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Abstract

We present an efficient algorithm for maintaining the boundary and surface area of protein
molecules as they undergo conformational changes. We also describe a robust implemen-
tation of the algorithm and report on experimental results with our implementation on
proteins with hundreds of residues. Our work extends and combines two previous results:
(i) controlled perturbation for static molecular surfaces [38], and (ii) data structures for
self-collision testing and energy maintenance of proteins that change conformation [49].
As our method keeps a highly accurate representation of the boundary surface and of the
voids in the molecule, it can be useful in various applications, in particular in Monte Carlo
Simulation. In addition we propose, analyze and implement an alternative method for effi-
ciently recalculating the surface area under conformational (and hence topological) changes
based on techniques for efficient dynamic maintenance of graph connectivity. This method
greatly improves the running time of our algorithm on most inputs, as we demonstrate in
the experiments reported here.
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Chapter 1

Introduction

Molecular simulations are an important tool in the study of conformations adopted by
proteins, which in turn is an important topic in structural molecular biology. Instead of
representing individual solvent molecules, some of these simulations use implicit solvent
models, which require information regarding the surface area of the studied molecules
exposed to the engulfing solution. This motivates fast methods of maintenance of the
surface area of molecules dynamically during conformation changes.

In our work we maintain the boundary and surface area of protein molecules as they
undergo conformational changes. We exploit the fact that proteins are long kinematic
chains (and not an arbitrary collection of spheres). As the conformations change, we update
the torsion angles of the protein backbone, instead of updating the Cartesian coordinates
of the atoms. This allows us to modify the boundary of the molecule quickly even when a
large number of atoms move, as is usually the case in conformation changes of proteins. The
update time of the boundary depends on the number of intersecting pairs of atom spheres
whose intersection circle changed, which is relatively small when just a few torsion angles
are changed in each step of the simulation. Maintaining a highly accurate representation of
the outer boundary surface and of the voids of the molecule allows us to keep track of the
surface area of the molecule and the contribution of each atom to the outer boundary and
to the voids, which can be useful in various applications such as Monte Carlo simulation.
Our use of controlled perturbation ensures the robustness of our implementation even while
using floating-point arithmetic.

Our work extends and combines two previous results: (i) controlled perturbation for
static molecular surfaces [38], and (ii) data structures for self-collision testing and energy
maintenance of proteins that change conformation [49].

A major novel component of our work is an efficient method for maintaining the topol-
ogy of the surface when a few torsion angles are changed in a single simulation step. This
method is based on efficient maintenance of graph connectivity, which yields an amortized
update time of O(p log2 n) for each accepted conformational change where n is the total
number of atoms in the molecule and p is the number of atom spheres whose intersection
pattern with the other atom spheres was affected by a conformational change. The algo-
rithm works very well when few torsion angles are changed in each step, in which case p is
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8 CHAPTER 1. INTRODUCTION

much smaller than the number of moving atoms.
In our best experimental results we managed to update a molecular surface under

conformational changes (with a single degree of freedom (DOF) modified at each iteration)
in about 1% of the total time it would take to construct that surface from scratch. Our
results indicate that our algorithm gives better gains for larger molecules. The algorithm
is useful in particular for Monte Carlo simulation, where few DOFs are modified in each
simulation step.

A paper summarizing the main ideas and results of this thesis [24] has been recently
presented in the 21st ACM Symposium on Computational Geometry (SoCG 2005). A
paper describing the implementation of improved maintenance of molecular surfaces using
dynamic graph connectivity [25] will be presented in the 5th Workshop on Algorithms in
Bioinformatics (WABI 2005).

Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 we review the background
and related work on molecular surfaces and molecular simulations, as well as the related
work in dynamic graph connectivity. In Chapter 3 we describe our algorithm for dynamic
maintenance of molecular surfaces. Chapter 4 deals with the efficient maintenance of the
connected components of the boundary. Chapter 5 surveys the major implementation
details. We report on experimental results in Chapter 6. Chapter 7 concludes the thesis
and suggests possible directions for future work.



Chapter 2

Background

2.1 Molecular Simulations

A common approach to modeling the three-dimensional geometric structure of molecules is
to represent each atom as a sphere of fixed radius in a fixed placement relative to the other
atoms. The radius assigned to each atom depends on the type of the atom. There are
various sets of recommended values for atom radii, depending on the specific application.
The spheres are allowed to penetrate one another. This model, called the hard sphere
model, has proven useful in many practical applications, in spite of its approximate nature.

Molecular surfaces have many uses, in drug design, in studies of solvation and hy-
drophobicity, in research of the protein folding problem, and in more areas. One type of
molecular surfaces is simply the outer boundary of the union of the spheres in the hard
sphere model. This type uses the van der Waals radii, and is often referred to as the van
der Waals surface. The van der Waals radii are best suited for determining which parts of
space cannot contain solvent molecules (usually water molecules), because they are based
on the van der Waals potential, which prevents atom centers from becoming too close to
each other. There are two types of surfaces closely related to the van der Waals surface:
The solvent accessible surface introduced by Lee and Richards [45] is defined by the center
of a solvent molecule, modeled as a hard probe sphere, when it rolls over the van der Waals
surface. The smooth molecular (solvent excluded) surface introduced by Richards [56] is
defined by the part of the surface of the solvent probe-sphere that faces the molecule. See
also [15, 16, 20] and the survey by Mezey [52] for an extensive discussion on molecular
surfaces.

The functions of proteins are largely dependent on their spatial structure. Therefore,
study of the conformations adopted by proteins is an important topic in structural molecu-
lar biology. Computer simulations are powerful tools in this study. The two most popular
methods are Monte Carlo Simulation (MCS) [9, 39, 51] and Molecular Dynamics Simula-
tion (MDS) [5, 44, 50, 55]. While the latter produces physically meaningful pathways, the
former is more efficient at sampling the conformation space.

MCS is usually used to find low energy conformations for a given protein, and in
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10 CHAPTER 2. BACKGROUND

particular its native structure. It consists of a random walk in the conformation space
of the studied molecule. Each step consists of changing some degrees of freedom (DOFs)
of the molecule, in general torsion (dihedral) angles around bonds. Classically, a trial
step is accepted (and the simulation moves to the new conformation) with probability
min{1, e−4E/kbT} (the Metropolis criterion [51]), where E is an energy function defined
over the conformation space, 4E is the difference in energy between the new and previous
conformations, kb is the Boltzman constant, and T is the temperature of the system. A
downhill step to a lower-energy conformation is always accepted, while an uphill step is
accepted with a probability that goes to zero as the energy difference becomes large.

MDS is a more detailed and physically accurate simulation of the dynamics of a single
protein molecule in space and time. It consists of computing the forces on the atoms at
each step, and using them to calculate the atom positions at the next step. To be accurate,
MDS proceeds by small time steps, resulting in slow progress through conformation space.
As a result, the folding of most proteins is still out of reach of even the fastest computers.
Most MDS techniques update the Cartesian coordinates of the atoms at each step, but
recently there has been growing interest in directly updating torsion angles [32, 64], which
allows a more compact representation of the conformation space, as well as the simulation
of larger time steps.

The motion of the molecules in such simulations greatly depends on the engulfing
solution, which is mostly water. Computer simulations that explicitly use a large number
of water molecules represent one of the most detailed approaches to study the influence of
solvation on complex biomolecules [10]. In such simulations, a large fraction of the time
is spent calculating a detailed trajectory of the solvent molecules, even though the main
interest is the solute’s behavior. Despite their cost, computer simulations with explicit
solvent molecules still use approximations in some of the energy calculations [6]. These
problems with the explicit solvent representation motivate different approaches, where the
effect of the solvent is taken into account implicitly. See [58] for an extensive review on
implicit solvent models. The implicit models can reduce the required computing power by
a factor of 10 to 50 [27].

It is convenient to express the solvent effects on a molecule in an effective potential, W =
Welec +Wnp, in which the first term accounts for electrostatic contributions and the second
for non-polar contributions. Welec is usually represented by continuum electrostatics [65].
Wnp is represented in many solvation models as a weighted sum of the solvent exposed or
accessible surface area of each atom of the solute [21, 27, 71]. It is represented as a linear
sum of atomic contributions weighted by solvent-exposed area: Wnp =

∑

i γiAi(X), where
Ai is the solvent-exposed area of atom i (which depends on the solute configuration X)
and γi is an estimate of the atomic free energy per unit area (which depends on the atom
type).

Therefore MCS, which relies on differences of potential energy, can greatly benefit
from dynamic maintenance of the surface area of a molecule during conformation changes.
MDS, on the other hand, would benefit from dynamic maintenance of the derivatives of
the surface area with respect to atomic position. Those derivatives contribute to the force
that drives the motion [11].
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Exact analytical or numerical representations of the solvent-accessible surface area or
volume are generally too slow to compete with explicit solvent simulations [27]. To over-
come this difficulty, approximate expressions for the solvent-accessible surface area were
used [13, 27, 40, 65, 72]. For example, Cavallo et al [13] use a model in which each amino
acid is represented by a single sphere centered on the Cα atom. Fast methods to maintain
the exact surface area of a molecule dynamically during conformation changes can greatly
improve these simulations.

2.2 Related Work

2.2.1 Molecular Surfaces

Several algorithms and their software implementation for calculation of the various surfaces
mentioned above have been designed in the last two decades. The computational methods
that evaluate the area in these surfaces can be divided into approximate and exact methods.

Most of the approximate methods rely on numerical integration, by representing the
surface with a large number of dots [46, 61]. Some of the approximations are analytical
but treat multiple overlapping balls probabilistically or ignore them [40, 66, 72]. Another
approximate method is a grid-based algorithm [53].

