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Chapter 1

Introduction

This thesis is concerned with a fundamental structure in Computational Ge-
ometry — an arrangement of curves in the plane. The heart of this work is a
generic and robust software package for arrangements of general curves, and
an application of this package to adaptive point location in arrangements of
parametric curves. We start with some basic definitions.

A planar map is a planar embedding of a planar graph G such that each
arc of GG is embedded as a bounded curve, the image of a node of GG is a vertex,
and the image of an arc is an edge. We require that each edge be a bounded z-
monotone curve'. A face of the planar map is a maximal connected region of
the plane that does not contain any vertex or edge. Given a finite collection C
of (possibly intersecting and not necessarily z-monotone) curves in the plane,
we construct a collection C” of curves in two steps: First we decompose each
curve in C into maximal z-monotone curves, thus obtaining a collection C'.
We then decompose each curve in C' into maximal connected pieces not
intersecting any other curve in C’. This way we obtain the collection C" of
r-monotone curves that do not intersect in their interior. The arrangement
A(C) of the curves in C is the planar map induced by the curves in C".

Arrangements of lines in the plane, as well as arrangements of hyper-
planes in higher dimensions have been extensively studied in computational
geometry [15], with applications to a variety of problems. An example of a
problem that can be mapped to the construction of planar arrangements of
lines is finding the smallest triangle defined by three out of a given set of
n points in the plane (the mapping is through a “duality transform” [15]).

'We define an z-monotone curve to be a curve that is either a vertical line segment or
a Jordan arc such that any vertical line intersects it in at most one point.
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The construction of the line arrangement in the dual plane enables to solve
this problem in O(n?) which is an improvement over the naive O(n?) solu-
tion. This result can be generalized to finding the minimum-volume simplex
spanned by d+ 1 out of n points in E¢, which can be found in O(n?), see [15,
Chapter 12.4]. Many more applications for arrangements can be found in
(15, Part III]. Motivated by such applications, a study of data structures and
algorithms for arrangements has been carried out. Typical basic problems
in the algorithmic study of arrangements are: constructing a data structure
that enables easy traversal of the entire arrangement, efficiently finding the
face a query point is located in, efficiently finding the zone of a curve?, to
name a few.

Arrangements of general curves have also been studied producing combi-
natorial results (e.g., the zone theorem) and algorithmic ones (e.g., algorithms
for constructing a face in an arrangement) [1, 27, 47]. These algorithms can
be applied to many problems in “physical world” application domains. For
example, the problem of motion planning of a robot with two degrees of free-
dom (under reasonable assumptions that the shape of the robot and of the
obstacles consists of algebraic arcs of some constant degree), can be solved
using an arrangement of algebraic curves. The so-called configuration space
of the problem — the space of parametric representations of all possible po-
sitions of the robot, can be viewed as an arrangement of arcs in 2D. The
problem is reduced to finding a single face in the arrangement of arcs — the
face that contains the start and end configurations. If such a face exists then
any path in it is a solution to the motion planning problem (see [28] and [47]
for more details).

As noted above, this thesis deals with an implementation of an arrange-
ments package. Implementors of geometric algorithms and data structures
encounter several difficulties. Geometric algorithms are usually described as-
suming an infinite-precision real arithmetic model of computation. In this
model, arithmetic operations, assignments and comparisons on real num-
bers take constant time. A program implemented using a naive substitu-
tion of floating-point arithmetic for real arithmetic can fail, since geometric
primitives depend on sign-evaluation and may not be reliable if evaluated
approximately. In [35], an example is given where using a floating point im-
plementation of the orientation predicate causes a convex hull algorithm to

2The zone of a curve v in a planar map is the collection of the faces of the map that
intersect 7.



give a wrong result. In many cases the program will go into an infinite loop or
crash. For geometric algorithms that use low degree predicates (e.g., orien-
tation and lexicographical comparison of input points), the infinite-precision
real model can be realized using multiprecision integer or rational software
packages (e.g., Gmpz [25] and LEDA’s rational number type [34]). Given
a constant bound on the input bit length the predicates take O(1) time to
compute. However, the underlying constant may be very large.

A strategy to reduce the cost of exact computation is the use of floating
point filters, which is a general name for a variety of adaptive techniques in
which expressions are evaluated with floating point arithmetic, together with
a bound on the error of the computation. Exact computation is used only
when the result of the floating point computation is insufficient. There are
many implementations of such filters, some are specifically tailored for a given
predicate (e.g., [48] and the predicates in LEDA’s rational kernel [34, 35])
and some are more general and can be used for evaluating general expressions
(e.g., [20] and LEDA’s real number type [10, 34, 35]). Implementations that
evaluate the error bound at compile-time are called static filters [20] and those
that evaluate it at run-time are called dynamic filters.

For algorithms dealing with arrangements of curves, a procedure to com-
pute the intersection of two curves is needed. Even for arrangements of lines
this presents new problems that were not encountered in simpler algorithms
that only use predicates. Computations involving points that are constructed
as an intersection of two segments can double the bit length of the coordi-
nates and therefore can be much slower that computations involving only
input segment endpoints. For example, when constructing the intersection
points of a set of line segments where each point is represented as a pair of
multiprecision rational coordinates, each intersection operation can double
the bitlength of the numerator and denominator. Constructing the convex
hull of the resulting set of intersection points will then be slowed down be-
cause of the increase in the size of the coordinates representation (see [10]
for a description of such a case). Furthermore, most filtering schemes cannot
deal with such cases since they assume a bounded bit length on the input of
the predicates.

For algorithms that compute arrangements of algebraic curves the primi-
tive operations involve exact computation of the roots of polynomials of some
constant maximum degree (e.g., for finding the intersection of two curves).
To evaluate these exactly, rational arithmetic is insufficient. Expensive sym-
bolic techniques need to be applied, which result in a large overhead.
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There are not many implementations of arrangements. The Algorithm
Design Manual [50] records only two implementations: arrange [23] — a pack-
age for maintaining arrangements of polygons, and LEDA? — the Library
of Efficient Data-structures and Algorithms[34, 35]. LEDA provides efficient
algorithms (sweep-line and randomized-incremental) to construct the planar
map induced by a set of (possibly intersecting) segments. It also supports
a subdivision class for planar maps of non-intersecting segments with point
location queries. Both implementations are restricted to dealing with linear
objects — line segments (in LEDA) and polygons (in the former). Amenta
13, 4] also points to the pploc package for answering vertical ray shooting
queries in a set of non-intersecting line segments (which seems much more
restricted than the other packages).

The MAPC library [33] is a software package for manipulating algebraic
points and curves. It has been used to construct the combinatorial structure
of an arrangement of algebraic curves. However, it is an algebraic package
rather than an arrangement package — it deals with the representation and
computation of algebraic curves and their intersections, but does not imple-
ment specific data structures and algorithms for arrangements. Neagu and
Lacolle [41] provide an algorithm and an implementation that takes as input
a set of Bézier curves and outputs a set of polygonal lines whose arrangement
has the same combinatorial structure. Their implementation does not build
the arrangement data structure.

In this work we present the design and implementation of a generic and
robust software package for representing and manipulating arrangements of
curves. The package is part of CGAL — the Computational Geometry Algo-
rithms Library?, which is a collaborative effort of several academic institutes
in Europe and Israel [12] to develop a C++ software library of robust ge-
ometric data structures and algorithms. The library consists of three main
parts. The first part of the library (the kernel) contains basic geometric ob-
jects such as points, vectors and lines, predicates on them such as relative
positions of points, and operations such as intersections and distance calcu-
lation. The next part (the basic library) contains a collection of standard
data structures and geometric algorithms, such as convex hull, (Delaunay)
triangulation, planar map, polyhedral surface, smallest enclosing circle, and
multidimensional query structures. This is the place of the arrangement

3http://www.mpi-sb.mpg.de/LEDA /leda.html
*http://www.cgal.org/
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Figure 1.1: An arrangement of segments and an arrangement of circles.

package. The third part (the support library) contains interfaces to other
packages, e.g., for visualization, I/O, and other support facilities.

The library’s main design goals are robustness, genericity, flexibility and
efficiency. To achieve these CGAL adopted the generic programming paradigm
[5] (see [7, 16] and Section 2.1 for a description of the use of generic program-
ming in CGAL). These goals (particularly the first three) stood before us in
our implementation as well.

The arrangement package is built as a layer on top of CGAL’s planar map
package adding considerable functionality to it. The planar map package
supports planar maps of general z-monotone curves that do not intersect
in their interior. It does not assume connectivity of the map (i.e., holes
inside faces are supported), and enables different strategies for efficient point
location. See [18] and Section 2.3 for more details.

There are many problems related to arrangements among them: comput-
ing the combinatorial structure of the arrangement, constructing an arrange-
ment in a way that enables efficient traversal over its components, construct-
ing substructures in the arrangement (e.g., the zone of a curve or lower /upper
envelopes® ), or locating a point in the arrangement. Each problem has a rep-
resentation that is more suited for its solution. The representation used in our

5If we regard each curve c; in the arrangement as a graph of a continuous univariate
function ¢;(z), then the lower envelope of the arrangement is the pointwise minimum of
these functions, and the upper envelope is the pointwise maximum. See [27, 47] for more
details.
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arrangement package enables efficient traversal over the planar map induced
by the arrangement, while maintaining the information of the original input
curves. For example, traversal over all edges in the planar map that origi-
nate from the same curve is easily achieved. Like the planar map package, it
supports holes and point location and vertical ray shooting queries. Using it,
we have implemented arrangements of different curves: line segments, circle
arcs (see Figure 1.1), polygonal lines and others.

We also present an application based on this package to adaptive and
efficient point location in arrangements of algebraic parametric curves, pro-
vided they meet certain conditions. An example is given for arrangements of
quadratic Bézier curves. The underlying idea is to approximate the Bézier curves
with enclosing polygons and do the operations on these polygons. If the en-
closing polygons do not enable us to solve the problem, a subdivision is
performed on the polygons which gives a finer approximation of the original
Bézier curves. We resort to operations on the actual Bézier curves only if we
cannot resolve the queries otherwise (or if we pass some user defined thresh-
old). In this sense our scheme resembles the floating point filter schemes that
work with floating point approximations (such as interval arithmetic [8]), and
resort to (slow) exact arithmetic only when the computation cannot be re-
solved otherwise. Indeed our work was inspired by these schemes. A similar
scheme was introduced in [26] to speed-up kinetic simulations that involve
polynomial functions.

In Chapter 2 we introduce the problems that we attack in our work and
related work that has been done on the subject in the past. In Chapter 3 we
discuss the design and implementation of the arrangement package in CGAL.
The data structures and algorithms used by the adaptive point location appli-
cation are presented in Chapter 4. Chapter 5 gives results from experiments
conducted on that application. In Chapter 6 we present another application
for generic boolean operations that demonstrates the usage of the arrange-
ment package. Some concluding remarks are given in Chapter 7. A paper
describing this thesis [30] has been recently presented in the 4th Workshop
on Algorithm Engineering®.

6A copy of the paper, along with its PowerPoint presentation, and the software related
to it can be found in http://www.math.tau.ac.il/“hanniel/ARRGO00/ .



Chapter 2

Preliminaries and Related
Work

This thesis deals with the implementation of arrangements of curves. There
has been a vast body of work on arrangements from a theoretical view which
we will not review here. The interested reader is referred to [15] for a survey
of the theoretical work on arrangements of lines and hyperplanes; algorithmic
and combinatorial results on arrangements of general curves and their appli-
cations, can be found in [47]. In this chapter we describe related work that
has been done in the implementation of computational geometry algorithms
and data structures. We introduce CGAL — the Computational Geometry
Algorithm Library, and focus on CGAL’s planar map package which is the
basis for the arrangements package presented in this work. We also summa-
rize some of the results obtained in [41] for isolating intersections of convex
parametric curves, which we use in our adaptive point location application.

