this ase of degeneray, the total areaof the forbidden loi in this ase is bounded by:F1 = 8m�2Æ2(L+ Æ1)p�21 � �22 (A.4)A.2.2 Computing Forbidden Loi Indued by Intersetions ofSegments of S 00i�1 and siThe resolution parameter in this ase is �2 too. The e�et of an intersetion is thesame as the e�et of an endpoint as desribed in Setion A.2.1. The only di�ereneis that there are at most �m2 � = m(m�1)2 suh intersetions. Thus the total size of theforbidden loi in this ase is upper bounded as follows:F2 = 2m(m� 1)�2Æ2(L + Æ1)p�21 � �22 (A.5)
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Figure A.3: Forbidden loi indued by qi and s00 2 S 00i�1A.2.3 Computing Forbidden Loi Indued by S 00i�1[fp0ig and qiFirst we disuss the forbidden loi indued by segments of S 00i�1. This ase is similarto the �rst phase desribed in Setion A.1, but this time we want the resolutionparameter to be �2, and the perturbation radius to be Æ2. As shown in Figure A.3,the size of the bounding retangle is 2�2 � 2Æ2 = 4�2Æ2. The size of the forbiddenloi for p0i is ��22 whih is de�nitely smaller than 4�2Æ2. Sine we are interested inomputing an upper bound on the area of the forbidden loi, we an bound it by4�2Æ2 and regard it as it was an above bounding retangle in our analysis. Sine thereare at most m + 1 objets that may indue degeneraies with qi (m segments fromS 00i�1 and p0i), the total size in this ase isF3 = 4(m+ 1)�2Æ2 (A.6)A.2.4 A Lower Bound on the Distane Between an Interse-tion of si with an Already Inserted Segment and anAlready Inserted SegmentLet s00j and s00k be two already inserted segments where s00j intersets s00i at a pointf . We next argue that if all the degeneraies above are not indued after possiblyperturbing si giving s00i , then a degeneray of type D2 involving f and s00k annot ariseas well. We do so, without loss of generality, by giving a lower bound on the distanebetween suh intersetion f and s00k; we denote this lower bound by �3. Assume thatthis type of degeneray involves s00i (perturbed to take are of the ases in phase 1and in Setions A.2.1, A.2.2 and A.2.3), s00j and s00k. By that we show that this kind
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ab dFigure A.4: Minimal distane when two segments of S 00i�1 intersetof degeneray is eliminated automatially after eliminating all the other degeneraiesthat take plae in CPLS. Thus we an ignore this degeneray when perturbing linesegments although it e�ets the magnitudes of the resolution parameters and theperturbation radii.We di�erentiate between two ases:The �rst one is when s00j and s00k do not interset eah other. Sine eah one of theirendpoints is at least �1 far away from the other segment, this also holds for f 2 s00jand s00k. Therefore the lower bound in this ase is �3 = �1. Thus no degeneray maybe indued in this ase.The seond ase is when s00j and s00k interset. This ase is demonstrated in Fig-ure A.4. The two already inserted segments, s00j and s00k fore s00i not to penetrate thedis C, entered at their intersetion, , with a radius �2. Thus f , the intersetionbetween s00i and s00j , would be losest to s00k if it is plaed on C. Moreover, the smallerthe angle \ba (denoted by �) is, the smaller �3 is (in Figure A.4 it the size of fh -the distane from f to s00j ). � is minimal when s00j and s00k have a maximal length belowtheir intersetion (bounded by L+Æ1+Æ2) and when the distane between their lowerendpoints (a and b are the endpoints in the �gure) is minimal, bounded by �2 in thisase (the resolution parameter for the seond endpoint). Under these onditions, wenext ompute a lower bound on the length of the segment ef .We get: jef j�2 = �2L+ Æ1 + Æ2



A.2. Seond Phase: Computing Æ2 67jef j = �22L+ Æ1 + Æ2We assume that the perturbation is �-aeptable aording to De�nition 8.1, oth-erwise CPLS would not be applied. Let � denote any resolution parameter or per-turbation radius. Then � � �L. Together with a simple trigonometri observation inFigure A.4, we get that os(�2 � �2 ) = �2=2L + Æ1 + Æ2os2(�2 � �2 ) = �224(L + Æ1 + Æ2)2sin2(�2 � �2 ) = 1� �224(L+ Æ1 + Æ2)2 �1� (�L)24(L+ Æ1 + Æ2)2 � 1� �24sin(�2 � �2 ) � r1� �24sin(�2 � �2 ) = �3=jef j�3 � jef jr1� �24�3 � �22q1� �24L + Æ1 + Æ2�3 � �22q1� �24(1 + 2�)LReall that we hoose � = 110 .The next lemma argues that �3 in this ase is the smallest resolution parameter.Lemma A.2 �3 < �2 < �1Proof: Sine we �xed �2 to be smaller than �1, we only have to prove that�3 < �2. Consider Figure A.4: if CPLS is �-aeptable, then \ba is su�iently smallso that �3 (the length of segment fh) is smaller than �2 (the length of segment e).The laims follows. �We do not enounter other magnitudes of resolution parameters, thus �3 shouldbe the input resolution parameter. Then "0 = �3 and we get that:
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"0 � �22q1� �24(1 + 2�)LWe need to ompute the value of �2 in terms of the input parameters. If we hangethe inequality above to an equation, we obtain an upper bound on �2 whih we usebelow. We get that �2 = vuut(1 + 2�)"0Lq1� �24 (A.7)A.2.5 Computing Æ2As in the �rst phase, we want the perturbation dis size to be at least twie biggerthan the total area of all the forbidden loi. Then by using formulas A.4, A.5 andA.6, �Æ22 � 2(F1 + F2 + F3) and we get that:Æ2 � 4�2� (m(m+ 3)(L+ Æ1)p�21 � �22 + 2(m+ 1)) (A.8)The next theorem summarizes the omplexity of the seond phase.Theorem A.3 The seond phase for all the segments takes O(nw2 log Æ2�1 ) expetedtime.Proof: Eah test for degeneraies takes O(1) time. Sine we have an upper boundof O(w) segments to hek in eah perturbation, O(w) tests are done as desribed inSetions A.2.1 and A.2.3 while O(w2) tests are done as desribed in Setion A.2.2 .We get that 	(w) = O(w2). Aording to Theorem 8.6, the seond phase for all thesegments together takes O(nw2 log Æ2�1 ) expeted time. �

A.3 Conluding Perturbation RadiiWe onlude the Appendix with a theorem that summarizes the magnitudes of Æ1 andÆ2.



A.3. Conluding Perturbation Radii 69Theorem A.4 The magnitudes of Æ1 and Æ2 are:Æ1 � 8mR�2�Æ2 � 4�2� (m(m + 3)(L+ 8mR�2� )�2pR2 � 1 + 2(m+ 1))where �2 = vuut(1 + 2�)"0Lq1� �24Proof: The magnitudes are derived immediately from the Equations and In-equalities A.1, A.3, A.7 and A.8. �
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