The first exact analytical methods for computing the solvent accessible and smooth
molecular surfaces were introduced by Connolly [15] and Richmond [57]. They have been
improved in recent years [68, 69]. Some improvements were achieved in terms of computa-
tional efficiency [26, 70]. Other improvements were achieved in terms of stability [22, 30].
They handle potential degenerate positions of the input, such as nearly tangent atom
spheres, by setting a user defined threshold ε that determines for example if two close
vertices are considered to be the same or if two spheres are overlapping, tangent or dis-
joint. This approach is similar to our controlled perturbation approach, in the way that
is recognizes potential degeneracies. However, once the degeneracies are identified, they
are handled explicitly, unlike our approach, which eliminates the degeneracies by slightly
perturbing the atom centers. Our method is easier to implement, since it does not have to
handle degeneracies, and it guarantees consistent evaluation of the predicates, and hence
results in correct topological structure of the surface of the perturbed molecule. Even
though our method slightly affects the accuracy of the output by perturbing the input, the
effects are negligible, and the other method also affects the accuracy when, for example, it
treats atoms with a small overlap as if they do not overlap at all.

Edelsbrunner [19] used the Alpha Shape theory to compute the surface area and volume
of proteins as well as for detecting and measuring cavities in proteins [47].

Sanner et al [60] developed a method that relies on reduced surfaces for computing
the molecular surfaces. The reduced surface corresponds to the alpha shape [19] for that
molecule with a probe radius α.

Halperin and Shelton [38] used controlled perturbation to calculate the van der Waals
and the solvent accessible surfaces robustly.
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2.2.2 Available Software for Molecular Surfaces

There are many implementations of molecular surfaces online. While some of them are
proprietary, others are distributed freely. Connolly’s extensive review [17] on molecular
surfaces points to existing applications that compute them. The following applications
compute properties of molecular surfaces which are similar to those that we compute in
our application. AlphaShapes [1] uses alpha shapes to compute the surface area and volume
of the solvent accessible surface and the molecular surface. It also finds voids and cavities
and calculates their surface area and volume. ProShape [3] is an extension of AlphaShapes
that also computes the derivatives of the surface area and volume with respect to atomic
position. CGAL [2] contains code that calculates the alpha complex, which can be used to
compute molecular surfaces.

2.2.3 Dynamic Molecular Surfaces

Limited dynamic maintenance of molecular surfaces was presented by Bajaj et al [7].
They use non-uniform rational B-splines (NURBS) to represent molecular surfaces and
dynamically maintain them as the radius of the solvent probe-atom changes continuously.

Edelsbrunner et al [14] developed an algorithm for maintaining an approximating tri-
angulation of a deforming surface in R

3, that adapts dynamically to changing shape, cur-
vature, and topology of the surface. Bryant et al [11] calculate the area derivatives of
molecular surfaces in motion, for a molecular dynamics simulation. At each step of the
simulation they re-compute the entire Delaunay triangulation required for their calcula-
tions.

Sanner and Olson [59] presented surface reconstruction for moving molecular fragments.
In their work they achieve a real-time reconstruction of the molecular surface when a small
number of atoms move in each step (for example, a conformation change of a single side
chain of the protein). The complexity of their algorithm is O(t log t), where t is at least
as high as the number of moving atoms. This means that a change in a single torsion
angle located near the center of a protein chain, which moves the location of about half
the atoms of the molecule, will take as much time asymptotically as it takes to recompute
the entire surface.

2.2.4 Molecular Simulations

Several researchers have adapted tools from robotics to the molecular simulations of pro-
teins. Finding a self-clash in the protein chain is similar to finding a self-intersection in a
multi-link robot. Some of the algorithms demand that no self-intersection occurs during
the motion (caused by changes in dihedral angles), while others only require that there are
no self-intersections after each angle change.

Soss and Toussaint [63] study polygonal chains of n edges where sub-chains may rotate
rigidly around interior edges of the chain. They prove an Ω(n log n) time bound for de-
termining if a torsion φ angle change can be done at a selected edge of the chain without
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causing any self-intersections during the motion. They also describe a brute force algo-
rithm for that problem that runs in O(n2) time and O(n) space. Soss et al [62] try to use
preprocessing in order to quickly determine the feasibility of an arbitrary dihedral rotation.
In the static case, which only tests for feasibility without updating the chain, they give
strong support for the conjecture that preprocessing a chain of n edges and performing n
static dihedral rotation queries has a Ω(n2) lower bound. In the more general dynamic
case, where a feasible rotation modifies the chain, they give strong support for the conjec-
ture that in any preprocessing scheme, the worst case query time is Ω(n), regardless of the
preprocessing time.

Halperin et al [35] study several models for dynamic maintenance of kinematic struc-
tures where update and range query operations are supported. They prove a Θ(

√
n) bound

for performing update or range query operations in an n link chain where the joints con-
necting two links can be updated.

Lotan et al [49] introduced a fast implementation of MCS of proteins where a large
number of atoms may move in each step. They exploit the fact that proteins are long
kinematic chains. While their O(n

4

3 ) time bound for collision detection is not optimal in
the worst case, it performs well in practice.

2.2.5 Dynamic Graph Connectivity

Several algorithms for dynamic graph connectivity have been designed in the last two
decades. The first non-trivial fully-dynamic connectivity algorithm was presented by Fred-
erickson [28] and supported O(

√
m) time updates, where m is the number of edges, and

constant time queries. Eppstein et al [23] improved the update time to O(
√
n), where n is

the number of vertices. Henzinger and King [41] presented a randomized algorithm sup-
porting updates in O(log3 n) expected amortized time and O(logn/ log log n) time queries.
Holm et al [42] presented a deterministic fully dynamic algorithm with O(log2 n) amortized
time updates and O(logn/ log log n) time queries. Both poly-logarithmic algorithms use
O(m + n logn) space. Thorup [67] further improved these bounds to O(logn(log logn)3)
expected amortized time updates, O(logn/ log log log n) time queries and O(m) space.
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Chapter 3

The Algorithm

3.1 Terminology

1. An arrangement of spheres — the subdivision of R
3 into vertices, arcs, faces

and three-dimensional cells induced by a given finite collection of spheres. (Arrange-
ments of curves and surfaces have been intensively studied and are widely used in
Computational Geometry [4, 33].)

2. Given a set of spheres S = {s1, s2, ..., sn}, let Ci denote the collection of circles
Ci = {si ∩ sj | sj ∈ S, j 6= i} which are formed by the intersections of a sphere si

with the other spheres of S. The spherical arrangement A(Ci) is the subdivision
of si induced by Ci. Figure 3.1(a) illustrates a spherical arrangement.

3. A void — Let bi be the ball representing the atom whose boundary is the sphere si.
A void of the molecule is a bounded maximal connected component of R

3 \
⋃

n
i=1bi.

4. An exposed face of a spherical arrangement is a face that appears on the boundary
of the union of the spheres (outer boundary or void).

5. Trapezoidal decomposition — a refinement applied to each sphere si in S. Given
a collection Ci of little circles on si (namely intersections of the sphere si with other
spheres and hence not necessarily great circles), the trapezoidal decomposition is a
refinement of the spherical arrangement A(Ci). It is a standard refinement procedure
that makes each face of the arrangement homeomorphic to a disc with at most four
edges on its boundary (see [33] for more details on trapezoidal decompositions). In
this context, we fix a pair of antipodal points as poles. We call the great circles
through the poles polar circles and the arcs of polar circles polar arcs. Any point on
a little circle that is tangent to a polar circle is called a polar tangency. For every polar
tangency of every circle (except for circles that encompass a pole), we extend a polar
arc in either direction until it hits another little circle or reaches a pole. We do the
same from every intersection point of a pair of little circles. This refinement is called
the full trapezoidal decomposition. If we are only concerned with making each face
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(a) (b) (c)

Figure 3.1: A spherical arrangement (a), its full trapezoidal decomposition (b) and its partial
trapezoidal decomposition (c).

simply connected and making the graph of all the edges of the arrangement connected,
we can use the partial trapezoidal decomposition, in which polar arcs are extended
only from polar tangency points and not from intersections. Figure 3.1 illustrates
both the full and partial trapezoidal decompositions of a spherical arrangement.

3.2 Static Construction of the Surface

We compute a highly accurate1 representation of the boundary of a molecule (both the
outer boundary and the voids), and the surface area of each connected component of the
boundary. The contributions in terms of surface area of each atom to the outer boundary
of the molecule and to the voids are also calculated. We initially compute this information
when the molecule is first loaded. For that purpose we construct the spherical arrangement
for each atom sphere and connect these spherical arrangements of intersecting atoms to
form a subset of the 3D arrangement of the spheres of the atoms, which is traversed in
order to find the two-dimensional faces of the arrangement that form the boundary of the
molecule.

First we outline the static construction of the surface (based on [38]), and then we
explain the extensions for the dynamic maintenance of the surface under conformation
changes.

3.2.1 The Initial Construction of the Surface

Halperin and Shelton [38] presented a software package for computing the boundary surface
of the union of spheres, the surface area of that boundary and the intersection pattern of
any sphere with all the other spheres in a given set. They introduced a perturbation scheme,

1We use the description highly accurate rather than exact to avoid confusion with exact geometric
computing, since we are using floating point arithmetic.
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controlled perturbation, that overcomes degeneracies and precision problems in computing
spherical arrangements while using floating-point arithmetic. We recently [34] modified
this package to improve the running time, mainly by generalizing the implementation of
the trapezoidal decomposition, which significantly reduced the perturbation time for large
molecules.

Given a collection S = {s1, s2, ..., sn} of n spheres, their arrangement A(S) is built in
an incremental fashion (that is, adding one sphere at a time). The spherical arrangement
of each sphere is connected to the spherical arrangements of the spheres that intersect it,
to construct a subset of the three-dimensional arrangement of spheres that includes all the
features of that arrangement except the 3-dimensional cells. A subset of the 2-dimensional
faces of this structure forms the boundary surface of the molecule. We compute both the
outer boundary and the boundary of each of the voids.