2.1 CGAL and Generic Programming

As described in Chapter 1, the CGAL library consists of three main parts:
the kernel, the basic library and the support library. The main design goals
of the library are robustness genericity, flexibility, efficiency and ease-of-use.
Two techniques are available in C++- for realizing generic and flexible designs:
Object-oriented programming, using inheritance from base classes with vir-
tual member functions, and generic programming [5] , using template classes
and functions. These paradigms are sometimes referred to as run-time poly-
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morphism and static polymorphism respectively.

The Object-oriented programming paradigm defines the interface explic-
itly with a base class that the derived implementations must follow. It also
enables flexibility at runtime rather than compile time, e.g., managing poly-
morphic data structures such as lists of classes that are derived from the same
base class. Its main disadvantages are the additional memory for each object
(the so-called wvirtual function table pointer), and the additional indirection
through the virtual function table for each call to a virtual member function.
Since virtual functions cannot usually be made inline this indirection has a
run-time penalty (see [36, Item 24| for an overview of the overhead due to in-
heritance). Examples where this overhead is noticeable are low-dimensional
vector arithmetic which appears frequently in scientific programming (see for
example, [49]) and traversals of combinatorial data structures.

The generic programming paradigm uses what is known in C++ as tem-
plates (or parameterized types). It provides strong type checking at compile
time, does not need extra storage and allows inline member functions. There
is no formal scheme in the language for expressing the requirements of tem-
plate arguments, this is left to the program documentation. Geometric ob-
jects, such as points and segments, are anticipated to be small objects with
simple member functions. Geometric predicates (e.g., orientation or lexico-
graphical comparison) are also anticipated to be simple functions. Therefore,
the overhead due to virtual member functions might not be negligible for
these cases. Schirra [45] demonstrates the advantage of using generic pro-
gramming over object-oriented programming for an interface to geometric
predicates. In his case study the overhead introduced by virtual functions
was greater than the overhead introduced by using exact computation with
floating point filters (see Section 2.2.2). Furthermore, the use of templates
enables to run the same algorithm with types from existing libraries without
having to derive them from a common base class. CGAL is implemented
according to the generic programming paradigm.

A good example of generic programming is the Standard Template Li-
brary, STL [5, 39, 51]. The main source of its genericity and flexibility is
its separation of concepts from models. A concept is a set of requirements
that define a class. A model of the concept is a class that fulfills those re-
quirements. For example, an iterator is an abstract concept defined in terms
of requirements (e.g., it should have ++ and % operators, etc.) The usual
C-pointer is a model of an iterator, since it fulfills those requirements. The
STL algorithms are defined in terms of iterators, thus enabling to use the
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same algorithm for different containers (e.g., for lists and vectors).

In CGAL all algorithms and data structures of the basic library are passed
an additional template parameter. This parameter, the so-called traits class!,
makes it possible to use the algorithms in a flexible manner. In particular,
we can let it operate on geometric types other than the ones provided by
the CGAL kernel (e.g., with other geometric libraries). The traits class is
a concept that defines the geometric interface to the class or function. The
set of requirements defining it are given in the documentation of the class.
Every class also provides a traits model that uses the CGAL types. For
some classes other models are also provided (e.g., traits that use the LEDA
rational kernel, see Section 2.3.1). For more detailed information on the use
of generic programming in CGAL see [7].

2.2 Robustness in Geometric Computation

Computational geometry algorithms described in the literature are usually
designed and proven to be correct in a computational model that assumes
exact arithmetic over the real numbers where each operation takes constant
time — the “real RAM” model of computation. Implementing such algo-
rithms with floating point arithmetic can cause the program to crash, loop
forever, or simply compute a wrong result. This is because of the special na-
ture of geometric algorithms. Computational geometry algorithms generally
operate on numerical data and construct combinatorial structures from it .If
we take the convex hull problem as an example, then we have numeric data,
the points’ coordinates, and a combinatorial result, the convex hull polygon
which is an ordered sequence of a subset of the input points. If we use float-
ing point arithmetic then the result might not be convex, or there might be
points left out of the result polygon (see [35, Chapter 9]).

The numerical computations of a geometric algorithm are basically of two
types: predicates and constructions. Predicates are associated with branch-
ing decisions and determine the flow of the algorithm, whereas constructions
are needed to produce the output data. From an implementation point of
view, predicates are usually implemented as functions that take a few geo-
metric objects as input and return a boolean or a multi-state type (typically
an enum type), whereas constructions are implemented as functions that re-

'In CGAL, the term “traits class” is used in a more general sense than associating
related type information to built-in types, which is the original usage [40].
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turn another geometric object. Thus approximations in the evaluation of
predicates may produce an incorrect branching of the algorithm and lead to
catastrophic consequences. Approximations on the evaluation of construc-
tions might give acceptable results, as long as their maximal absolute error
does not exceed the resolution required by the application. However, passing
the approximated results of a construction as input to a predicate in a cas-
caded computation can lead again to grave consequences. Furthermore, in
such input the error evaluation is harder since we need to take into account
the accumulated error.

2.2.1 Exact Arithmetic

A straightforward solution to the problems incurred by using floating point
arithmetic is to use exact arithmetic, a solution that was advocated in a
series of papers by Yap [53, 54] and others. Many geometric algorithms can
be written in terms of integer (with homogeneous coordinates) or rational
(with Cartesian coordinates) arithmetic. However, for all but the simplest
geometric computations the required bitlength of the integer will exceed the
built-in machine precision. This can be solved by using multiprecision arith-
metic software packages. The major disadvantage of using exact arithmetic
is its large performance cost. In the literature, slow down factors of 1000 to
10000 have been reported for computation of Delaunay triangulations with
rational arithmetic compared to floating point arithmetic (for inputs that did
not crash when using floating point arithmetic) [31]. Since then, a number
of techniques for more efficient exact computation have been developed and
explored and modern rational software packages have reduced the slow down
factor. Schirra [45] gives some comparisons of such packages for convex hull
algorithms.

There are several software packages that supply multiprecision integers.
Among them are the gnu multiprecision package [25] and LEDA’s integer
and rational number types [34, 35]. The CGAL kernels (both Cartesian and
homogeneous) are template-parameterized with the number type class. This
enables the CGAL library to use with its kernel any number type, provided
that it has certain functions for it [12]. In particular these functions have been
implemented for the above multiprecision packages and they can therefore
be run within CGAL’s kernel.

The packages described above are restricted to rational arithmetic. How-
ever, for some geometric applications computation of roots is required. For
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example, when implementing an arrangement of circles a square root op-
eration is required to implement the intersection of two curves. For these,
more sophisticated tools are needed. LEDA’s real number type [10, 11]
is such a tool. It operates on algebraic numbers given by expressions in-
volving arbitrary kth roots of integral degree k. It is exact in the sense
that all comparisons and signs are computed exactly as in the Real RAM
model of computation. This is achieved by using arbitrary-precision floating
point arithmetic (in this case LEDA’s bigfloat number type), and separa-
tion bounds for zero detection. The separation bound of an expression E is
a positive number ¢ such that if |[E| < ¢ then E is zero. Thus, if we can
compute ¢, we can repeat evaluating F with increasing precision until we
can verify that either |E| > 0 and we can evaluate its sign, or |E| < ¢ in
which case E is zero, see [10] for more details. The representation of the
number is an “expression DAG”, where the leaves correspond to integers
and each internal node is labeled with an operation. Another package that
supports root operations is the Real/Expr package [42, 43, 54] which uses
similar methods. In [10], a comparison of these two packages is performed
on an implementation of the single source shortest path algorithm for a grid
with v/2-length diagonals (hence the need for square roots).

2.2.2 Floating Point Filters

As mentioned above, floating point arithmetic is fast but unreliable while
multiprecision arithmetic is exact but slow. However, in many cases the
evaluation of the predicate with floating point arithmetic will yield correct
results. This leads to floating point filters [14, 20] where we compute error
bounds on the floating point computations. Only computations that are
subject to precision errors are reevaluated by exact arithmetic or tighter
approximation. This way, we earn the speed of floating point arithmetic and
degrade to slow exact arithmetic only when essential.

Floating point filtering is a general name for a variety of solutions that
implement predicates in an adaptive scheme. There are several categories of
filters:

e Static filters — compute error bounds at compile-time and need specific
information on the input data to be available, for example, whether all
input data are integers of a bounded range. Since the error bound is
computed at compile-time, the only additional operation at run-time
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is a comparison with the error bound, and therefore it is very efficient
at run-time.

e Semi-dynamic filters — bounds on the sizes of the operands are com-
puted at run-time. Some factors in the error bound, that depend on
the expression only, are still computed at compile-time. Semi-dynamic
filters give better error bounds than static filters.

e Fully-dynamic filters — the error bound is completely determined at
run-time.

An example of a static filter is the LN package [20, 21]. There the authors
implement an expression pre-compiler that computes the error-bounds of any
given expression at compile-time, and produces the filtered code for it. A less
general example for a static filter is CGAL’s Fixed_precision_nt number
type [12]. This number type assumes the input data is bounded by 24 bits
and uses the internal float type as the inner representation. It implements
the 2D and 3D orientation and in-sphere predicates based on this knowledge.
If the static filter fails a more refined semi-dynamic filter is used before
resorting to exact computation.

Semi-dynamic filters are used in rat_leda — LEDA’s rational geometry
kernel?. The predicates in this kernel compute part of the error bounds based
on the expression of the predicate, and the other part is computed at compile
time based on the actual input data. Another example of semi-dynamic fil-
ters are the orientation and in-circle predicates provided by Shewchuk [48] for
points with Cartesian double coordinates (not necessarily integral). These
predicates use a different implementation of multiprecision floating-point
arithmetic, which enable to implement a multi-layered filter, where each layer
uses the results obtained by the previous layers. The implementation is fine-
tuned for the given predicates and the results are very efficient.

Fully-dynamic filters are implemented in the leda_real number type
[10, 35]. The error bound is completely determined at run-time and there is
no need to derive error bounds when implementing the predicates. Interval
arithmetic [2, 8] can also be used as a fully dynamic filter: First, all computa-
tions in a predicate are done with interval arithmetic. Only if the computed
intervals do not allow for reliable comparisons (e.g., comparing two values

2The reader should not confuse the leda_rational number type with LEDA’s rational
geometry kernel. The latter uses a different representation and employs floating point
filters.
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that are represented as overlapping intervals), the computation is repeated
in a second step using exact arithmetic. In CGAL this technique is used in
the predicates for the number type Filtered_exact<CN,EN>. The number
type CN is used to store the coordinates. Inside the predicate, the numeri-
cal data is first converted into the Interval_nt number type [12] which is
an interval with endpoints of type double. Then the predicate is evaluated
using interval arithmetic. If during this evaluation, a comparison operation
cannot be reliably resolved, an exception is thrown (using the C++ exception
handling mechanism), which is then caught by a code block that repeats the
computation using the exact number type EN. The interval arithmetic oper-
ations are implemented using the built-in rounding modes (towards plus and
minus infinity) which makes them very efficient [45]. This scheme can be
implemented for any predicate function given by the user using a script that
converts a regular predicate function to a filtered one.

Unlike algorithms that perform their predicates directly on the input
data (e.g., convex hull and Delaunay triangulations), in the construction
of arrangements predicates can get intersection points as their input. This
presents a difficulty to most of the filters described above. In order to en-
able the use of filters we must either store the input data from which the
point was constructed, or compute the construction exactly and perform the
filtered predicates on the exact result. A number type that can be used
in cascaded computation is leda_real, since it stores the expression DAG.
LEDA’s rational kernel can also be used since it computes the intersection
points exactly, and performs the filtered predicates on the result. However,
some of the implementations mentioned above cannot be used for arrange-
ments without modifications. For example, in the Filtered_exact predi-
cates described above, the non-exact input number type is converted into
the inner interval representation and the operations are performed on this
representation. If an intersection point is constructed it is not returned in the
interval representation and so if there is an error it will not be accumulated.
Furthermore, if the non-exact evaluation fails, the exact evaluation does not
have the original data to work on.

Even in the cases where the filters do work for cascaded computations
some care should be taken in the design of the algorithm. An unbounded
cascaded computation (i.e., using the result of a construction as input to
another construction and so on) is also generally a bad idea. It can cause
the expression tree to grow (in representations such as leda_real), and in
cases where normalization is not performed will cause an “explosion” of the
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bitlength. Therefore, the design should try to bound the depth of computa-
tions, e.g., by storing the original input data and performing the construc-
tions on it. Normalizing of rational (or homogeneous) coordinates should
also be used in order to reduce the numbers’ bitlength. If normalization is
not performed then every operation may double the bitlength of the numbers
which causes a considerable slowdown in the computations.

2.3 Planar Maps in CGAL

In this section we describe CGAL’s planar map package. The data structure
for representing planar maps in CGAL supports traversal over faces, edges
and vertices of the map, traversal over the boundary edges of a face and
around the edges incident to a vertex and efficient point location. The design
is flexible enabling the user to define his/her own special curves as long as
they support the traits class requirements.

The representation is based on the Doubly Connected Edge List (DCEL)
structure [13, Chapter 2|. This representation belongs to a family of edge-
based data structures in which each edge is represented as a pair of opposite
halfedges. The representation supports inner components (holes) inside the
faces making it general and suitable for a wide range of applications (e.g.,
geographical information systems). A detailed description of the design and
implementation of the planar maps package in CGAL can be found in [18].

2.3.1 Geometric Traits

The documentation of the planar map class gives the precise requirements
that every traits class should obey. We have formulated the requirements
so they make as little assumptions on the curves as possible (for example,
linearity of the curves is not assumed). This enables the users to define
their own traits classes for different kinds of curves that they need for their
applications. The only restriction is that they obey the predefined interface.

The planar map traits class defines the two basic geometric objects of the
map: the point (Point) and the z-monotone curve (X_curve). In addition
four types of predicates are needed?:

e Access to the endpoints of the xz-monotone curves.

3The full list of requirements can be found in [12].
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e Comparison predicates between points (e.g., comparing their z-coordinates).

e Comparison predicates between points and z-curves (e.g., whether a
point is above a curve).

e Predicates between curves (e.g., comparing the y-coordinate of two
curves at a given z-coordinate).

The interface of the four types of predicates satisfies the geometric needs
of the planar map. We shall see in Section 3.3 that for arrangements ad-
ditional predicates and constructors are needed (e.g., construction of the
intersection of two curves).

2.3.2 Point Location Strategies

The planar maps package provides three implementations of point location
algorithms and a mechanism (the so-called strategy pattern [22]) for the users
to implement their own point location algorithm. The abstract strategy class
Pm_point_location_base<Planar_map> is a pure virtual class declaring the
interface between the algorithm and the planar map. The planar map keeps
a reference to the strategy. The concrete strategy is derived from the abstract
class and implements the algorithm interface.

We have derived the following strategies: Pm_default_point_location,
Pm_naive_point_location and Pm_walk_along_line_point_location,
which is an improvement over the naive one. Each strategy is preferable in
different situations. The default class implements the fully dynamic ran-
domized incremental algorithm introduced by Mulmuley [37, 46]. The naive
algorithm goes over all the vertices and halfedges of the planar map. Namely,
in order to find the edge directly above a query point ¢ (i.e., the answer to a
vertical ray-shooting query), we go over all edges of the map and find the one
that is above ¢ and has the smallest vertical distance from it. Therefore, the
time complexity of a query with the naive class is linear in the complexity of
the planar map. The walk algorithm implements a walk over the zone of a
vertical ray emanating from the query point. This decreases the number of
edges visited during the query, thus improving the time complexity.

There are several trade-offs between the strategies. The main trade-off
between the default strategy and the two other strategies, is between time
and storage. The naive and walk algorithms generally need more time but
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almost no additional storage. Another trade-off that is relevant to our appli-
cation is when the user has knowledge of the combinatorial structure of the
map. Combinatorial operations such as split_edge, insert_at_vertices
and remove_edge, take an additional O(log?(n)) expected time with the de-
fault strategy, since the internal structure has to be updated; for the walk and
naive strategies no such overhead is incurred. For algorithms that make ex-
tensive use of those operations this can be significant. Furthermore, since the
default algorithm assumes a random sequence of insertions, some applications
may create insertion sequences with highly unbalanced search structures. For
more information on the point location strategies see [18].

2.4 Computing the Combinatorial Structure
of an Arrangement

Neagu and Lacolle [41] describe an algorithm for computing the combinato-
rial structure of arrangements of curves that satisfy certain conditions (see
below). In their work they prove that given an arrangement of such curves, a
combinatorially equivalent arrangement of polygonal lines exists and can be
constructed via a subdivision process. The main idea of their approach is to
avoid the use of algebraic methods on the curves themselves, performing op-
erations only on the polygons bounding the curves. They establish sufficient
conditions for equivalence of the arrangements and provide an algorithm and
and implementation that compute a polyline arrangement that is equivalent
to an arrangement of Bézier curves. In Section 2.4.1 we describe the family
of curves they deal with and the terminology used, and in Section 2.4.2 we
describe some of the theoretical results they obtained and which we use in
our work.

2.4.1 Conditions for Curves

Neagu and Lacolle restrict their study to a family of piecewise convex curves
that fulfill certain requirements. The requirements from a curve C' are:

C1. The polygonal line P = PyP,...P,,, named the control polygon of the
curve (', is simple and convex.

C2. P, and P,, are the extremities of C'.
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Figure 2.1: Control and carrier polygons that bound C' and satisfy the condi-
tions C1-6.

C3. The line PP, is tangent to C' in P, and the line P,,_{P,, is tangent to
Cin P,

C4. The curve is included in the convex hull of its control polygon.

C5. The curve and its control polygon satisfy the variation diminishing prop-
erty (i.e., any line that intersects C' at k points intersects the control
polygon in at least &k points, see [17]).

C6. There exists a subdivision algorithm through which the control polygon
converges to the curve.

Since the control polygons are simple and convex, the variation diminish-
ing property implies that these curves are convex.

As Neagu and Lacolle point out, these conditions can be satisfied by many
well-known parametric curves: Bézier and rational Bézier curves, B-splines
and NURBS. Furthermore, theoretically, these conditions are satisfied by any
convex well-behaved curve: we can sample points on the curve and compute
tangents to the curve at these points. The control polygon will consist of
these points and the intersection points of adjacent tangents (see Figure 2.2).
It is easy to see that the first three conditions are met. The fourth and fifth
conditions are met because of convexity. To subdivide the control polygon,
we sample a point p on the curve between two adjacent points p; and p;iq
and “cut the corner” by adding the intersection points of the tangent at
p with the tangents at p; and p;; (see Figure 2.2). Note that, unlike the
case of Bézier curves (and other similar curves), for this subdivision process,
knowledge of the control polygon is generally insufficient and a knowledge of
the original curve is also needed to sample a point on it. Our application is
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Figure 2.2: Subdividing a convex curve by adding a point and its tangent: the
point p on the curve is added between p; and p,, the intersection points of its
tangent 7'(p) with the tangents T'(py) and T'(py) are added to the new control
polygon instead of p;.

designed so that it can be extended to use such subdivision schemes as well
(see Chapter 4).

The above subdivision process assumes we can sample points on the curve
and find the tangent at this point. For algebraic parametric curves this is
trivial (we sample the parameter of the equations and of the derivatives).
However, this can also be applied to algebraic curves in implicit form, pro-
vided that we can sample points on the curve and compute tangents at these
points. It should be noted that applying this subdivision scheme to algebraic
curves in implicit form requires symbolic computation of the points on the
curve (and of the tangent vector). It is therefore not certain that this scheme
is worthwhile for non-parametric curves. For example, for circles, finding a
point on the curve amounts to evaluating an expression with a square root
and so does finding the intersection point of two circles.

We follow the terminology introduced in [41]. The carrier polygon of
a curve is the segment between the two endpoints of the control polygon
(see Figure 2.1). Therefore, these two polygonal lines, the control polygon
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Figure 2.3: A union of control and carrier polygons.

and the carrier polygon bound the curve between them. After a subdivision
has taken place, the union of the subcurves is the original curve. In some
cases when we talk of the carrier (resp. control) polygon of a curve we will
mean the union of the carrier (resp. control) polygons of its subcurves (see
Figure 2.3). It is easy to see that these also bound the original curve.

2.4.2 Isolation of Intersection Points

Given two curves satisfying the above conditions, the paper [41] gives suffi-
cient conditions on the control and carrier polygons of two subcurves which
guarantee that the subcurves intersect exactly once. We use these conditions
in the algorithm described in Section 4.1.2.

The two conditions are:

I1. The control and carrier polygon of the first subcurve C}, each intersect
the control and carrier polygon of the second subcurve Cs, exactly once
(four intersections altogether). Informally, this condition guarantees
that the two subcurves actually intersect. However, as shown by a
counter example, subcurves that meet this condition can still intersect
in more than one point.

I2. Let s; and s, be the segments of the control polygons of C'y and C re-
spectively, which intersect each other (recall that by the first condition
there is only one such intersection). Then the endpoints of Cy are on
opposite sides of the line supporting s;, and similarly the endpoints of
('} are on opposite sides of the line supporting ss.

In our application we verify these conditions in order to isolate the inter-
section polygons — the areas in which the vertices of the curve arrangements
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lie (see Section 4.1.2).



Chapter 3

Arrangements in CGAL

In this chapter we present CGAL’s two-dimensional arrangement package —
a generic and robust software package for arrangements of general curves.
The arrangement layer is built on top of the planar map layer. Given a set C
of (not necessarily z-monotone and possibly intersecting) curves, we wish to
construct the planar map induced by C. However, we wish to do so without
loss of information. For example, we want to be able to trace all edges in the
planar map originating from the same curve. Furthermore, we want the users
to be able to control the process of decomposing the curves into subcurves,
in particular splitting the curves into z-monotone curves to be inserted into
the planar map. This is achieved with a special data structure that we call
a curve hierarchy tree which is described in Section 3.1.

For some algorithms, it is not needed to build the whole planar map
induced by the arrangement. For example, the lower envelope of an arrange-
ment of z-monotone curves which intersect each other at most a constant
number s times, can be found in near linear time even if the complexity of
the induced planar map is quadratic [27, 47]. Therefore, building the planar
map induced by the arrangement is not always desired. We enable the users
to disable (or postpone) the building of the planar map.

The package does not assume general position. In particular it supports
z-degenerate input (e.g., vertical line segments), non z-monotone curves and
overlapping curves. x-degenerate input is treated with a symbolic shear
transform. A point p with the same z-coordinate as another point ¢ but
with larger y-coordinate is considered “to the right” of ¢, see [13, Section 6.3]
and [18]. Non z-monotone curves are partitioned into z-monotone subcurves
and then inserted into the planar map. If two curves overlap, this fact is

23
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traced by the traits intersection function, before the insertion into the planar
map. Thus, given a halfedge in the planar map, the user can traverse all the
overlapping subcurves that correspond to the same pair of halfedges.

3.1 Hierarchy Tree

When constructing an arrangement we decompose each curve C' in two steps
obtaining the collections C’ and C”. We can regard these collections as
levels in a hierarchy of curves where the union of the subcurves in each level
is the original curve C'. We store these collections in a special structure —
a hierarchy tree. This structure usually consists of three levels, although
in some cases it consists of less (e.g., when inserting an z-monotone curve)
or more (when the users define their own split functions, see for example
Section 3.7). The levels are:

e Curve node level: the root of the tree — holds the original curve.

e Subcurve node level: inner nodes of the tree — holds the subcurves
of the original curve. In the default mode these are the z-monotone
subcurves comprising the original curve.

e Edge node level: leaves of the tree — hold the subcurves corresponding
to the edges of the planar map induced by the arrangement. These
nodes will be built only in update mode (by default the arrangement is
in update mode).

Figure 3.1 shows an example of a simple arrangement and its corresponding
curve hierarchy.

The hierarchy tree enables us to intersect the curves without loss of infor-
mation. The original curve and the intermediate subcurves are stored in the
tree and the user can traverse them. Furthermore, the users can define their
own hierarchy by passing their own intersection sequence. We make use of a
this feature in the application described in Chapter 4.