In order to build the arrangements, it is required to find all pairs of intersecting atoms.
The implementation described in [38] uses a simple grid based solution [37]. This data
structure (called 3D-hash) exploits the fact that Van der Waals potentials prevent atom
centers from coming very close to one another. In [37] it is formally shown that in a
collection S of n possibly intersecting spheres of similar radii, such that no two sphere
centers are closer than a small fixed distance, the number, m, of spheres that intersect any
given sphere of S is bounded by a constant. It follows from that proof that the 3D-hash
can be computed in Θ(n) time, and that determining which spheres intersect any given
sphere of S takes O(1) time. Hence, finding all pairs of intersecting spheres takes Θ(n)
time.

After the arrangement of the spheres is built, the boundary of the molecule is found
by traversing the regions (two-dimensional faces) of the arrangement, starting from the
bottommost region. During this traversal, the areas of the traversed regions are calculated
and summed, to find the total surface area. This is repeated for each connected component
of the boundary.

3.2.2 Static Controlled Perturbation

As mentioned earlier, the original static construction [38] uses controlled perturbation to
overcome degeneracies and precision problems in the computation of the molecular surfaces
with floating-point arithmetic. We extended the static scheme to work in the dynamic
setting. We describe here the original scheme, and later (in Section 3.3.5) describe the
modifications required for the dynamic case.

A possible way to compute robustly without resorting to exact computation during the
evaluation of predicates, is to (slightly) perturb the geometric objects such that consistent
results of the predicates can be certified even when using finite precision arithmetic. A
degeneracy occurs when a predicate evaluates to zero. The goal of the perturbation scheme
is to cause all predicates used during the algorithm to evaluate sufficiently far away from
zero so that finite precision arithmetic could enable us to safely determine whether they are
positive or negative. Hence, while certifying the consistency of the predicates, all degenera-
cies are eliminated. Controlled perturbation has been successfully used with arrangements
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of polyhedral surfaces [54], with arrangements of circles [36], and recently with Delaunay
triangulations [29]. The magnitude of the perturbation is utterly negligible in the context
of molecular surfaces. We only sketch the method here; for details, see [36, 38].

In the case of arrangements of spheres, the general position (non-degeneracy) assump-
tion means that there is no outer or inner tangency between two spheres, that no three
spheres intersect in a single point, and that no four spheres intersect in a common point.
The controlled perturbation scheme ensures that all the features of the spherical arrange-
ments (vertices and arcs) are at least some given ε apart. See Figure 3.2 for an illustration
of the degeneracies prevented by this perturbation scheme. We call these degeneracies
type I degeneracies.

(a) (b)

Figure 3.2: A spherical arrangement with type I degeneracies (a) : tangency of two spheres,
which causes their intersection circle to become a point (left), three spheres intersecting in a
single point (bottom), four spheres intersecting in a common point ; and the same arrangement
after perturbing the spheres to remove the degeneracies (b).

As mentioned earlier, the arrangement A(S) of spheres in space is built incrementally.
Each time we check if there is a potential degeneracy induced by the newly added sphere.
If so, we perturb that sphere, so no degeneracies will occur. The main idea is to carefully
relocate the sphere — move the sphere sufficiently to avoid all degeneracies, but not too
much. We use a resolution parameter ε that depends on the floating-point precision and
the type of operations (but is assumed to be given here). For any given resolution value
ε > 0, a parameter δ that depends on ε, m (the maximum number of spheres intersecting
any single sphere, which is a constant for the hard sphere model [37]) and R (the maximum
atom radius) is determined. Each sphere center is perturbed by at most δ to resolve all
the degeneracies. It is shown in [38] that if δ > 2mε1/3R2/3, all type I degeneracies can
be eliminated in expected O(n) time. See Chapter 6 for the values of δ and ε in our
experiments.

Another kind of degeneracies, called type II degeneracies, results from the trapezoidal
decomposition (Section 3.1). Since in the trapezoidal decomposition we are free to choose a
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direction for the poles, the poles are chosen so that the angular separation of the additional
arcs (of the trapezoidal decomposition) will be above a certain threshold ω. It is shown
in [38] that if sin(ω) < 1

2m(m−1)
, all type II degeneracies can be eliminated in expected

O(n) time. See Figure 3.3 for an illustration of this type of degeneracies.

(a) (b)

Figure 3.3: A spherical arrangement with a type II degeneracy — two polar arcs with a too
small angular separation (a), and the same arrangement after perturbing the pole direction to
remove the degeneracy (b).

3.3 Dynamic Maintenance under Conformational Ch-

anges

3.3.1 The ChainTree

When we allow the atoms of the molecule to move, it is practically expensive to update the
3D-hash and reconstruct the arrangements and the surface. Even though the grid algorithm
is asymptotically optimal in the worst case, it requires reconstruction from scratch of the
entire structure, which may be prohibitively slow for large molecules.

In [49] Lotan et al introduced a novel data structure called the ChainTree (CT) aiming
to speed up the energy computation during Monte Carlo Simulation of proteins. They
take advantage of the fact that proteins are long kinematic chains (and not an arbitrary
collection of spheres) and that few degrees of freedom (DOFs) are changed at each step of
the simulation.

A protein is the concatenation of small molecules (the amino acids) forming a long
backbone chain with small side chains (called residues). Since bond lengths and angles
between any two successive amino acids are almost constant across all conformations at
room temperature [31], it is common practice to assume that the only DOFs of a protein
are its torsion angles. Each amino acid contributes two torsion DOFs to the backbone —
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the so-called φ and ψ angles. Thus, the backbone is commonly modeled as a long chain
of links separated by torsion joints. A link, which designates a rigid part of a kinematic
chain [18], is a group of atoms with no DOFs between them. The side chains may also have
degrees of freedom (between 0 and 4), but in our current implementation we assume there
are no DOFs in the side chains. Figure 3.4 illustrates a fragment of a protein backbone
with its DOFs.

Figure 3.4: An illustration of a protein fragment with its backbone DOFs (taken from [48],
courtesy of Itay Lotan). The Cβ atoms are part of the side chains, and the rest of the atoms
belong to the backbone. The φ torsion angle is the angle between the plane of 4C ′NCα and
the plane of 4NCαC

′. The ψ torsion angle is the angle between the plane of 4NCαC
′ and

the plane of 4CαC
′N .

The CT is motivated by the following properties of the kinematic chain model of the
protein: Local changes have global effects, small angular changes may cause large motions
and large sub-chains remain rigid at each step.

It is made of two hierarchies: A transform hierarchy that maintains the kinematics
of the backbone and a bounding-volume (BV) hierarchy that approximates the geometry
of the protein. It is a balanced binary tree that combines those two hierarchies. The
leaves of that tree correspond to the links of the protein’s backbone with their attached
side chains. Each leaf holds both the bounding box that bounds the corresponding link
and side chain and the transform to the reference frame of the next link in the chain.
Each internal node has the frame of the leftmost link in its sub-tree associated with it. It
holds both the bounding box of the boxes of its two children, and the transform to the
frame of the next node at the same level (which is the product of the transforms of its two
children). Figure 3.5 illustrates the CT. Two algorithms are described for the CT in [49].
The updating algorithm updates a minimal set of transforms and BVs of the CT after a
k-DOFs change. The testing algorithm uses the CT to detect self-collisions after a k-DOFs
change.

The performance of the CT is summarized in the following theorem, which is proved
in [49].

Theorem 3.1 [49] Updating the CT after a k-DOFs change takes O(k log(n
k
)) time and

using the CT to test for self-collisions after a k-DOFs change takes O(n
4

3 ) time.
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Figure 3.5: The ChainTree : A binary tree that combines the transform and BV hierarchies
(taken from [48], courtesy of Itay Lotan).

3.3.2 The IntersectionsTree

In our application we use the CT to detect self-collisions and to find the new pairs of
intersecting atoms after performing DOF changes. When a DOF change is accepted (when
it incurs no self-collisions), we have to modify some of the spherical arrangements and
portions of the arrangement of the spheres in order to compute the new boundary surface
of the molecule and its area.2 We need to find all the intersecting pairs of atoms which
changed due to the last DOF change. These pairs include deleted pairs that intersected
before the change but no longer intersect, inserted pairs that did not intersect before
the change but intersect after the change and updated pairs that intersected before and
intersect after the change, but have moved relative to each other. Only pairs of atoms that
belong to different leaves of the CT can be among those pairs we seek (because a pair of
intersecting atoms from the same leaf can never move relative to one another). To find
these pairs we introduce a data structure called the IntersectionsTree (IT), similar to the
EnergyTree in [49] which was used to store partial energy sums in Monte Carlo Simulation.
In our case we store pairs of intersecting atoms.

Let α and β be any two nodes (not necessarily distinct) from the same level of the
CT. If they are not leaf nodes, let αl and αr (βl and βr) be the left and right children
of α (β), respectively. Let I(α, β) denote a set that contains all the pairs of intersecting
atoms in which one atom belongs to the sub-chain corresponding to α (the section of the
protein chain contained in the leaves of the sub-tree of α) and the other atom belongs to
the sub-chain corresponding to β. If α 6= β, we have:

I(α, β) = I(αl, βl) ∪ I(αr, βr) ∪ I(αl, βr) ∪ I(αr, βl). (3.1)

2In order to use the surface area in energy calculations for the acceptance criterion, these calculations
will have to be done in each step of the simulation, and in rejected steps will be reversed.
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Similarly, the set I(α, α) of intersecting atom pairs inside the sub-chain corresponding to
α can be decomposed as followed:

I(α, α) = I(αl, αl) ∪ I(αr, αr) ∪ I(αl, αr). (3.2)

These two recursive equations yield the IT. The IT has as many levels as the CT. Its nodes
at any level are all the pairs (α, β), where α and β are nodes from the same level of the CT.
If α 6= β and they are not leaves of the CT, then the node (α, β) of the IT has four children
(αl, βl), (αr, βr), (αl, βr) and (αr, βl). A node (α, α) has three children (αl, αl), (αr, αr) and
(αl, αr). The leaves of the IT are all pairs of leaves of the CT (hence correspond to pairs
of links of the protein chain). Each node (α, β) of the IT holds the intersecting atom pairs
of I(α, β) after the last accepted simulation step. The root holds all the intersecting pairs.

To find the modified intersecting pairs (deleted, inserted or updated pairs), we use the
testing algorithm (the same algorithm that finds self clashes). The difference between our
definition of a pair of intersecting atoms and a pair of atoms that cause a self clash is in
the distance between their centers. We determined the minimal distance allowed between
two atom centers by choosing a distance such that the original conformation of our input
molecules (taken from the Protein Data Bank [8]) is free from self clashes.

Whenever the testing algorithm prunes a search path, it marks the corresponding node
in the IT to indicate that the intersecting pairs stored in this node are unaffected. The
update of the intersecting pairs at the nodes of the IT is done by a recursive traversal
of the tree. To update the intersecting pairs at an unmarked node, we first update the
intersecting pairs of its unmarked children. Then we compute the intersecting pairs of that
node using Equations (3.1) and (3.2). The intersecting pairs of an unmarked leaf are found
by checking all the pairs of atoms from the two links that correspond to that leaf. For each
new intersection found in the leaves of the IT, we check if that intersection already exists
in the IT. If it does, this is an updated pair. If not, it is an inserted pair. If the atoms of
a tested pair do not intersect, but the pair is found in a leaf of the IT, it is a deleted pair.
Finally, when we test a node that corresponds to a pair of nodes from the CT whose BVs
became too far apart after the last change, we clear the intersecting pairs at this node and
at the sub-tree of that node. All of these pairs are deleted pairs. We keep a list of all the
pairs of deleted, inserted and updated atoms that we found during the update of the IT.

We summarize the worst-case performance of the IT in the following theorem.

Theorem 3.2 The overall cost of updating the IT is O(n
4

3 ).3

The proof of this theorem is the same proof given for the running time of the testing
algorithm in [49]. Note that this running time holds even if we allow DOFs in the side
chains. In such case, when a side chain DOF contained in some link of the CT is changed,
the coordinates of the atoms of this link will be updated and these atoms will have to
be tested for intersections against each other. The bounding volume of this link will be

3The O(n
4

3 ) bounds in Theorems 3.1 and 3.2 are worst-case bounds, but the typical practical per-
formance is much better and constitutes a negligible fraction of the overall time of an update step (see
Figure 6.3).
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updated as well. Since the number of atoms in each link is bounded by a constant (up to
20 atoms), this extra work will be done in constant time per leaf of the IT and will not
affect the asymptotic running time.

3.3.3 Updating the Arrangements

As was mentioned before, we store in a separate list, called the Modified Intersections List
(MIL), all the modified intersecting pairs (deleted, inserted or updated) we found during
the update of the IT. This list is then used to update the spherical arrangements:

1. For each pair of inserted intersecting atoms, we add their intersection circle to the
spherical arrangements of both atoms.

2. For each pair of updated intersecting atoms, we remove their old intersection cir-
cle from their spherical arrangements and add their new intersection circle to both
arrangements.

3. For each pair of deleted intersecting atoms, we remove their old intersection circle
from the spherical arrangements of both atoms.

During the addition or removal of intersection circles to/from the spherical arrange-
ments we add or remove arcs to/from these arrangements. The addition of new arcs
splits existing regions, while the removal of old arcs merges existing regions. We identify
the regions affected by these changes, and use this information later, while updating the
connectivity of the surface, to avoid unnecessary computations for regions that were not
modified.

Lemma 3.3 The overall cost of updating the spherical arrangements is O(p), where p is
the number of atoms whose spherical arrangement is involved in a change.

Proof: Since the complexity of each spherical arrangement is constant [37], the cost of
adding (removing) an intersection circle to (from) a spherical arrangement is O(1). Since
the number of intersection circles on each atom is bounded by a constant, the number
of modified intersection circles on each atom is also bounded by a constant. Therefore
the number of modified intersection circles is O(p), and the overall cost of updating the
spherical arrangements is O(p). 2

The relation between p and the number of simultaneous DOF changes in experiments is
shown in Figure 6.1.

In Figure 3.6 we demonstrate the effect of a single DOF change on the structure of the
backbone. On the left-hand side we see the backbone atoms of Trypsin Inhibitor (4PTI) in
their original conformation. On the right-hand side we see the backbone after a 180◦ change
in the ψ angle of the 13th residue. We can see that all the atoms located after that residue
in the chain moved. However, our application detected only 13 modified intersection circles
and that only 14 atoms out of 454 were affected by this change.
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(a) (b)

Figure 3.6: The Backbone of 4PTI before (a) and after (b) a 1-DOF change. The changed
DOF is pointed to by an arrow.

In Figure 3.7 we see the spherical arrangement of the N atom of the 14th residue
that was affected by the single DOF change in 4PTI. The image on the left shows the
arrangement before the change, and the image on the right shows it after the change.

(a) (b)

Figure 3.7: The spherical arrangement of one of the atoms of 4PTI that were affected by
the DOF change, before (a) and after (b) the change.

3.3.4 Updating the Connectivity of the Surface

After the modification of the spherical arrangements, we have to reconstruct the outer
boundary and void boundaries of the molecule and to calculate their areas, as well as the
contribution of each atom to the outer boundary and to the voids.
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The outer boundary of the molecule is constructed by starting from the bottommost
region (of the bottommost atom), and traversing the arrangement of spheres, adding re-
gions to the surface as we move along. Each time we reach an arc that connects two
intersecting atoms, we move from the spherical arrangement of the current atom to that of
the other. For each visited region of the outer boundary we calculate its area and sum the
areas to get the total surface area. Later we calculate the void boundaries. This is done
by finding the set of exposed regions, and excluding from this set all the regions on the
already computed outer boundary. Then we traverse the remaining regions and construct
the void boundaries, in the same way that we construct the outer boundary.

The computation of the exposed regions is done as follows. We do a single traversal
of the regions of the atom a, and find for each region how many atoms cover it. We start
with an arbitrary region which we assume to be exposed (covered by 0 atoms). Whenever
we cross an arc to a new region, we determine if we are entering or leaving an intersection
circle, and update the number of atoms covering the newly visited region accordingly.
During the traversal we maintain a list of the regions covered by the minimum number of
atoms (this number is 0 if the initial region is really exposed, and negative if not). After
we finish the traversal, this list holds all the exposed regions of a, unless the entire atom is
buried within other atoms (which can be determined by checking a single region from this
list against the atoms that intersect a to see if any of them cover it).

This construction takes Θ(n) time, since we traverse the entire boundary, which has an
overall Θ(n) complexity in the worst case. However, a great deal of the required calculations
depend on the number p of modified atoms in the current step. We have to find the exposed
regions only for atoms whose spherical arrangement was modified in the current step. We
have to calculate the areas only for exposed regions that were modified since their area
was last calculated or exposed regions whose area was never calculated before (and such
regions can be found only on modified atoms).

3.3.5 Dynamic Controlled Perturbation

When we extend the controlled perturbation scheme to the dynamic case, we have two
goals in mind: (1) perturb as few atoms as possible, for efficiency reasons, and (2) avoid
cascading errors as we perturb an atom several times or change a torsion angle several
times.

As was mentioned earlier, after each set of simultaneous DOF changes we build a list
of atom pairs (the MIL) whose intersection circles should be removed or added (or both)
to their respective spherical arrangements. Removing the old intersection circles cannot
induce new degeneracies, but adding the new circles can. We must therefore test, after
each DOF change, for new degeneracies, and perturb the atoms if needed. As mentioned,
we wish to test as few atoms as possible for degeneracies after each DOF change.

As in the static perturbation, we want to keep all the features of the spherical arrange-
ments at least ε apart, for the given resolution parameter ε. For that goal it is not enough
to know the new intersecting atom pairs, because a degeneracy occurs also when atoms
almost intersect each other. Therefore we modify the MIL to include pairs of atoms which
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almost intersect each other. These pairs are identified while finding the intersecting pairs
of unmarked leaves of the IT. When the two checked atoms do not intersect, we check if
their centers are less than r1+r2+ε+2δ apart (where r1 and r2 are the radii of the atoms, ε
is the resolution parameter of the perturbation and δ is the perturbation parameter). If so,
we add them to the MIL (but not to the IT itself). By adding these pairs, we ensure that
all pairs of atoms that intersect, or are less than ε apart, will be available to the dynamic
perturbation routine. The added 2δ term is required to ensure that a pair of atoms that
were more than ε apart will remain more than ε apart after the (possible) perturbation of
both of them.

Now that we have a list of all the modified intersections and near intersections, we
construct a list of all the atoms that might induce degeneracies. These are the atoms
that belong to inserted and updated pairs and the atoms that belong to near intersecting
pairs. For each of these atoms we perform the same tests that were performed in the static
perturbation to assure that all the features are ε apart. In the static case we used the
3D-hash (the structure mentioned in Section 3.2.1) to find all the atoms that intersect or
nearly intersect the tested atom. Now we do not have the 3D-hash. However, when we built
the spherical arrangement of each atom, we kept for each spherical arrangement a list of
the atoms that intersect that atom. Taking this list and modifying it with the information
stored in the MIL (removing atoms of deleted pairs and adding atoms of inserted and
almost intersecting pairs), we can get the list of atoms intersecting or almost intersecting
the tested atom after the current DOF change. Each atom tested for degeneracies is
checked against this list.

When we find a degeneracy, we perturb the atom center. In the static controlled
perturbation we perturbed the atom center around its original center in its global frame
(Cartesian) coordinates. However, in the dynamic maintenance code we no longer keep
track of the coordinates of the atom center in the global frame. We only know its coordi-
nates in its local reference frame. Therefore we perturb the atom center within a sphere
of radius δ around the original center of the atom within its reference frame. This ensures
that the center of the perturbed atom will be at most δ apart from its accurate place
within the frame, which prevents cascading of errors caused when perturbing the same
atom many times (in different steps). This, however, is not the case when we compute
the global coordinates of the atom center, because the changes performed in the torsion
angles add errors to the transformations between the links of the chain, which are caused
by the use of floating-point arithmetic to compute sines and cosines of the angle changes.
To reduce the error accumulated in the transformation of a single torsion angle, we sum
the angle changes of that DOF (since the beginning of the simulation), and each time this
angle is changed we compute a single rotation matrix of the sum of all the changes of
this angle. This partial solution still does not solve the inaccuracy of the rotation trans-
formations, and errors may still accumulate when we multiply transformations to get the
transformations of the higher levels of the CT. In order to keep the kinematic backbone
of the protein exact, we intended to use exact arithmetic with arbitrary-precision rational
numbers to compute the sines and cosines [12]. However, the use of such a mechanism for
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our purpose turns out to be very time consuming,4 and we decided to postpone it until
after we optimize this code; it is therefore not used in the experimental results reported
below.