3.1. HIERARCHY TREE 25

Curve_node level =

Subcurve _node level I

\
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Edge node level — — —/ N

Figure 3.1: A simple arrangement of two polylines, and its corresponding hier-
archy tree (the edges are numbered according to their order in the tree).
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Planar map Hierarchy tree
faces curve nodes
vertices subcurve nodes
halfedges edge nodes
Traits

Figure 3.2: The relations between the classes in the arrangement.

3.2 Design and Implementation Details

3.2.1 General Design

Since the arrangement layer is built on top of the planar map layer, it has
the features of CGAL’s planar maps. These include traversal over vertices,
halfedges and faces of the planar map, as well as circulating over halfedges
incident to a face or to a vertex. The flexible point location mechanism intro-
duced in the planar map package [18] is also maintained in the arrangement
layer. In addition to the planar map, the arrangement holds a hierarchy tree
and a traits class that is used by the other classes for their geometric compu-
tations. Figure 3.2 describes the relations between the different classes inside
Arrangement_2 — the arrangement class.

The Arrangement_2 class is passed three template parameters: Dcel,
Traits and Base_node. The first is needed for the planar map within the
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arrangement, and has some additional requirements over the regular require-
ments from a planar map Dcel. As in the planar map, the Dcel enables
addition of attributes (e.g., color of a face) by the users. The Base node
template parameter serves as a base class for the nodes of the hierarchy tree.
It also has a minimal set of requirements that the users can extend to add
attributes. Section 3.2.2 describes the use of the Base_node class in the hier-
archy tree implementation. As in all CGAL algorithms and data structures
the Traits parameter is used by the class as an interface to geometric types
and computations; Section 3.3 describes the arrangement traits requirements
and concrete implementations for them.

3.2.2 Hierarchy Tree Design

The hierarchy structure was required to store all the relevant geometry and
enable efficient traversal over each level of the tree, and between the levels.
The structure was also required to be flexible, enabling the advanced users
to define their own hierarchy of curves, and to add attributes to the nodes
of the tree. Implementing a design that meets these requirements (while
maintaining an “STL-like” interface) was a difficult task. In the following
paragraphs we describe our design.

As mentioned earlier, the hierarchy consists of three types of levels: the
curve_node level, the subcurve_node level and the edge node level. The
curve node is the root of the curve hierarchy and access to any level of the
tree should be enabled from it. The subcurve nodes are the inner nodes of
the tree, holding references both to their parent nodes and to their children.
The edge nodes are the leaves of the tree, similar to the subcurve nodes.
However, they also store a reference to their corresponding halfedge (i.e., the
halfedge that has the same source and target points as the edge) in the planar
map. Furthermore, they store references to other edges which overlap them.

Since the users can define their own curve hierarchy, the implementation
could not assume a constant number of levels in the tree. A variable depth
tree structure was required, with its root and leaf nodes corresponding to the
curve and edge nodes described above. The class hierarchy that implements
this tree is depicted in Figure 3.3 (the figure follows the conventions of [22],
where a black arrow represents aggregation and a white arrow represents
derivation). It is a variation of the composite pattern described in [22]. In
this pattern all nodes of the tree derive from the same base class and refer
to their parent and children nodes with references to this base class.



28 CHAPTER 3. ARRANGEMENTS IN CGAL

In our implementation we wanted to give the users the ability to add their
own attributes to the hierarchy nodes. Therefore, the base node is passed as
a template parameter to the arrangement and the nodes of the tree derive
from it (see Figure 3.3). Thus, if the users add an additional attribute to
the base node, it is inherited by the tree nodes. The subcurve_node is the
basic node type of the hierarchy, it stores references to its parent, children
and neighbors and methods to access them. The curve_node and edge_node
derive from the subcurve node type with additional methods. The edge node
adds a reference to its corresponding halfedge in the planar map. The curve
node, the root of the tree, adds references to all the levels of the tree enabling
traversal over each level.

The ability to efficiently traverse each level of the tree was a requirement
from the hierarchy structure. We used CGAL’s In_place_list [12, Part 3]
to achieve this goal. This class implements a doubly connected list data type
with an STL interface, that manages its items in-place. The advantage of this
type over STL’s 1ist type is that it is able to handle the stored elements by
reference instead of copying them. This enables to erase an element from the
sequence even when we only know its address and no iterator to it (unlike
the standard list). This simplifies mutually pointered data structures like
the DCEL for planar maps (indeed we use this structure there). This class
is ideal for our purpose since it gives us an STL iterator interface for each
level, while enabling traversal through the references from the other levels in
the hierarchy. The usage of the In_place_list structure requires the item
type to provide the two necessary pointers next_link and prev_link. One
possibility to obtain these pointers is to inherit them from the base class
In place_list_base as we have done (see Figure 3.3).

3.2.3 Implementation of Algorithms

There are several algorithms for constructing an arrangement. Each algo-
rithm may be appropriate for different inputs and different scenarios. For
example, a sweep algorithm [13, Chapter 2] may be the algorithm of choice for
a static arrangement of curves (i.e., when all curves are given in advance). A
randomized incremental algorithm that uses a trapezoidal decomposition [37]
may be suitable for a dynamic or semi-dynamic construction. Both of these
algorithms are output sensitive. The sweep algorithm runs in O((n+h) logn)
time, where n is the complexity of the input, i.e, the number of curves, and
h is the number of intersection points in the arrangement. The random-
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Figure 3.3: The design diagram of the hierarchy tree implementation.
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ized incremental algorithm runs in O(nlogn + h) expected time. For dense
arrangements with complexity near ©(n?) a simpler incremental algorithm
(whose efficiency stems from the zone theorem [13, 19]) may be the best so-
lution in practice. It is simple to implement and does not require additional
overhead for managing complex data structures. For arrangements of lines
this algorithm runs in O(n?) time.

Since our arrangement is fully dynamic, we need to implement an in-
cremental insertion algorithm. Incremental insertion of curves into the ar-
rangement depends on point location, in order to find the face of the source
point of the curve. In addition it depends on efficiently acquiring the inter-
section points of the curve with the face’s boundary. In our implementation
the point location algorithm is defined by the point location strategy of the
user [18]. Furthermore, the availability of a trapezoidal decomposition also
depends on the point-location strategy used. We therefore implemented the
simpler incremental algorithm: Given a curve, we locate its start point using
the strategy and traverse the zone of the curve, computing the intersection
points of the curve and the face, splitting the edges of the map at these points
and inserting the new edges as we progress. Acquiring the intersection points
of the curve with the face can also be done using the internal trapezoidal map
maintained by the fast point location strategy.! Thus the theoretical com-
plexity of the insertion algorithm depends on the point location strategy
used.

There are several algorithms related to arrangements of curves. Some of
the algorithms query the complete arrangement, while others do not need
the full construction of the arrangement. Examples of the latter are com-
puting the lower (upper) envelope of an arrangement and constructing the
face where a point is located. In these algorithms the curves are cut into
x-monotone subcurves before the algorithm is performed. Currently we have
not implemented these algorithms, however our implementation enables in-
sertion of curves into the hierarchy without construction of the full planar
map. This will enable us to incorporate these algorithms into our package
in the future. In order to disable (or postpone) the insertion of the curves
into the planar map, the users can call the set_update method with a false
parameter. Calling the method with true enables update mode again and
the curves are inserted into the planar map.

'In order to enable this, the interface of the point-location strategy should be slightly
modified. Currently this is not yet implemented; we plan to do it in the future.
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Figure 3.4: An arrangement of polylines and an arrangement of canonical-
parabola arcs.

3.3 Geometric Traits

There are several functions and predicates required by the arrangement class
that are not required in planar maps. In our implementation this means that
the requirements from the arrangement traits class are a superset of those of
the planar map traits described in Section 2.3.1 (in the terminology of [5],
they are a refinement of the planar map traits and can be used by the planar
map class as well).

The main functions that are added are for handling intersections of z-
monotone curves and for detecting and handling non z-monotone curves and
splitting them into z-monotone subcurves. For the latter a Curve type is
required since in the planar map only z-monotone curves are handled. A
predicate that detects whether two curves overlap is also required for dealing
with degenerate cases (see Section 3.4). The full set of requirements is given
in the arrangement documentation.

We have implemented several traits classes for different curves. As for
the planar map, traits for line segments were implemented using both the
CGAL kernel and the LEDA rational kernel. Another traits class is the circle
arc traits class — Arr_circles_real_traits, which uses square root oper-
ations; therefore in order to guarantee robustness, a number type package
that supports square roots should be used for it (e.g., leda_reals [10]). All
of the above traits classes are available and documented in the CGAL-2.1
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distribution. We have also implemented two traits classes for polygonal lines
(represented as an STL container of CGAL and LEDA points respectively);
we make use of these in the adaptive point location application (see Chap-
ter 4). Another traits class that we implemented is for canonical parabolic
arcs (namely, the graph of the function y = ax? + bx + ¢ over some closed in-
terval), these also need square root operations. We are currently working on a
traits class which deals with both circles and line segments. Since we already
have a separate traits class for both curve types, we implement the traits by
dispatching the functions to the relevant class, and reimplement only func-
tions that have interactions between circle arcs and segments. Figure 1.1 in
Chapter 1 shows examples of arrangements constructed with the segment and
circle traits. Figure 3.4 shows examples of arrangements constructed with the
polyline and canonical-parabola traits. The programs for generating them
can be found at http://www.math.tau.ac.il/"hanniel/ARRGOO/.

3.4 Degeneracies

Our arrangement package does not make any general position assumptions
on the input. In particular the input curves can be x-degenerate, non z-
monotone and the curves can be tangent to each other or even overlap. We
next describe how we deal with these cases.

As noted above, the planar map package can take care of x-degenerate
input sets (e.g., vertical segments). This is done with a symbolic shear trans-
form (see [13, Section 6.3] and [18]). Since the arrangement package is built
on top of it, this is already taken care of.

Non z-monotone curves (e.g., circles) can be used in our arrangement
package. They are decomposed into z-monotone subcurves before they are
inserted into the planar map. This requires from the users to supply a func-
tion in the traits class (see Section 3.3) that performs this decomposition.
The original non xz-monotone curve is stored in the hierarchy tree and can
therefore be recovered if needed.

In order to deal with tangent curves the user must supply an appropriate
implementation in the traits class. For example, in our implementation of
Arr_circles_real_traits when two circular arcs are tangent at a point p, p
is considered an intersection point (see for example, Figure 1.1 in Chapter 1).
However, the users might know their input to be without such a degeneracy.
For example, they might have performed a controled perturbation on the
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input before inserting the curves into the arrangement; cf. [29, 44]. In that
case they can implement a faster traits class based on that knowledge, which
does not take degeneracies into consideration.

Overlapping curves raise a difficulty to our implementation. The planar
map package that is at the basis of the arrangement implementation cannot
deal with overlapping curves. Therefore, overlaps are facilitated in the hier-
archy tree. This is done in the following way: for every halfedge there is a
reference to its corresponding edge node in the hierarchy tree. We define a
special overlap circulator type? which enables the user to traverse the list of
overlapping edge nodes that correspond to the same halfedge. In order to
implement this list we made use of the two pointers to the begin_child and
past_end_child, that appear in the subcurve_node class and are not needed
in the edges (since the edges are leaves of the tree). The interface of the
“nearest intersection” function in the traits class was defined to return two
intersection points which correspond to the source and target of the over-
lapping subcurve. If the intersection is at a single point then the returned
points are identical.

3.5 Robustness

Robustness issues arise frequently in an arrangement implementation. One of
the main reasons is that intersections of curves generally cannot be performed
exactly using floating point arithmetic. In an arrangement, intersections are
basic operations and the resulting intersection points are used in other com-
putations. Therefore, if they are not computed exactly the intersection points
will invalidate the arrangement. For example, the result of an intersection of
two line segments, computed with floating point arithmetic, can be a point
that is on neither of the segments. Other reasons for robustness problems
can arise from degenerate situations. For example, an endpoint of one curve
lying on another curve. If the predicate is evaluated with floating point arith-
metic, the result might be that the curves do not touch or that they fully
intersect.