The perturbation process is repeated until the atom no longer induces a degeneracy.
For each perturbed atom we must re-compute its entire spherical arrangement including
the circles of intersections of this atom with other atoms on the spherical arrangements of
these other atoms. Updating these latter circles may cause spherical arrangements that
were not affected directly by the DOF change to be modified. However, as we show in
Theorem 3.4, the modification of these extra spherical arrangements does not affect the
asymptotic bound on the number of circles added or removed, nor the asymptotic bound
on the number of modified atoms.

After resolving the degeneracies of the spherical arrangements, we need to take care of
the degeneracies that result from the trapezoidal decomposition. The atoms that need to
be tested are atoms on which we add new polar arcs (due to changes in the relative position
of some of the atoms that intersect with them). These are the same atoms whose centers
were tested earlier for degeneracies. Again we have to re-compute the entire spherical
arrangement of any atom whose poles direction is changed, but not the intersection circles
of this atom with other atoms on the spherical arrangements of these other atoms, since
these intersection circles do not move.

Perturbing the pole direction of an atom cannot induce new degeneracies on other
atoms, because it does not change the position of any intersection circle. This, however, is
not the case when perturbing atom centers. In the static perturbation, we make sure that
perturbing an atom center does not induce new degeneracies by testing the new position
of the atom center against all the atoms that intersect this atom and were already added
(and possibly perturbed). In the dynamic case, we test only atoms that belong to pairs
that either were inserted or updated in the last DOF change, or that nearly intersect. As
was mentioned earlier, whenever we perturb the center of an atom, we have to update its
intersection circles with other atoms on the spherical arrangements of these other atoms.
If such an atom was not directly affected by the DOF change, it will not belong to the list
of atoms tested for degeneracies. Let us consider such an atom Ai that was not directly
affected by the DOF change, but its intersection circle Cij with some perturbed atom
Aj was updated. Now we wish to find out which types of degeneracies may occur on
Ai. Degeneracies of the spherical arrangement may only be caused by the update of the
intersection circle Cij (the only circle that moved on the spherical arrangement of Ai).
However, such a degeneracy must involve the perturbed atom Aj, and we already made
sure that the new center of Aj induces no degeneracies. This leaves us with possible
degeneracies of the trapezoidal decomposition. These degeneracies may occur due to the
update of the intersection circle Cij . Therefore we must test for these degeneracies, and
possibly change the pole direction of Ai, and re-construct its spherical arrangement from
scratch. At this point, no further perturbations are required. We show in the following

4In our experiments, using exact arithmetic in the transformations is 300 times slower than using
floating-point arithmetic for the same task.
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theorem that these extra tests and possible perturbations have no effect on the asymptotic
running time of the dynamic perturbation.

Theorem 3.4 Using the same perturbation parameters δ and ω5 of the static perturbation,
the expected update time of the spherical arrangements including the perturbation time is
O(p).

Proof: The perturbation parameters δ and ω calculated in [38] ensure the finding of
a non degenerate atom center or pole direction for a given atom in expected O(1) time.
Since the perturbation tests (and possibly the perturbations themselves) are done only for
modified atoms, the dynamic perturbation takes expected O(p) time (recall that p is the
number of atoms whose spherical arrangement is involved in a change). For each perturbed
atom we have to reconstruct its entire spherical arrangement, which takes constant time
per perturbed atom, since the size of each spherical arrangement is bounded by a constant.
Therefore this reconstruction takes at most O(p) time. In addition to this reconstruction
we also update for each perturbed atom the intersection circles of this atom with other
atoms on the spherical arrangements of these other atoms. There are at mostm such circles
for each perturbed atom (recall that m is the maximum number of atoms that intersect
any given atom), and since there are at most p perturbed atoms, the total number of such
circles is bounded by mp = O(p) (since m is bounded by a constant [37]). Finally, we
add the time it takes to test for degeneracies of the trapezoidal decomposition on spherical
arrangements that were indirectly updated. Again, the number of these arrangements is
bounded by mp = O(p), and for each of them we can find a valid pole direction if neces-
sary in expected constant time and re-construct the spherical arrangement from scratch
in constant time. Therefore, the total time it takes to test for degeneracies, perturb the
necessary atoms, modify the spherical arrangements affected by these perturbations and
possibly perturb them as well, is O(p), which is the same time it takes to update the
spherical arrangements without the perturbation. 2

5Note that Halperin and Shelton [38] calculate two alternative constraints on ω — one constraint for
independent pole directions for each atom, and the other for imposing the same pole direction for all the
atoms. While they use the latter constraint, we use the former, which is easier to satisfy.



Chapter 4

Dynamic Connectivity

Avoiding the traversal of the spherical arrangements that have not changed requires some
more care in terms of identifying connected components of the boundary. The main diffi-
culty is that in general there can be topological changes to the boundary and connected
components of the boundary may merge, split, newly appear or disappear. We now present
an efficient approach that despite the topological changes can accurately recompute the
surface area of every boundary component in total time O(p log2 n), where p is the number
of atoms whose spherical arrangements changed. For that purpose we adapt tools from
dynamic maintenance of graph connectivity. In Chapter 6 we show the speedup in practice
gained by replacing the näıve connectivity maintenance with the dynamic graph approach.

4.1 The Boundary Graph

We define the boundary graph G = (V,E): Each exposed region of the spherical arrange-
ments becomes a vertex of the graph; two vertices of the graph are connected by an edge
if their respective regions are adjacent on the boundary of the union of all spheres. See
Figure 4.1 for an illustration. As the molecule undergoes DOF changes, some regions are
modified, some regions are deleted and new regions are created. These changes are re-
flected in the graph by deleting the vertices of deleted and modified regions and adding
the vertices of new and modified regions. For each deleted region, all the edges incident to
its vertex in the graph are deleted.

In order to maintain the connected components of the boundary of the molecule, we
simply need to maintain the connected components of this graph as the molecule undergoes
DOF changes. One connected component of the graph represents the outer boundary of
the molecule and the rest of the components represent the voids.

4.2 The Algorithm

In [42] Holm et al present a poly-logarithmic deterministic fully-dynamic algorithm for
graph connectivity. Their algorithm maintains a spanning forest of a graph, answers con-

29
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(a) (b)

Figure 4.1: A portion of the union of all spheres (a) and the sub-graph induced by it (b).

nectivity queries in O(logn) time in the worst case1 and uses O(log2 n) amortized time per
insertion or deletion of an edge. Here n, the number of vertices of the graph, is assumed
to be fixed as edges are added and removed. In our case the vertices are not fixed, since
we create and delete regions during the DOF changes. However, the number of vertices
throughout the simulation remains O(n) [37, 49], and therefore the algorithm still works
with the same amortized time bound. We next describe the original algorithm and our
extension of it that efficiently maintains the surface area of the boundary of the molecule
without traversal of the entire boundary.

The connectivity algorithm in [42] maintains a spanning forest F of the input graph
G, and uses for this purpose a data structure called ET-tree. An ET-tree is a dynamic
balanced binary tree over some Euler tour around a tree T . An Euler tour around a tree
is a maximal closed walk over the graph obtained from the tree by replacing each edge
by a directed edge in each direction. The walk uses each directed edge once, so if T has
n vertices, the cyclic Euler tour has length 2n − 2. If we merge two trees or split a tree,
the new Euler tours can be constructed by at most two splits and two concatenations of
the original Euler tours, which take O(logn) time while maintaining the balance of the
ET-tree(s). Each vertex of the tree may occur several times in the Euler tour, and one of
these occurrences is chosen arbitrarily as a representative. Each ET-node represents the
set of representative leaves below it, and may hold data that represent these leaves. See
Figure 4.2 for an illustration. For more details cf. [41, 42].

The edges of the graph are split into `max = blog2 nc levels, and a hierarchy F = F0 ⊇
F1 ⊇ ... ⊇ F`max

of spanning forests is maintained, where Fi is the sub-forest of F induced
by the edges of level ≥ i.

1This time bound can be further improved to O(log n/ log log n) if we use Θ(log n)-ary trees instead of
binary trees to store the ET-trees of the spanning forest.
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Figure 4.2: A tree (a), an Euler Tour of that tree (b), and the ET-tree of that Euler Tour with
its representative occurrences marked (c).

Two invariants are maintained throughout the algorithm :

1. If (v, w) is a non-tree edge, v and w are connected in F`(v,w).

2. The maximal number of nodes in a tree (component) of Fi is bn/2ic.

Inserting an edge e to the graph is simple — e is given level 0, and if its end-points were
not connected, we merge their spanning trees in level 0. Removing a non-tree edge e is
also simple (it has no effect on the spanning forests). Removing a tree edge e = (v, w)
requires finding a replacement edge, reconnecting the two trees Tv and Tw created by the
removal of e. Such an edge can only be found in levels ≤ l(e) (due to the invariant 1). The
replacement edge is searched recursively in the levels ≤ l(e) starting with level l(e). In
each level, the edges of the smaller tree (of Tv and Tw) are promoted to the next level. The
non-tree edges incident to the vertices of that tree are searched for a replacement edge,
and each edge that does not serve for that purpose is also promoted to the next level. The
amortization argument of the algorithm is based on increasing the levels of the edges (since
the level of each edge can be increased at most `max times).

In [42] each representative node of an ET-tree in the forest Fi holds a key for each
incident level i edge and each internal node of the ET-tree holds the number of represen-
tative leaves and one of the incident edges in its sub-tree. This information is maintained
in O(logn) time per split or merge of the ET-trees. In a similar fashion, we add to each
representative node the area of its respective region. Each internal node of the ET-tree
will hold the sum of the areas of the representative leaves in its sub-tree. The root of each
tree of F will hold the total surface area of that connected component. See Figure 4.3 for
an illustration. Maintaining the area information in the ET-trees takes O(logn) time per
each split or merge of the ET-trees. Maintaining this information in the spanning forest
F takes O(log2 n) amortized time when an edge is inserted or deleted.
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Figure 4.3: An ET-tree with area stored in its representative leaves and area sums in its internal
nodes.

To summarize:

Theorem 4.1 (i) The amortized cost of recalculating the surface area of the outer bound-
ary and voids of the molecule is O(p log2 n), where p is the number of atoms whose spherical
arrangement is involved in a change. (ii) The cost of computing the contribution of an atom
to the boundary and all the voids is O(logn).

Proof: (i) The number of inserted and deleted regions involved in a change is O(p), as the
complexity of each spherical arrangement is bounded by a constant. Since each insertion
or deletion of an edge of G takes O(log2 n) amortized time, the overall amortized cost is
O(p log2 n). (ii) The number of regions in an atom is bounded by a constant. Given any
region of the atom, we can find the connected component it belongs to in O(logn) time by
finding the root of its tree in the spanning forest F . Therefore we can compute the contri-
bution of the atom to the surface area of each of the components on whose boundaries it
appears in O(logn) time. 2



Chapter 5

Implementation Details

5.1 Improvements to the Static Construction of the

Surface

As mentioned earlier, we modified the static construction of the surface as originally de-
scribed in [38]. The main improvement is in the implementation of the trapezoidal decom-
position. The original implementation finds a single pole direction (for all the spherical
arrangements at once) that induces no degeneracies in all the atoms; this uniform direction
indeed considerably simplifies the implementation (for example, assuming a north pole at
(0, 0, 1) simplifies the calculation of the polar tangency points). However, using a single
pole direction for all the atoms incurs a huge performance burden in some cases. When
running the application with large molecules (thousands of atoms), finding a single pole
direction that eliminates all degeneracies may take a long time as a large number of con-
straints must be met for each pole direction, which takes a long time to determine for
large molecules, and in addition to that a large number of pole directions are sampled and
checked before we find a valid direction. Therefore we modified the application to choose a
(possibly) different pole direction for each atom. This modification later became essential
for our dynamic maintenance under conformation changes, since it allows us to change the
pole direction of a single atom without affecting the pole directions of the rest of the atoms.
For more details regarding this and other improvements, see [34]. Table 6.1 in Chapter 6
shows the construction times of the surface before and after the modifications mentioned
above.

5.2 Building the Protein Chain

Our software reads PDB files [8]. As we read the atoms data from a PDB file, we first
identify the backbone and side-chain atoms — for each amino acid, the first four atoms are
the N , Cα, C ′ and O atoms of the backbone and the remaining atoms belong to the side
chain. Then we partition the atoms into maximal rigid groups (or links) without DOFs —

33
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each link (except for the first link that contains only the first backbone N atom) consists
of either the Cα atom of an amino acid with all the side-chain atoms connected to it or the
C ′ and O backbone atoms of an amino acid with the N backbone atom of the next amino
acid.

Then we construct the backbone chain, and for each link of the chain compute its
reference frame, and the transformation to the next link in the chain. For this purpose we
use Atomgroup Local Frames as described in [73]: The origin of each frame (except for
the first frame whose origin is the center of the first backbone N atom) is the center of
the backbone C ′ or Cα atom that belongs to the relevant link. The z-axis of each frame
(except for the first frame whose axes are the global axes) is the vector from the frame
origin along the rotatable bond that connects this link to the previous link. The x-axis
is perpendicular to the z-axis, and the y-axis completes the frame to form a right-hand
system. Figure 5.1 illustrates a short protein backbone with its partition to links and the
axes of each reference frame.

Figure 5.1: A short protein backbone (3 amino acids) with the partition of its atoms to links
and the axes of each reference frame.

Once we have a coordinate frame for each rigid link we can compute the transformation
from each frame to its following frame, and vice versa. Suppose that the frame at link i is
Fi = {Qi;ui,vi,wi} (where Q is the origin and u,v,w are the axes) and the frame of the
next link in the chain is Fi+1 = {Qi+1;ui+1,vi+1,wi+1}. Let P be a point in space with
coordinates (xi, yi, zi) in frame Fi and coordinates (xi+1, yi+1, zi+1) in frame Fi+1. Then :









xi

yi

zi

1









=









ui · ui+1 ui · vi+1 ui · wi+1 ui · (Qi+1 −Qi)
vi · ui+1 vi · vi+1 vi ·wi+1 vi · (Qi+1 −Qi)
wi · ui+1 wi · vi+1 wi · wi+1 wi · (Qi+1 −Qi)

0 0 0 1


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








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yi+1
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1









. (5.1)

This transformation is stored in link i of the chain.
Now we can use a combination of these transformations to compute the local frame

coordinates of each atom center. However, it is more efficient to directly calculate for
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each link the transformation from its frame to the global frame, which is the transfor-
mation we get when we substitute ui+1,vi+1,wi+1 of Equation 5.1 with the global axes
(1, 0, 0), (0, 1, 0), (0, 0, 1) and Qi+1 with the global origin (0, 0, 0). We get :


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

xi

yi

zi

1
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=


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z
1









. (5.2)

Here (x, y, z) are the global coordinates of a point, and (xi, yi, zi) are the coordinates of
that point in frame Fi.

After calculating the frame coordinates of all the atom centers, we use only local frame
coordinates in any future computations (we only need to compute the global coordinates
of the atoms for displaying the molecule).

Whenever the torsion angle between links i and i + 1 is changed by an angle θi, the
transformation stored at link i becomes :

(

xi

yi

zi

1

)

=

(

ui · ui+1 ui · vi+1 ui · wi+1 ui · (Qi+1 − Qi)
vi · ui+1 vi · vi+1 vi · wi+1 vi · (Qi+1 − Qi)
wi · ui+1 wi · vi+1 wi · wi+1 wi · (Qi+1 − Qi)

0 0 0 1

)(

cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1

)(

xi+1

yi+1

zi+1

1

)

.

(5.3)
When we need to work with coordinates that belong to different frames, we use the

transformation between them to convert the coordinates to the same frame. The required
transformation is a combination of the transformations stored in the levels of the ChainTree
(see Section 3.3.1). It is calculated during the update of the IntersectionsTree, and stored
with each pair of intersecting atoms in the Modified Intersections List (see Section 3.3.3).
Computing the transformation between any given pair of frames takes O(logn) time using
the ChainTree, but we do not use this property in our algorithm.

5.3 Dynamic Connectivity

Our implementation of the dynamic graph connectivity algorithm is based on the imple-
mentation by Iyer, Karger, Rahul and Thorup [43] of the algorithm by Holm et al [42].

5.3.1 Creating the Boundary Graph

After the initial construction of the spherical arrangements, we find the exposed regions
of each atom. Each such region will be represented by a vertex in our graph. Then for
each such region we create an edge from its vertex to the vertices of its adjacent exposed
regions. The vertices and the edges are then passed on to the dynamic graph connectivity
structure, and the initial spanning forest of the graph is constructed. We maintain a list of
the connected components of the graph, for easier access to the outer boundary and voids.
Each component is represented by the root of its tree, which holds its surface area.
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5.3.2 Updating the Boundary Graph

During each simulation step, we mark all the regions that were modified (regions which
are split into smaller regions or merged into larger regions, due to updates of the spherical
arrangements). The vertices of these regions will be removed from the graph. After the
spherical arrangements are updated, we find the exposed regions of each modified atom
and collect the newly created exposed regions. Those regions will be added as vertices
to the graph and their areas will be calculated. For each of these vertices we find their
adjacent exposed regions and create edges corresponding to the adjacencies.

Next we remove all the vertices of the modified regions and their adjacent edges from
the graph. Note that whenever we remove an edge that belongs to a spanning tree of some
connected component (a tree edge), we search for a replacement edge, and this search is
the most costly part of the algorithm. Since each deleted edge is adjacent to some vertex
all whose edges are deleted, if we remove those edges in an arbitrary order, the algorithm
is likely to replace deleted tree edges with edges about to be deleted, and thus work harder
than is necessary. The solution to this problem is simply to first remove all the non-tree
edges and then remove the tree edges.

The original implementation [43] does not handle deletion of graph vertices. Therefore,
whenever we want to delete a vertex, we simply store that vertex in a list of vertices to
be recycled. When new vertices will be added to the graph, the recycled vertices will be
reused.

After the modified vertices and their adjacent edges are removed from the graph, the
new vertices and edges are added. At the end of this addition process, we have a spanning
forest of the new graph, and each connected component of this graph holds the area of a
boundary component of the molecule.

Whenever we require to find the contribution of an atom to the outer boundary of the
molecule and to the voids, we simply go over the exposed regions of the atom, and for each
such region find the component it belongs to in O(logn) time, by finding the root of its
tree in the spanning forest.