The traits mechanism provides a convenient way to deal with most robust-
ness problems. Given a traits class that implements robust predicates and
constructions, our package is robust. This encapsulates robustness problems

2A circulator is a concept for iterating over circular sequences, see [7, 12, 32].
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to implementing robust traits classes. Our general approach when imple-
menting a traits class is therefore to use exact arithmetic packages to ensure
robust predicates.

However, when used for arrangements, this approach can incur severe
difficulties. Consider for example, a standard implementation of a rational
number type (e.g., leda_rational or CGAL’s Quotient) which is used for a
segment arrangement. A number is represented as a pair of multi-precision
integers (e.g., leda_integer) for the numerator and denominator. In ev-
ery arithmetic operation (addition, subtraction, multiplication and division)
between two numbers the numerators and denominators are multiplied. If
no normalization is performed then the result’s bitlength is doubled. When
using the result as input for a new computation, the bitlength is doubled yet
again. This “explosion” of the bitlength results in a major slowdown of the
computations since the computation time for exact arithmetic is dependent
on the bitlength. Our experiments show that even for a ten by ten grid
of segments this slowdown is unbearable. One solution can be to perform
normalization on the results of the intersection computation. This solution,
however, should be tailored for a specific rational number type. Indeed, we
use such a scheme in our Arr_leda_segment_exact_traits® class. However,
such a scheme is not general and cannot be used for other exact number
types, e.g., leda_reals, which use a different representation for exact com-
putation. Since CGAL’s kernel is parameterized with an exact number type
and we have no apriori knowledge of its representation, we cannot use such
a scheme with a traits class that uses CGAL’s kernel.

The way we deal with this problem is to use the information that is
stored in the arrangement hierarchy tree to bound the depth of computation.
Instead of computing the intersection between two subcurves we perform the
intersection on the original curves on which the subcurves lie. This avoids the
explosion described above since all the intersection points are now obtained
by operations on the original input.

3.6 Example Code

The following example code demonstrates the use of arrangements in CGAL
(this and other example programs can be found in [12] and in the CGAL-2.1

3The reader should not be confused by the name of the class, this is a CGAL traits
class that uses LEDA’s rational kernel and is not part of the LEDA library.
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distribution). It constructs an arrangement of two circles with a radius of 5
units (see Figure 3.5) and performs a vertical ray-shooting query. In order
to achieve robust intersection computations it uses the leda_real number
type (although for this simple example the built-in double number type will
also run correctly).

Figure 3.5: The arrangement generated by the example program.

(3.4)

(3’-4)

<CGAL/basic.h>
<CGAL/Arr_2_bases.h>
<CGAL/Arr_2_default_dcel.h>
<CGAL/Arr_circles_real_traits.h>
<CGAL/Arrangement_2.h>
<CGAL/leda_real.h>

typedef CGAL::Arr_circles_real_traits<NT>

typedef Traits::Point
typedef Traits::X_curve
typedef Traits::Curve

1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7

8 typedef leda_real
9

10

11

12

13

14

15

typedef CGAL::Arr_base_node<Curve>

NT;
Traits;

Point;
X_curve;

Curve;

Base_node;
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16 typedef CGAL::Arr_2_default_dcel<Traits> Dcel;
17 typedef CGAL::Arrangement_2<Dcel,Traits,Base_node > Arr_2;
18

19 using namespace std;

20

21 int main() {

22 Arr_2 arr;

23

24 //2 ccw circles with squared radius 25 and center (0,0) and (6,0)
25 Arr_2::Curve_iterator cit=arr.insert(Curve(0,0,25));
26 cit=arr.insert (Curve(6,0,25));

27

28 //upward vertical ray shooting

29 Arr_2::Locate_type 1t;

30 Arr_2::Halfedge_handle e;

31 e=arr.vertical_ray_shoot (Point (-1,0),1t,true);

32

33 CGAL_assertion(e->source()->point ()==Point(3,4));

34 CGAL_assertion(e->target () ->point ()==Point(-5,0));
35

36 return O;

37 }

Lines 8 — 17 are custom typedefs to get shorter names. Since CGAL
is highly templated, avoiding these typedefs will result in very long and
unreadable type names. Note that we use the leda_real number type for
our predicates (for this simple example the built-in double type would have
been sufficient, but for other circles it would cause robustness problems).
In line 25 — 26 we insert two counter clockwise circles with squared radius
25 units, centered at points (0,0) and (6,0) respectively. These induce the
arrangement depicted in Figure 3.5. In lines 29 — 31 we perform an upward
vertical ray shooting query from the point (—1,0). The return value is the
halfedge of the arrangement directly above the point. The 1t variable will
store the type of object that the ray intersected, in our case an EDGE. If the
query point were (3,0), 1t would have been VERTEX. In lines 33 —34 we assert
that the returned halfedge is correct.
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3.7 More Technical Details

As mentioned in Section 3.2.2, the requirement to enable the users to define
their own hierarchy guided us in our design. The hierarchy is defined by a
sequence of splitting functions that split a curve into subcurves. For example,
for an arrangement of polyarcs, such a sequence can start with a function
that splits the polyarc into single arcs, and then a function that splits each
arc into x-monotone arcs. The interface for such a user-defined hierarchy is
therefore an insertion function which is passed a sequence of split functions.
The common mechanism for implementing this would be to pass the insertion
function a sequence of function pointers. Using templates and following the
STL, we can make the insertion function generic by passing the sequence as
a pair of iterators — the begin and past-end iterators, referring to the func-
tion pointers. Thus we can pass the function pointers in any container that
has iterators conforming to the STL iterator concept (e.g., STL containers,
or C arrays). A call to this insertion function can look like:

void split_1(Curve, list<Curve>&);
void split_2(Curve, list<Curve>&);

vector<SPLIT_FUNCx> sf;
sf.push_back(&split_1);
sf.push_back(&split_2);

Arrangement_2 arr;
Curve cv(...); //some curve to be inserted

arr.insert(cv,sf.begin(),sf.end());

The C++ template mechanism combined with inheritance allows for even
more flexibility. Rather than passing a sequence of pointers to functions we
can pass a sequence of pointers to function objects. Function objects [5]
are classes that act like function pointers. This is achieved by overloading
the C++ operator(). These classes are used extensively in the STL, for
example, each STL algorithm that requires a partial order to be defined on
its types, has two versions — one that assumes the operator< is defined for
the types, and one that is passed a function object that defines the partial
order (see [5] for more information). One of the main advantages of function
objects over function pointers is that they can store a state (i.e., they can
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store variables). This enables to pass the function additional parameters
enabling for greater flexibility. In our case we want a sequence of function
objects each corresponding to a different function, with all the functions
having the same interface. This can be achieved using inheritance — we
define a base class for the function objects with the operator() defined
as virtual. The derived function objects override the virtual operator to
implement the split functions. This usage of function objects with inheritance
is sometimes referred to as action classes [52].

The following fragment of code shows how to insert a curve into an ar-
rangement using function objects with parameters. We make use of similar
code in the adaptive point location application we describe in Chapter 4.

struct Split_base {
Split_base();
virtual void operator() (Curve,list<Curve>&);

}

struct Split_with_param : public Split_base {
Split_with_param(double p) : param(p) {}
virtual void operator() (Curve,list<Curve>&); //uses param
private:
double param;

}

Split_base split_1;
Split_with_param split_2(0.5); //use 0.5 as parameter

vector<Split_basex*x> sf;
sf.push_back(&split_1);
sf.push_back(&split_2);

Arrangement_2 arr;
Curve cv(...); //some curve to be inserted

arr.insert(cv,sf.begin(),sf.end());



Chapter 4

Approximating Curves by
Polygonal Lines

The application described below addresses the following problem: Given a
set C of curves satisfying the conditions C1-6 presented in Section 2.4.1,
construct a data structure for efficient point location and vertical ray shooting
queries. Given a query point ¢ the vertical ray shooting algorithm will return
the curve C' € C that is above ¢ and has the minimal vertical distance to q.
The point location algorithm will return a circular list of curves that are on
the outer boundary of the face of the arrangement where ¢ is located and
circular lists of curves for the boundaries of the holes (if they exist) of the
face. We present algorithms that perform these queries using an adaptive
scheme. The algorithms we describe are static (i.e., all the curves are given
in the initialization step).

The general scheme of our algorithms is to bound each curve by a bounding
polygon, and perform all operations on these polygons rather than on the
curves themselves. If the bounding polygon’s approximation of the curve
is not good enough, it is refined by a subdivision process. This scheme is
similar to the one presented by Neagu and Lacolle [41]. There, the authors
use such a scheme to compute an arrangement of polygonal lines that is
topologically equivalent to the arrangement of curves. We make use of some
of their results in our algorithms. Like them, we have also implemented our
algorithm on Bézier curves which satisfy the given conditions and have an
easy-to-implement subdivision scheme.

However, there are several significant differences between our work and
the work presented in [41]. In their work they find sufficient conditions for

39
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equivalence of arrangements of piecewise Bézier curves (or any other curves
that satisfy conditions C1-6) and arrangements of polygonal lines. They
further prove that such an arrangement exists and implement an algorithm
which checks for these conditions, and outputs the set of polygonal lines that
induces an equivalent arrangement. The novelty of their approach is that the
operations are not done on the curves themselves, rather they are done on
the polygons that bound the curves. We construct an efficient data structure
for point location in the arrangement. Furthermore, our algorithm is local
and adaptive whereas theirs is global. That is, we only compute the faces of
the arrangements that are needed by a query. Another difference is that we
do not make an assumption that the arrangements are connected like they
do, i.e., we support holes inside the faces of the arrangement; this in turn
raises considerable algorithmic difficulties. We also implement a heuristic
that traces degenerate cases and deals with them, therefore the input is not
assumed to be non-degenerate (see the next paragraph and Section 4.1.3).
There is also a difference from a system point of view. Our application
constructs a framework for future work and can easily be extended to other
curves (and other representations) by changing the traits class. It is based
on CGAL’s arrangement package (see Chapter 3) and can therefore benefit
from improvements in that package.

While we deal with degenerate cases (e.g., two curves that are tangent
at a common point) by a heuristic approach, we do not give a complete
treatment of these degeneracies. In some of these cases if the users require
the exact answer they need to resort to exact computations on the original
curves. In our implementation we employ a user-defined threshold function
(for our program we used an ¢ that should be smaller than the bounding
polygon’s diameter; ¢ is a parameter that can be changed by the user). When
the threshold is passed, the program terminates the subdivision process and
returns to the user the region where the method fails. The user can then
apply symbolic methods on that region. Section 4.1.3 describes possible
degeneracies and ways of dealing with them.

We can also deal with curves that are a union of completely convex curves
(each satisfying the conditions C'1 — 6 from Section 2.4.1). This can be done
by partitioning the original curve into completely convex subcurves (see Sec-
tion 3.1). In our implementation we have chosen to deal with quadratic
Bézier curves. These are easily generated randomly and are convex by def-
inition (their control polygon is a triangle). The subdivision algorithm for
these curves is the de Casteljau algorithm (with parameter 1/2, see [17])
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which makes the computations easier. Extensions to other curves can be
done in our application by changing the traits class (see Section 4.2.2).

4.1 The Algorithms

Several algorithms have been implemented for point location and vertical ray
shooting queries in the CGAL arrangement package. This was done via the
point location strategy mechanism (see Section 2.3.2). These algorithms work
on any curve that conforms to the traits class requirements (see Section 2.3.1).
In particular, they work on arrangements of line segments and polygonal
lines. We can thus use these implementations to perform queries on the
arrangement of the bounding polygons of the curve in C. We use the results
to answer the queries on the original curves. The following sections describe
the algorithms we use for vertical ray shooting and point location. In a
standard planar map, represented say by a DCEL, an answer to a vertical
ray shooting query is easily transformed into an answer to a point location
query. In our adaptive setting however, point location queries are much more
involved than vertical ray shooting queries as we explain below.