5.3.3 Heuristics

The implementation by Iyer et al has some heuristics that may run faster than the original
algorithm of Holm et al on certain inputs. These heuristics are aimed to reduce the cost
of searching for a replacement edge for a deleted tree-edge: (i) Sampling: Searches for a
replacement edge within the first s (the sampling threshold) non-tree edges of the smaller
tree created by the removal of the tree-edge, without promoting any edges. To keep the
O(log2 n) time of the operation, s should be at most O(logn). (ii) Truncating Levels: At
a high level of the hierarchy, where the trees are guaranteed to be small, it is no longer
worth doing anything sophisticated. Therefore it may be more efficient to simply check all
the non-tree edges. For that purpose we choose a base size b, and for trees with less than b
nodes we perform this simple search. We experimented with various values of s and b and
report the results in Chapter 6.
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5.4 Overview of the Software

As mentioned above, our software reads a PDB file as input. It also accepts a chain
number for that protein, and reads only the atoms of the requested chain from the PDB
file. First the software constructs the initial molecular surface, and computes the surface
area of its boundary. Figure 5.2 displays a screen shot of the application displaying the
van der Waals surface of a molecule and Figure 5.3 displays the spherical arrangements of
two selected atoms of the molecule. In each spherical arrangement the arcs of intersection
circles are colored red, while the polar arcs of the partial trapezoidal decomposition are
colored blue. The atom windows also display statistics on each atom. The window label
shows the index of the atom, as well as its element, its amino acid and its role in that amino
acid. For example, the atom depicted in Figure 5.3(b) is the backbone Nitrogen atom of
an Asparagine amino acid. The north pole picked for the trapezoidal decomposition of
each atom is also displayed. For instance, the atom on the right-hand side has the default
(0, 0, 1) north pole, while the atom on the left-hand side has a different pole direction,
which means that is was perturbed (since before the perturbation, all atoms have the
default north pole). The rest of the information shown in the atom window is the number
of regions and arcs of the spherical arrangement of the atom, the area and percentage of the
atom that belong to the outer boundary of the molecule, and the contribution of the atom
to the voids. Figure 5.4 shows the spherical arrangement of another atom of the molecule.
This time the arcs are colored based on the contribution of the regions they bound to the
boundary. White arcs belong to buried regions. Red arcs belong to regions on the outer
boundary. Arcs with other colors belong to regions on void boundaries. In this case, we
can see blue arcs that bound a region that belongs to a void. The contribution of the atom
to that void is displayed in the atom statistics.

Additional statistics of the entire molecule are displayed in the statistics window, as
can be seen in Figure 5.5(a). We can see the surface area of the outer component of the
molecule boundary, and some information regarding the size of the arrangements. When
the boundary of the molecule contains bounded components (voids), they can be accessed
from the statistics window. Figure 5.5(b) displays information regarding voids. For each
void we see its surface area, the number of atoms contributing to it and the number of
regions on the surface of this void.

After the surface is initially constructed we can perform torsion-angle changes. We
can choose a specific DOF and choose an angle change for it (see Figure 5.6(a)), which
will be performed if it incurs no self collisions. We can also perform a simulation by
choosing the number of iterations, the number of simultaneous DOF changes in each step
and the maximum torsion-angle change in each DOF change (see Figure 5.6(b)). During
the simulation, the surface area of the molecular surface is updated in the statistics window
after each accepted step. After the simulation is finished, a window is displayed, showing
the number of accepted and rejected simulation steps.
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Figure 5.2: A screen shot of the application, displaying the van der Waals surface of the
molecule Glutamate Synthase (1EA0). The two checkered atoms in the molecule window
have been selected.

(a) (b)

Figure 5.3: A screen shot of the application, showing the spherical arrangements of the
two checkered atoms from Figure 5.2.
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Figure 5.4: A screen shot of the application, showing the spherical arrangement of an atom
that contributes to a void boundary.

(a) (b)

Figure 5.5: A screen shot of the application, showing a statistics window (a) and a voids
window (b).

(a) (b)

Figure 5.6: A screen shot of the application, showing a single torsion-angle change window
(a) and a simulation request window (b).
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Chapter 6

Experiments

The experiments described in this chapter were all executed on a 1 GHz Pentium III
machine with 2 GB of Ram. The perturbation parameters that were used are δ = 10−7, ε =
10−8 and 1 − cos(ω) = 10−9.

6.1 Improvements to the Static Construction

Table 6.1 shows the total time it takes to build the static spherical arrangements (including
the perturbation time) with the original implementation [38] vs. the improved implemen-
tation. The number of atoms that intersect a single atom is denoted by m. The new im-
plementation has other technical improvements in addition to the improvement described
in Section 5.1 [34]. As can be seen, the improvements to the original implementation have
been a crucial prerequisite to the effectiveness of the dynamic solution.

Table 6.1: Total time (in seconds) of computing the surface (including the perturbation).

Input File # of Atoms Max m Mean m Single Pole Direction Multi Pole Directions

1BZM.pdb 2034 10 5.74 14.92 8.31
1JKY.pdb 5734 13 6.24 163.68 26.94
7AT1.pdb 7106 12 5.70 63.80 28.40
1L7X.pdb 12882 12 5.85 > 24 hours 54.50

41
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Table 6.2: Proteins used in experiments; m is the number of spheres intersecting a single
sphere.

Input File # of Atoms # of Amino Acids # of Links Max m Mean m

4PTI.pdb 454 58 117 10 5.79
1BZM.pdb 2034 260 521 10 5.74
2GLS.pdb 3636 468 937 13 6.33
1JKY.pdb 56141 748 1497 13 6.24
1KEE.pdb 8181 1058 2117 13 5.87
1EA0.pdb 11180 1452 2905 13 6.14

6.2 Dynamic Maintenance with Näıve Connectivity

Algorithm

Table 6.2 describes the proteins used in our experiments reported here. In PDB files that
contain more than one backbone chain, we handle only the first chain. The number of
links is the number of rigid atom groups, which is the number of DOFs plus one, or two
times the number of amino acids plus one.

Each simulation consisted of a 1,000 steps. At each step the changed DOFs were chosen
uniformly at random and the magnitude of the change was chosen uniformly at random
between −1◦ and 1◦ (we chose small angle changes in order to increase the number of
accepted steps). The results, reported in the following figures and tables, refer only to
accepted simulation steps whose number was usually several hundreds (the time taken by
rejected simulation steps is negligible compared to accepted steps).

Since the update time of the spherical arrangements depends on the number of modified
intersecting circles in each step of the simulation, and the update time of the surface area
depends on the number of modified atoms, we tested the relation between the number of
simultaneous DOF changes, and the number of modified intersection circles and modified
atoms. The results in Figure 6.1 show a strong correlation between the number of simulta-
neous DOF changes and the number of modified atoms and intersection circles. They also
show that for small values of the number of simultaneous changes, the number of modified
atoms and intersection circles is less affected by the size of the protein.

To test the effect of the dynamic controlled perturbation on our implementation, we
counted the number of intersection circles modified due to the perturbation. In Figure 6.2
we see the average number of intersection circles that were modified due to the dynamic
controlled perturbation, compared to the average number of intersection circles modified
due to the DOF changes. We see that the number of circles modified due to the perturbation

1The number of atoms here is smaller than the number given for the same molecule in Table 6.1, because
here we only count the atoms of the first chain of the molecule, whereas in Table 6.1 we count all the
atoms of the molecule.
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Figure 6.1: The average number of modified atoms (a) and average number of modified
intersection circles (b) as a function of the number of simultaneous DOF changes. The
average is only over the accepted simulation steps out of a total of a 1,000 steps in each
simulation.

is about 3%-9% of the total number of modified circles.
In Table 6.3 we compare the time it takes to update the surface after a k-DOF change

to the time it takes to reconstruct the surface from scratch. The reconstruction time
is the time it takes to construct the static surface (not including the time spent on the
construction of the CT and IT). The update time is the average time (for accepted steps) it
takes to update the CT, the IT, the spherical arrangements and the surface. We made this
comparison for several values of simultaneous DOF changes (k). For each update time,
we give the percentage of that time from the reconstruction time. We can see that as
the proteins grow larger, our method becomes more effective. As expected, the update is
faster for small numbers of simultaneous DOF changes. It is interesting to notice that the
percentages in this table are very similar to the percentages of the modified atoms in each
simulation, which means that in practice our implementation runs in time proportional to
p.

Figure 6.3 shows the fractions of the average running time taken by the main compo-
nents of our application. It is important to notice that the update of the IT, while being
the component with the highest asymptotic worst-case time complexity, takes a small per-
centage of the total running time.

6.3 Dynamic Connectivity

For each of the input proteins we show in Table 6.4 the initial size of the boundary graph.
We can see that both the number of vertices and the number of edges are proportional to n
(the number of atoms) which verifies the proof [37] that the complexity of the boundary of
a molecule is linear. The ratio between the number of edges and the number of vertices is
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Figure 6.2: The average number of modified intersection circles as a function of the number
of simultaneous DOF changes. The original modified intersection circles are the circles
modified due to the DOF change. The extra modified intersection circles are the circles
modified due to the dynamic controlled perturbation. The average is only over the accepted
simulation steps out of a total of a 1,000 steps in each simulation.

Table 6.3: Time (in seconds) of static reconstruction vs. dynamic modification of the
surface, using the näıve connectivity algorithm.

Input File # of Atoms static 1-DOF 5-DOFs 20-DOFs 50-DOFs

4PTI.pdb 454 1.95 0.11 (5.5%) 0.48 (24.4%) 0.83 (42.6%) 1.32 (67.5%)
1BZM.pdb 2034 8.79 0.61 (7%) 1.49 (16.9%) 2.24 (25.5%) 2.79 (31.7%)
2GLS.pdb 3636 18.25 0.57 (3.1%) 1.45 (7.9%) 2.65 (14.5%) 4.3 (23.5%)
1JKY.pdb 5614 27.31 0.61 (2.3%) 1.43 (5.2%) 2.81 (10.3%) 4.15 (15.2%)
1KEE.pdb 8181 36.48 1.10 (3%) 2.29 (6.3%) 3.51 (9.6%) 4.92 (13.5%)
1EA0.pdb 11180 53.53 1.29 (2.4%) 2.91 (5.4%) 4.79 (8.9%) 6.25 (11.7%)
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Figure 6.3: Average breakdown of the running time of the main components of our appli-
cation in a single accepted simulation step for different k values using the näıve algorithm.
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Table 6.4: Proteins used in the experiments; the numbers of vertices and edges are in the
initial boundary graph (induced by the boundary of the molecule at the original confor-
mation).

Input File # of Atoms # of Amino Acids # of Links # of Vertices # of Edges

4PTI.pdb 454 58 117 3405 10553
1BZM.pdb 2034 260 521 15254 47266
2GLS.pdb 3636 468 937 29385 90820
1JKY.pdb 5614 748 1497 45558 138818
1KEE.pdb 8181 1058 2117 62308 191317
1EA0.pdb 11180 1452 2905 84536 260096

Table 6.5: Time (in seconds) of static reconstruction vs. dynamic modification of the
surface, using the dynamic connectivity algorithm.

Input File # of Atoms static 1-DOF 5-DOFs 20-DOFs

4PTI.pdb 454 2.05 0.09 (4.7%) 0.51 (24.9%) 0.92 (44.7%)
1BZM.pdb 2034 9.27 0.56 (6%) 1.57 (17%) 2.46 (26.6%)
2GLS.pdb 3636 19.27 0.37 (1.9%) 1.39 (7.2%) 2.82 (14.6%)
1JKY.pdb 5614 28.91 0.27 (1%) 1.18 (4.1%) 2.81 (9.7%)
1KEE.pdb 8181 38.62 0.65 (1.7%) 2.03 (5.3%) 3.55 (9.2%)
1EA0.pdb 11180 56.49 0.64 (1.1%) 2.54 (4.5%) 4.95 (8.8%)

similar for all the tested inputs — about 3 — which means that the average degree of each
vertex is about 6. Due to the linear bound on the complexity of a molecule boundary, the
overall size of the boundary graph remains bounded by O(n) during conformation changes.

Table 6.5 shows the results of the same experiments as Table 6.3, but this time using
the dynamic connectivity algorithm. Note that the static construction times are different
for the two implementations, since the initial construction of the surface is different (the
initial construction of the connectivity graph is slightly slower than the näıve construction
of the surface). However, for the dynamic updates of the surface, the dynamic algorithm
is faster in most cases.2 We can see that the dynamic connectivity algorithm works better
for small numbers of simultaneous DOF changes, but as the size of the molecules grows,
it becomes faster than the näıve algorithm even for larger numbers of simultaneous DOF
changes. The dynamic connectivity algorithm runs up to 55% faster compared to the näıve
algorithm.

Figure 6.4 shows the fractions of the average running time taken by the main compo-

2For 50-DOF simulations the dynamic connectivity algorithm runs a little slower (up to 11%) than the
näıve algorithm.
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Figure 6.4: Average breakdown of the running time of the main components of our ap-
plication in a single accepted simulation step for different k values using the dynamic
connectivity algorithm.

nents of our application for the dynamic connectivity algorithm. It can be seen that for
most inputs updating the surface is faster with the dynamic connectivity algorithm, and
takes a smaller fraction of the total time.

We also experimented with the heuristic parameters proposed by Iyer et al to the
dynamic connectivity algorithm (See Section 5.3.3). We tested different values of s and b
(the sampling threshold and the base size).

We reran the experiments of the 1-DOF and 20-DOF simulations. Each was executed
in 5 variants of the connectivity algorithm HDT(s,b), where HDT(0,0) is the original
algorithm and the other variants use different values of s and b (see Section 5.3.3 for
definitions).

Figure 6.5 compares the performance of the different heuristics. It shows the relation
between the size of the molecule and the average time it takes to remove a tree edge
from the boundary graph (removing a non-tree edge is trivial and does not depend on the
heuristic parameters).

The two extreme variants are HDT(0,0), which always promotes edges, and
HDT(0,100000), which never promotes any edges (since our largest molecule induces a
graph with less than 100000 vertices — see Table 6.4). These two variants turned out to
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Figure 6.5: The average time of removing a tree edge from the boundary graph as a function
of the size of the molecule for 1-DOF simulations (a) and 20-DOF simulations (b).

be the slowest variants.3 On the other hand, the four other variants, which sample some
edges before promoting and perform a simple search on small trees, give better results than
the original algorithm. They delete tree edges up to 30% faster for the larger molecules
(and even faster for the small molecules).

It is important to note that the points on the graphs of Figure 6.5 result from different
molecules. One difference, reflected in the graph, is the size of the molecules, which also
affects the size of the boundary graph. However, another difference not reflected in the
graph is the number of tree edges deleted in each simulation step. Since the performance of
the dynamic connectivity algorithm depends on the number of operations performed (the
algorithm better “learns” the structure of the graph when a large number of operations
are performed), the average time of tree-edge deletion is expected to become smaller when
the number of operations is larger. This explains the unusual behavior of the graph of the
1-DOF simulation — its peak in the middle results from a molecule for which a relatively
small number of tree edges were deleted. We do not see this behavior in the graph of the
20-DOF simulation because in this simulation the number of deleted edges is much larger
in all the molecules (because the average number of atoms affected by a conformational
change — p — is much higher for large numbers of simultaneous DOF changes, which
also increases the amount of changes in the boundary graph), and the differences in these
numbers are smaller.

The best heuristic on most inputs was HDT(10000,5000), and therefore we tested all
our inputs again on that heuristic, and the results can be seen in Table 6.6.

3For the 1-DOF simulation, HDT(0,100000) was so slow (two times slower than HDT(0,0)) that plotting
it would have compressed the axes in Figure 6.5, making the other variants indiscernible.
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Table 6.6: Time (in seconds) of static reconstruction vs. dynamic modification of the
surface, using the heuristic dynamic connectivity algorithm HDT(10000,5000).

Input File # of Atoms static 1-DOF 5-DOFs 20-DOFs

4PTI.pdb 454 2.03 0.09 (4.9%) 0.50 (24.8%) 0.90 (44.5%)
1BZM.pdb 2034 9.16 0.54 (5.9%) 1.54 (16.8%) 2.42 (26.4%)
2GLS.pdb 3636 19.11 0.36 (1.9%) 1.35 (7.1%) 2.75 (14.4%)
1JKY.pdb 5614 28.67 0.27 (0.9%) 1.15 (4%) 2.76 (9.6%)
1KEE.pdb 8181 38.27 0.63 (1.6%) 1.97 (5.2%) 3.45 (9%)
1EA0.pdb 11180 56.2 0.63 (1.1%) 2.48 (4.4%) 4.82 (8.6%)

Remark: comparison to other software We did not perform an extensive comparison
of our implementation to other applications that compute molecular surfaces, since we are
not aware of any application that maintains these surfaces during conformational changes.
Existing applications that compute molecular surfaces statically do not compute exactly
what we compute, which makes comparisons to such applications irrelevant at the moment.
We did, however, attempt to compare the alpha shapes method to our work. Since there
is no dynamic scheme to update the alpha complex during conformational changes, it is
interesting to compare its construction times from scratch to our dynamic update times.
We checked a simple implementation that constructs the alpha complex using CGAL [2].
For our largest input, the alpha complex was computed much faster (roughly 7 times faster)
than our initial construction of the surface, and since the molecular surface can be quickly
constructed from the alpha complex, this implies that the alpha shapes method can be
used to compute the molecular surface from scratch faster than our initial construction of
the surface from scratch. However, our average update times of the surface in simulations
where few DOFs change in each step are much faster (roughly 10 times faster) than the
construction time of the alpha complex, which implies that our software would do better
in Monte Carlo simulation, where few DOFs change in each step.
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Chapter 7

Conclusions and Future Work

We presented an algorithm and its implementation for dynamically maintaining molecular
surfaces under conformational changes. It maintains surface information (such as surface
area and the contribution of each atom to the surface) that can be useful in simulations
such as MCS, in which a small number of DOFs change in each step.

7.1 General Extensions

In our implementation we dynamically maintain the van der Waals and solvent accessible
surfaces. A natural extension is to dynamically maintain the smooth molecular surface.
In [37] a simple transformation is described for computing the smooth surface from the
solvent accessible surface. Another possible (and fairly straightforward) extension is to
allow DOFs in the side chains of the protein. Yet another extension is to calculate and
dynamically maintain the volume bounded by the molecular surface (or by parts of it).

7.2 Improvement of the Construction of the Spherical

Arrangements

Several modifications can improve the construction and update times of the spherical ar-
rangements. First of all, we can further reduce the number of arcs added by the partial
trapezoidal decomposition. Since the sole purpose of this decomposition is to make each
face of each spherical arrangement simply connected (we gave up on the four edges bound-
ary limit when we decided not to use the full trapezoidal decomposition), we only have to
add polar arcs for faces with holes. A face with holes is created by an intersection circle
that does not intersect with any other circles. This means that we need to find the inter-
section circles that do not contain intersection points of three spheres, which can be found
in constant time for each spherical arrangement. Polar arcs will be added only for those
special intersection circles, which will reduce the number of arcs and faces of the spherical
arrangements, as well as reduce the size of the boundary graph.
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Another possible improvement is in the update of the spherical arrangements after
a simulation step. Consider three atom spheres Si,Sj and Sk that intersect each other.
Suppose that we change a torsion angle whose axis of rotation is the line between the
centers of Si and Sj, and the third atom Sk belongs to the same rigid link as Sj. Let
us assume that the atoms that actually move in this rotation are Sj and Sk. In that
case the intersection pattern on the spherical arrangement A(Ci) changes, due to the
movement of the intersection circle of Sk and Si relative to the fixed position of Si. However,
the intersection pattern on the spherical arrangement A(Ck) does not change, since the
intersection circle of Sk and Si moves together with the sphere Sk. We can save the time
it takes to delete such intersection circles and to re-insert them at the same position.

7.3 Improvement of the Graph Connectivity Algo-

rithm

The graph connectivity algorithm used in our work was designed for general graphs. It
may be possible to develop a more efficient algorithm that better suits the graph used in
our application, in which all vertices have a degree bounded by a small constant. Our
implementation may also be improved by detecting small changes in the molecular surface
that do not affect the topology of the graph. Finally, we observe that in a typical scenario
of protein motion simulation there is one very big component of the molecular surface (the
outer boundary) and several much smaller components (the voids). It would be interesting
to use this imbalance of component sizes to improve their maintenance.
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