4.1.1 Vertical Ray Shooting

Given a query point ¢ in the plane, we wish to find the curve C; € C that is
directly above ¢ (i.e., is above ¢ and has the minimum vertical distance to
it).

Sufficient Conditions

Given a query point ¢ and a curve C; € C directly above ¢, we need to find
sufficient conditions on the bounding polygons of the curve (i.e., the polygon
that consists of the control and carrier polygon) which guarantee that C; is
the result of the query from gq.

The first condition is that the bounding polygon directly above ¢ (i.e.,
the result of the vertical ray shooting query on the arrangement of bounding
polygons) does not intersect any other polygon. A local scheme that goes over
the border of the bounding polygon and checks for intersections with other
segments is not sufficient. Polygons that fully contain the bounding polygon
or are fully contained in it will not be detected by such a scheme. This can



42 CHAPTER 4. APPROXIMATING CURVES BY POLYLINES

Figure 4.1: A global scheme for intersection detection is needed: the intersection
of the large triangle with the small one will not be detected by a local intersection
detection scheme, and the vertical ray shooting query will return the small curve
instead of the large one.

cause the algorithm to return a wrong result (see Figure 4.1). We therefore
need a global scheme to detect intersections between bounding polygons.
This is achieved using an intersection graph IG = (V, E): every node v € V
of the graph represents a bounding polygon of a subcurve in the arrangement
and two nodes are connected by an edge e € E if the bounding polygons they
represent intersect. The intersection graph is initialized at the construction
of the arrangement. When a subdivision is performed only the nodes that
are adjacent to the node that corresponds to the subdivided polygon need to
be updated.

The second condition is that both the control and carrier polygons of the
bounding polygon are above the query point. If this condition is not met
then we cannot guarantee that the original curve is above the query point
(see Figure 4.2). This condition also assures that ¢ is outside of the bounding
polygon. If ¢ were inside we would not be able to decide whether the original
curve is above ¢ or below it.
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Figure 4.2: The second condition is necessary although the first condition is
met: the carrier polygon is not above the query point and neither is the original
curve.

The Algorithm

Our algorithm performs a vertical ray shooting query in the bounding poly-
gon arrangement. It then checks for the sufficient conditions on the result
bounding polygon bp and if they are not met performs a subdivision on bp
and on the bounding polygons that intersect it (i.e., the adjacent nodes in
the intersection graph). In every subdivision of a polygon the intersection
graph is updated. The vertical ray shooting algorithm looks like this:

do {

find the bounding polygon bp above q;

if conditions 1 and 2 are met break;

subdivide bp;

find the bounding polygon bp above q;

if conditions 1 and 2 are met break;

subdivide the neighbors of bp in the intersection graph;
b

return bp;

In the algorithm we perform two steps inside the iteration, first subdi-
viding bp, and if the conditions are still not met, we subdivide the bounding
polygons that intersect it. The bounding polygons that intersect bp are easily
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found since they correspond to the adjacent vertices of bp in the intersection
graph IG. We do not perform all the subdivisions in one step because our
experience shows that in many cases it is sufficient to subdivide only bp in
order to get a valid result. After a subdivision is performed we need to repeat
the search for the bounding polygon by performing a vertical ray shooting
query in the polygon arrangement, since the subdivision has changed the
arrangement.

4.1.2 Point Location

Given a query point ¢ in the plane, our algorithm will find the face f of the
curve arrangement where ¢ is located. The output of the algorithm will be
the ordered lists of curves (a list for the outer boundary and lists for inner
boundaries if they exist) that contribute to the boundary of the face. By
convention, the outer list will be ordered counterclockwise and the inner lists
will be ordered clockwise.

Boundary Polygons and Intersection Polygons

In order to find the face f where ¢ is located, we need to isolate the curves
on f’s boundary, and their intersection points. We define a boundary polygon
of a face f to be a bounding polygon of a single curve (here we use bounding
polygon in a general sense, i.e., it can also be a sequence of bounding poly-
gons), such that the portion of the curve that is bounded by it is on a single
edge of f, and no other curve intersects this portion. See Figure 4.3 for an il-
lustration. We define an intersection polygon to be a polygon that contains a
single intersection of two curves (this polygon is an intersection of two bound-
ing polygons that meet certain conditions — see the next paragraph). An
intersection polygon corresponds to a vertex of f, and the boundary polygon
between two intersection polygons corresponds to an edge of f.

Sufficient Conditions for Intersection Polygons In order to isolate the
intersection points of two curves, we use the results obtained by Neagu and
Lacolle [41], that were described in Section 2.4.2. In their paper they give
sufficient conditions on the control and carrier polygons of two subcurves
which guarantee that the subcurves intersect exactly once. Therefore, if
the two subcurves meet these conditions then their intersection is inside
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intersection polygon

boundary polygon

Figure 4.3: A face with boundary and intersection polygons.

the polygon that is the intersection of their two bounding polygons — the
intersection polygon.

In our algorithm we check for these conditions after we verify, using the
intersection graph, that C; and C, intersect only each other. Therefore, if
the conditions are met then the polygon that is the intersection of the two
bounding polygons is the intersection polygon we are looking for.

Finding a Boundary Polygon After vertical ray shooting has been suc-
cessfully performed from ¢, we have at least one portion of an edge that will
appear on f’s boundary, namely the portion of the curve that is bounded
by the result polygon of the vertical ray shooting query. The case where the
answer to the ray shooting query is empty, i.e., ¢ is in the unbounded face, is
dealt like a face with holes (see concluding paragraphs of this section). Let
bp be the bounding polygon that was found in the ray shooting query. We
know that there are no other bounding polygons that intersect bp (this is the
condition in the ray shooting query), therefore the subcurve bounded by bp
is on f’s boundary. If the neighboring bounding polygons of bp (which can
be found by traversing the hierarchy tree in the polygon arrangement) are
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i control polygon

v; carrier polygon

Figure 4.4: Finding the tail of a boundary polygon.

v

Figure 4.5: An enlargement of the face bp; of Figure 4.4.

also non-intersecting with any other bounding polygon, then their bounded
subcurves are also on f’s boundary. We can continue traversing the bound-
ing polygons until we reach a bounding polygon bp; that is not isolated (i.e.,
is intersected by another bounding polygon). In principle, we can now check
for the intersection-polygon conditions (defined above) in bp; and the poly-
gon intersecting it. However, in our implementation we add an intermediate
step that helps us eliminate certain cases before we check those conditions.

Let bp; be the polygon (that corresponds to a face in the arrangement
of bounding polygons), that is the connected part of the bounding polygon
which is incident to the previous isolated polygon (see Figure 4.4 and 4.5).
We know that one of its vertices v, which is incident to the isolated bounding
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polygon, is on the boundary of f. Therefore in a sufficiently small neighbor-
hood of v the subcurve “going out” of v is also on the edge e of f. In order
for bp; to be part of a boundary polygon, we must verify that the portion of
the curve that is bounded by it is on ¢, i.e., that it is not intersected by any
other curve. Let (e, e, ...., €,) be the counterclockwise sequence of halfedges
around bp;, where v is the source vertex of e; and the target vertex of e,,
Figure 4.5 depicts such a case where there are five edges (i.e., n = 5). If ¢;
belongs to the control polygon then e, belongs to the carrier polygon and
vice versa. Without loss of generality, let us assume that e; belongs to the
control polygon (as in Figure 4.5). Let e; be the first halfedge, when moving
counterclockwise starting at ey, that does not belong to the control polygon.
Let e; be the first halfedge, when moving clockwise starting at e,, (i.e., when
moving “backwards” against the direction of the halfedges), that does not
belong to the carrier polygon (note that e; can be equal to e;). We denote
by v; the source vertex of e; and by v; the target vertex of e;. If the halfedges
of the sequence (e;, ..., e;) all belong to the control polygon of a single curve,
or if they all belong to the carrier polygon of a single curve, then the curve
bounded by bp; (in Figure 4.4 this is the portion of the Bézier curve that
is in the dark area in) is not intersected by any other curve. This can be
demonstrated using Figure 4.5. If there were another curve c¢ intersecting the
curve bounded by bp;, then its bounding polygons would have had an inter-
section region with bp;. Since v is an isolated vertex it cannot be contained
inside these bounding polygons and the intersection could only take place
to the left of v. But since e; and e; are the first edges encountered when
going left of v and all the sequence (e;, ..., €;) belongs to the same control or
carrier polygon, then ¢ can only be to the left of (e, ..., e;). Therefore ¢ does
not intersect the curve bounded by bp;. We call this area of the boundary
polygon, that is not intersected by any other curve and is incident to a pos-
sible intersection polygon, a tail of the boundary polygon (the dark area in
Figure 4.4).

If the face (or faces) “on the other side” of (e;, ..., ;) (i.e., the neighboring
faces that share the edges of (e;, ..., e;) with bp;) is an intersection polygon
(as verified by the conditions of the previous paragraph) then we have one
“side” of an edge e in f, namely the portion of e that is incident to the vertex
created by the intersection. If the neighboring face is not an intersection
polygon, then a subdivision on the bounding polygons will take place (see
next paragraph).
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The Algorithm

Finding the Boundary of a Simply Connected Face If the face f
containing ¢ is simply connected, i.e., it has no holes, then the problem is
easier and we consider this case first. The first step in the point location
query is performing a vertical ray shooting query. By this we achieve two
goals: (i) after the ray shooting, the query point ¢ is guaranteed to be outside
of any bounding polygon. and (ii) we have an isolated bounding polygon bp;
such that its endpoints are guaranteed to be on the boundary of f (i.e., it is
part of a boundary polygon). We can now consider bps as a starting point
(an “anchor”) from which we can traverse the boundary of f, verifying the
conditions defined above.

Let f, be the face in the original arrangement of curves where ¢ is located.
We denote by fq the face that contains ¢ in the current arrangement of
bounding polygons, where current applies to the arrangement of bounding
polygons in the subdivision stage we are currently in. After we have the
starting point, we traverse the outer boundary of fq from the starting point
bps in a counterclockwise order. For every halfedge h in our path we check
if the bounding polygon bp, that is incident to it is part of the boundary
polygon. If not, we subdivide bp;, and the bounding polygons that intersect
it. We then start the process again from bp,. If bpy, is a tail of a boundary
polygon, then we check if the two intersecting bounding polygons conform
to the conditions of an intersection polygon. If the conditions are not met,
we perform a subdivision and return to bp,. If the conditions are met, we
continue the process from the next halfedge on the boundary of fq that does
not belong to the current curve. The process terminates when we arrive
again at the original starting point (the “anchor”).
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The algorithm can be summarized as follows:

find the anchor halfedge ah by shooting a vertical ray from q,
assign it to h;
let the halfedge sp=ah;
let the face f=ah->face();

do {

//finding the boundary and intersection polygon
while (true) {
do {
while h is on an isolated boundary polygon, advance h around f;
if the bounding polygon of h is not a tail of a boundary polygon {
perform a subdivision;
h=sp; //start the process again from sp

}

} until h is on a tail of a boundary polygon;

if the intersection of the bounding polygons is an intersection polygon {
break;

}

else {
perform a subdivision;
h=sp; //start the process again from sp

}
}

add the curve h is on, to the list of curves on the boundary of f;
advance h to the first halfedge on the next curve;

sp=h;

} until h reaches the anchor halfedge ah;
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Dealing with Holes The algorithm described above assumes that there
are no holes in f. Therefore, the vertical ray shooting query will give us
a starting point on the outer boundary of f. However, if f contains holes,
we want to isolate the halfedge cycles around them as well. Furthermore,
the vertical ray shooting might return us a curve on a hole and not on the
outer boundary. For such cases we need a way to find a starting point for
our algorithm without using a vertical ray shooting query. Note that we
still need the vertical ray shooting query to guarantee that ¢ is not inside a
bounding polygon.

Given that ¢ is not inside a bounding polygon, we would like to find an
isolated bounding polygon on the boundary of every hole of fq, which will
be the “anchor” for our algorithm. If a vertex v of fq is an endpoint of a
bounding polygon (i.e., an endpoint of the carrier polygon), then v is on a
curve cv of f’s boundary. If v is isolated, i.e., it is incident only to bounding
polygons of cv, then there exists a neighborhood of v in which cv is not
intersected by any other bounding polygon. Therefore, if we subdivide the
bounding polygons incident to v we will eventually find a bounding polygon
which is in that neighborhood, and is thus isolated. We can then use this
bounding polygon as an anchor.

However, there are configurations in which there are no isolated vertices
that are polygon endpoints, as demonstrated in Figure 4.6. Still, we can
use the following scheme: we find the lowest vertex in the hole’s boundary
and subdivide its incident bounding polygons, we then resume our search
for an isolated vertex. The lowest point puest 0f the boundary is either
an endpoint of a curve (in which case we are done) or in the interior of
a curve. In the latter case, there is a neighborhood of pjy,es; that does not
intersect any other curve (assuming no degenerate cases which we will discuss
in Section 4.1.3). Hence, after sufficiently many subdivision steps there will
be an isolated vertex in that neighborhood. The case of an outer boundary
is similar, either pj,uest 1S in the interior of a curve or it is an intersection
of curves. In either case, there is a neighborhood of pj,ues: that does not
intersect any other curve (again, assuming no degeneracies).

Consequently, in order to find an anchor we go over the halfedges around
the hole looking for an isolated bounding polygon, if we do not find one, we
look for an isolated vertex and subdivide the bounding polygon incident to
it until we have an isolated polygon. If an isolated vertex was not found, we
find the lowest vertex on the hole, subdivide its incident bounding polygons
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Figure 4.6: A hole that has no endpoint vertices on its boundary.
and resume the search.

4.1.3 Dealing with Degeneracies

Our application is intended to avoid the usage of expensive symbolic com-
putations. However, in some degenerate cases this is unavoidable. In the
following paragraphs we will describe some of these cases, and possible ways
of dealing with them. We will also describe degenerate cases that arise in
the bounding polygons’ arrangement and how we deal with them.

Vertical Ray Shooting Degeneracies

The algorithm described in Section 4.1.1 is quite simple. Informally, what we
do is subdivide the curve until the query point ¢ is not inside any bounding
polygon, and has an isolated bounding polygon above it (both its control and
carrier polygon, see Section 4.1.1).

If q is on a curve, then we will go on subdividing, since we will always
be inside a bounding polygon. Another special case is when ¢ is located
exactly beneath an intersection point p of two curves, i.e., it has the same
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x-coordinate as p. In this case we will never be under an isolated polygon
since the polygon around p will always be an intersection polygon.

Both cases cannot be dealt with with our scheme, and must be resolved
by symbolic computation. We have provided in our application a practical
way for the user to facilitate this. In the traits class (see Section 4.2.2) the
user can define a passed_threshold function on a bounding polygon. For
example, a function that returns true when the bounding polygons diameter
is smaller than some small user-defined ¢ (this is what we use in our current
implementation). When the function returns true, the subdivision process
terminates and the subdivided curves are inserted into a degeneracy list. The
user can thus query the degeneracy list with symbolic means to determine
whether ¢ is on the curve or if it is underneath an intersection of two curves.

Point Location Degeneracies

The algorithm for point location starts with a vertical ray shooting query.
If we run into a degeneracy at the ray shooting query we cannot continue,
since we might still be inside a bounding polygon. In such a case we ter-
minate the query and return a message describing the situation. The users
can then query the degeneracy list. If ¢ is not in one of the degenerate posi-
tions described above, the point location query can be resumed with a lower
threshold (or no threshold at all).

If the ray shooting query is successful, we can continue the point location
query. The conditions described by Neagu and Lacolle [41] assumes general
position of the curves, in particular they assume that the curves intersect
transversally (i.e., no two curves are tangent to each other and no endpoint
of a curve lies in the interior of another curve) and that no three curves
intersect at a point. Since our algorithm relies on the conditions given in
that paper we cannot deal with these cases directly either. In these cases
the subdivision process will terminate when the threshold is passed, and the
users can query the degeneracy list. The result of the query is not guaranteed
to be totally correct in these cases, i.e., the combinatorial structure can be
wrong in some places. Consider for example three curves that intersect at
a point. Since we have a threshold ¢ we do not pass in our subdivision, we
cannot distinguish between the case where the three curves intersect at one
point and the case where they only pairwise intersect but their intersection
points are less than ¢ away from each other. Similar examples can be found
for tangent curves and for endpoints that “touch” another curve.
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4.1.4 Degeneracies in the Polygons

There are certain degenerate cases that can occur in the arrangement of
bounding polygons. Since the arrangement package underlying our imple-
mentation deals with z-degenerate input (e.g., vertical segments) we do not
have to take care of such cases. The two main cases we do have to deal with
are when two polygons overlap (assuming the original curves do not overlap),
and when two curves meet at an endpoint of a bounding polygon.

If two polygons overlap while the curves bounded by them do not, then
after sufficiently many subdivision steps the polygons will no longer overlap.
Since the arrangement package underlying our implementation deals with
overlaps (see Section 3.4) then we do not have to deal with this directly.
The conditions for ray shooting and point location fail if there is an overlap.
Therefore, as long as there is an overlap our algorithm will keep on subdi-
viding until there is no longer an overlap or until the threshold has been
reached.

A special case to be taken into consideration is when the bounding poly-
gons intersect at their endpoints, i.e., when the intersection polygon degen-
erates to a single point (see Figure 4.1.4). We consider this case separately.
If we identify that the intersection point is at an endpoint we would like
to verify that the topology of the bounding polygons around the vertex is
equivalent to the topology of the curves around the point. We do this by
ensuring that edges around the vertex are ordered in consecutive pairs where
each pair consists of one edge from a control polygon and one from a carrier
polygon, both originating from the same subcurve. If this is not the case we
subdivide the bounding polygons.

One degenerate case that is not dealt with in our application is the case of
linear interpolation, i.e., when the points of the control polygon are collinear.
In this case the bounding polygon degenerates to a line segment. The reason
we cannot deal with this situation is that the algorithm for finding the tail
of a boundary polygon (see Figure 4.4) assumes we can traverse the inside
of the boundary polygon. This might be solved by special treatment for this
specific case, however we leave it for future work.



54 CHAPTER 4. APPROXIMATING CURVES BY POLYLINES

degenerate intersection polygon

Figure 4.7: A degenerate case where the bounding polygons intersect at an
endpoint, the intersection polygon degenerates to a single point.

4.2 The Implementation

We have implemented the algorithms described in this chapter, using the
Arrangement_2 class described in Chapter 3. The class Adaptive_arr de-
rives from the class Arrangement _2. Its traits class (described in Section 4.2.2)
is a superset of the polyline traits for Arrangement_2. In its constructor the
class gets a sequence of curves and inserts their bounding polygons into the
arrangement. It then initializes the intersection graph (in our current imple-
mentation we do this with a naive algorithm). When a query is performed
the subdivisions take place using the replace function which is a protected
member function of Arrangement_2. This function enables to replace a part
of the hierarchy tree without changing the other parts. Since this function
can be easily misused and cause inconsistencies in the arrangement, it is not
given for public use. An advanced user who wants to use it can do it in
a class that is derived from Arrangement_2, as we have done. Using the
replace function enables us to perform a subdivision only on part of the
original curve without having to remove the whole curve and reinsert it. In
the subdivision process the intersection graph is also updated.

Our application uses the Pm_walk_along_line_point_location strat-
egy. Currently this strategy gives the best experimental results (over a more
efficient point location structure). This can be partially explained by the
fact that our application makes extensive use of the deletion and splitting
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functions which are slower for the randomized incremental (default) point
location strategy (see [18] for a comparison of the strategies). However, our
algorithm does not make any assumptions on the strategy used, therefore if
the default strategy will become more efficient in the future it can be used
merely by changing one line of code.

4.2.1 Data Structures

The Adaptive_arr class stores four classes: the hierarchy tree, the planar
map and traits classes inherited from the Arrangement_2 class, and the inter-
section graph. In addition, the curve_node level of the hierarchy tree stores
references to the original curves (this is needed for subdivision schemes that
need knowledge of the original curve — see Section 2.4.1). For the intersec-
tion graph we use a LEDA UGRAPH class [34, 35] which is a parameterized
undirected graph class. The nodes of the intersection graph store references
to subcurves in the hierarchy tree. Figure 4.8 depicts the classes and their
inter-relationships. In order to store references inside the hierarchy tree, we
supply an additional Info type in the Base_node template parameter that
is passed to the Adaptive_arr class.

The hierarchy tree used inside Adaptive_arr is not the default one. In
some cases we are interested in the whole bounding polygon, in others we
are interested only in the control or carrier polygon. We also need to cut
the polygonal lines into xz-monotone segments before we insert them into the
planar map. To answer all of these needs we designed a hierarchy of three
levels (apart from the curve level which stores the original bounding polygon,
and the edge level which stores the segments corresponding to edges in the
planar map). The levels are (Figure 4.9 illustrates this hierarchy).

e bounding polygons (subcurve level 0 in Figure 4.9) — in this level
we store the whole bounding polygon, oriented counterclockwise. The
orientation is important since we assume in some of our procedures
that the interior of the bounding polygon is to its left. This level also
refers to and is referred to by the intersection graph.

e control polygons and carrier polygons (subcurve level 1 in Figure 4.9)
— in this level we store the control and carrier polygons that correspond
to the bounding polygon of the previous level.
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hierarchy tree intersection graph
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‘ subcurve level ‘ — | nodes edges
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planar map traits class

Figure 4.8: A diagram of the classes and inter-relationships in Adaptive_arr.

e line segments (subcurve level 2 in Figure 4.9) — in this level we parti-
tion the control polygons into line segments. This enables easier han-
dling of the curves and guarantees that the curves inserted into the
arrangement are r-monotone.

4.2.2 The Traits Class

As described in Section 2.1 a traits class enables flexibility in the design. In
our application, the traits class enables us to use different implementations of
polygonal lines, and different curves with varying subdivision schemes. In ad-
dition, the threshold function (see Section 4.1.3) is defined in the traits class.
We have implemented a traits class for quadratic Bézier curves, using LEDA’s
rational kernel for the polyline representation. We have also implemented a
traits class for quadratic Bézier curves which is template-parameterized by
CGAL’s kernel.

The traits class for the Adaptive_arr class should be in particular a
traits class for polygonal lines, since the operations inside Adaptive_arr
are done on the polygonal lines. Indeed, in our implementations of traits
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Figure 4.9: An example of a hierarchy tree in Adaptive_arr.

classes, we derived our traits classes from the Arr_leda_polyline_traits
and Arr_polyline_traits classes. For our application, additional function-
ality is needed. First, an additional type O_curve is to be defined in the
traits class. This type corresponds to the representation of an original curve
that is inserted into the arrangement. For Bézier curves which are defined
by their control polygons, the representation of the 0_curve is the same as
the Curve, however it is required for implementations that use the original
curve for their subdivision schemes.

Except for the additional type O_curve the following functions are re-
quired by the traits class:

e Functions that manipulate control polygons:

— Curve to_control_polygon(O_curve oc); — creates an initial control
polygon for oc which will be the root of the hierarchy tree.

— woid subdivide(Curve cv, O_curve oc, list < Curve > & divided_lst);
— subdivides the polyline cv and stores the resulting subcurves
in divided_lst, where oc is passed to enable subdivision schemes
that might need it.
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e Functions that are needed to verify the conditions of Sections 4.1.1
and 4.1.2:

— bool ch_intersect(Curve cvl, Curve cv2); — returns true if the
convex hulls of the polylines cvl and cv2 intersect.

— bool ch_fully_contains(Curve cvl, Curve cv2); — returns true if
the convex hull of cvl fully contains the convex hull of cv2 (for
the traits class that is used for quadratic Bézier curves this is done
by checking if all three vertices of cv2 are inside cvl).

— int curve_intersections(Curve cvl, Curve cv2); — returns the num-
ber of intersections between cvl and cv2.

— woid intersection_segments(Curve cvl, Curve cv2, Point& ill,
Point& i12, Point& i21, Point& i22); — given that cvl and
cv2 are intersecting polylines, this function returns the endpoints
of the two segments on cvl and cv2 that intersect. 717 and 712 are
the source and target points of the segment lying on cvl and 21
and 122 are the source and target points of the segment lying on
cv2.

— bool rightturn (Point p1, Point p2, Point p3); — returns true if
the points form a right turn. Although this predicate exists in
CGAL, we do not want to restrict ourselves to the CGAL kernel
and therefore we give it as a requirement of the traits class (in
traits classes that use the CGAL kernel this function calls the
CGAL predicate).

e Functions to create the initial hierarchy tree (they need to be static so
they can be referenced by a function pointer)

— static void first_split(Curve cv, list < Curve > & 1); — returns
the bounding polygon oriented counterclockwise. This function
creates the first of the subcurve levels in the hierarchy tree (sub-
curve level 0 in Figure 4.9).

— static void split_cntrl(Curve cv, list < Curve > & [); — returns
the control polygons and carrier polygons (subcurve level 1 in
Figure 4.9). [ is a list of the control polygons (represented as
polylines). The matching carrier polygons are defined as the seg-
ment that has the last point of cv as its source and the first point
as its target.
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— static void split_sgmnits(Curve cv, list < Curve > & [); — splits
cv into segments (subcurve level 2 in Figure 4.9). The polyline in
the carrier polygon is partitioned into its segments.

e The threshold function:

— bool passed_threshold(Curve cv); — the function determines if we
should stop the subdivision of cv.

4.3 Example Program

The following example demonstrates the use of the vertical ray shooting and
point location queries inside a program (include files have been omitted for
clarity). We use the class Adaptive_leda_traits which is a traits class for
quadratic Bézier curves that implements polylines as standard vectors of
the leda_rat_point type. Adaptive_base_node is a base class for the hier-
archy tree that holds additional information which enables to refer from the
hierarchy to the intersection graph (see Section 4.2). The program inserts
one quadratic Bézier curve (i.e., a control polygon of three points) and per-
forms a vertical ray-shooting and a point-location query. The experimental
results from Chapter 5 were obtained with similar programs.

typedef CGAL::Adaptive_leda_traits Traits;
typedef Traits::Point Point;
typedef Traits::Curve Curve;
typedef Traits::0_curve O_curve;
typedef Traits::X_curve X_curve;

typedef CGAL::Pm_dcel< CGAL::Arr_2_vertex_base< Point >,
CGAL::Arr_2_halfedge_base<Adaptive_base_node >,
CGAL: :Arr_2_face_base > Dcel;

typedef CGAL::Adaptive_arr<Dcel,Traits,Adaptive_base_node > Ad_arr;

int main()

{
O_curve c;
c.push_back(Point (0,0));
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c.push_back(Point(2,2));
c.push_back(Point(4,0));

std::1list<0_curve> in_lst; //the list of input curves
in_lst.push_back(c);
Ad_arr arr(in_lst.begin(),in_lst.end());

std::list<Curve> deg_lst; //list where the degeneracies will be stored
Point q(1,1); //query point

//vertical ray shooting query

Ad_arr::Halfedge_iterator hit=arr.vertical_ray_shoot(q,deg_1st);
//finding the original curve of the result

O_curve oc = arr.o_curve(hit->edge_node()->curve_node());
CGAL_assertion(oc == c);

//point location query
deg_lst.clear();
hit=arr.locate(q,deg_lst);

return O;



Chapter 5

Experiments in Adaptive Point
Location

We have conducted several experiments on the adaptive point location appli-
cation described in this thesis !. In this chapter we describe these experiments
and their implications. Our main goals in implementing the package were
robustness, genericity and flexibility. The package is not an optimized code
yet, work is currently underway to speed-up the performance of the package.

5.1 Adaptive Point Location Queries and Ini-
tialization

The adaptive point location application is built over the arrangement package
using polyline traits. There are many variables which influence the perfor-
mance of our adaptive point location application. The number of curves and
the size of the output (the returned face) are the obvious ones. Apart from
them, the performance of our adaptive scheme is influenced by the density of
the arrangement — if the curves are dense then more subdivisions need to be
performed in order to isolate them. Another parameter is the distance of the
query point from the curve, the closer the point is to a curve the larger the
number of subdivisions we may need to perform. An important parameter
is the number of queries we perform and their relative location. Since our

L All experiments were done on a Pentium-II 450Mhz with 528MB RAM memory, under
Linux.
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(a) (b) (c)

Figure 5.1: An arrangement of 10 Bézier curves and its corresponding polyline
arrangement before (a) and after (b) the first point location; (c) displays in bold
line the curves that bound the face containing the query point.

algorithm is adaptive, a query in a face that has already been queried should
be faster than the first query in that face. Similarly, a query close to a face
that has already been queried is also anticipated to be faster since some of
the subdivisions have already been performed for the neighboring face.

We have constructed test inputs of ten random sample sets of quadratic
Bézier curves (using CGAL’s random triangle generator). Figure 5.1 shows
such a random set with 10 curves; it also depicts the corresponding segment
arrangement, before and after the first point location query. The curves of
the located face are colored darker in the Bézier arrangement. We have run
the test inputs on 50 random points distributed evenly in a circle centered at
the origin with a radius of 100 units (the curves are distributed in a circle of
radius 400). Figure 5.2(a) shows the average time per query as a function of
the number of queries already performed. We can see clearly that the time
reduces considerably as we make more queries.

There is a trade-off between the initialization step (in which the initial
intersection graph is constructed) and the rest of the algorithm. If we subdi-
vide the initial control polygon in the initialization step we prolong this step;
however, since the resulting bounding polygon is closer to the curve the query
will take less time. We timed the initialization step and Figure 5.2(b) shows
the first point location query (as Figure 5.2(a) shows, this is the significant
query) as a function of the number of curves. Again, as can be expected,
the initialization and query time grow as the number of curves increases. We
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Figure 5.2: The reduction in the average query time as a function of the number
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repeated the procedure, performing one and two subdivisions at the initial-
ization step. Again, as can be expected, the time for the point location query
reduces while the initialization time increases as more subdivision steps are
performed at the preprocess step. Implementing this change amounted to
changing a few lines in a single function of the traits class, therefore the
users can experiment with this trade-off for their needs.

5.2 Comparison with Arrangement of Canon-
ical Parabolas

Constructing arrangements of Bézier curves with exact arithmetic is a diffi-
cult task. Computing the intersection point of two quadratic Bézier curves
is equivalent to finding the roots of a degree-4 polynomial (i.e., solving the
quartic equation). Although there are known analytical solutions to the quar-
tic equation (see, for example, [9]), we do not know how to implement them
using algebraic number packages such as leda_real. The reason is that the
solution requires finding the cubic root of a complex number; this in turn
requires trigonometric functions, which these packages do not support.

In order to compare the method described in Chapter 4 with exact al-
gebraic methods we compared it to the restricted case of arrangements of
canonical-parabola arcs. As mentioned in Chapter 3 we have constructed
a traits class for canonical-parabola arcs, which can be used with algebraic
number types (in our experiments we used leda_real which is the fastest im-
plementation of such a package known to us [10]). This traits class is easier to
implement since finding the intersection point amounts to solving a quadratic
equation. Still, the comparison can give us an idea of the advantages and
disadvantages of our method compared to algebraic methods.

For the experiment we conducted we prepared random inputs of control
polygons for canonical parabolas. The control polygons were symmetric tri-
angles with a vertical symmetry axis (see Figure 5.4). These were the input
for the adaptive point location application. The coefficients of the canonical
parabolas were computed from the control points?.

2This was done in a special constructor in the traits class. Given the control points
p0, pl, p2 the coefficients a, b, ¢ of the parabola equation y = az + by + ¢ were computed
using the following expressions: a = (p0, —pl,)/2(p0, —pl;)?); b = —2apl,; ¢ = (b*/4a)+
(p0y + ply)/2.
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Figure 5.4: An arrangement of 10 canonical-parabola arcs and its corresponding
arrangement of polylines before and after the first point location.

We timed the construction of the arrangement and then conducted a
series of 100 point location queries. The accumulated time, i.e., the time
passed from the beginning of the construction to the end of the query, for
ten and twenty curves (on average over the inputs) are depicted in Fig-
ure 5.5. It shows that constructing the non-adaptive arrangement is very
slow, whereas its queries are very fast (negligible compared to the construc-
tion time). On the other hand, the adaptive arrangement’s construction is
quite fast, while the queries show the same behavior already shown in Fig-
ure 5.2 above. Although the adaptive queries are slower than those of the
non-adaptive arrangement, they are preferable in many cases because of the
latter’s long construction time. For small arrangements (see Figure 5.5(a))
with a sufficiently large number of queries, the non-adaptive arrangements are
preferable. We anticipate that for arrangements of general (non-canonical)
Bézier curves the non-adaptive operations will be much slower because of
the complexity of the predicates. No such change is expected in the adap-
tive point location since the operations are the same as the ones used for
canonical parabolas.

After the construction of the canonical parabola arrangement the point
location query is very fast. In order to investigate this behavior we designed a
special traits class Arr_statistic_traits which gave us information about
the use of the predicates®.

3Implementing concrete concepts for profiling is a common practice when using generic
programming, see for example [38]. In our case we extended the practice to a generic traits
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Figure 5.5: A comparison of the accumulated time for construction and queries
of arrangements of canonical-parabola arcs, using the canonical-parabola traits
(dash-dotted) and the adaptive scheme presented in this work (dashed): (a)
Arrangement of 10 parabolas and (b) arrangement of 20 parabolas.

The reason for the fast operation of the point location query is that
once the topological structure of the arrangement has been created, the
point location query is reduced to a series of predicates of the type “is the
point above or below the curve?”.This query is implemented in the traits
curve_get_point_status function. The implementation of this query is to
substitute the coordinates of the query point in the parabola equation and
evaluate its sign. Since the query point is not close to most (if not all) of
the canonic parabolas in the arrangement, and its expression tree is not very
deep, this predicate can easily be resolved using the floating point filter inside
leda_real. This was verified by the statistics that showed the only predi-
cates used in the query were curve_get_point_status and compare_x. The
compare_x functions in the query were never between two points sharing the
same z-coordinate, therefore the use of floating point in them was sufficient.

Construction of arrangements is always much slower than a point loca-
tion query (since every insertion of a curve starts with a point location, the
construction of an arrangement of n curves is slower by a factor of at least
n than a point location query). However, in this case there are additional
reasons for the slowdown of the construction time. Profiling the construc-
tion showed that most of the time was spent in the intersection predicate

class (a “meta-traits” class) that gets a traits class as a parameter and profiles it.
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find nearest_intersection_to_right, that finds the nearest intersection
of two z-monotone curves to the right of a given point p. This predicate
is called when inserting a curve ¢ to find the next intersection point of ¢
with the face it is in. The implementation of this predicate is to find the
intersection points of the two parabolas, check which of these intersection
points are on the parabolic arcs, and compare their position to p. The ex-
pression for the intersection points amounts to solving the quadratic equation
(a1 — az)x?® + (b — ba)z + (¢1 — c2) = 0 to find the points’ z-coordinates and
substitute the result in one of the equations to get the points’ y-coordinates.
This results in a considerably deeper expression tree compared to the “be-
low/above” predicate. As shown in [10], deep expression trees slow down
the computation considerably. Furthermore, in many cases the given point
p is one of the two intersection points. These cases are especially slow since
the coordinates are equal. In such cases the computation has to reach the
separation bound (see Section 2.2.1) and cannot be resolved by the floating
point filter.

On the other hand in our adaptive scheme we construct a polygonal lines
arrangement. This enables us to use the traits class that is implemented with
LEDA’s fast rational kernel. Furthermore, since our scheme is adaptive, we
do not perform a lot of computations on parts of the arrangement that are
far from the query point. The graphs in Figure 5.5 also show the behavior
described in Figure 5.2 — as more queries are performed in the same region,
the query time is reduced. However, there is always an overhead in the query
time compared to the canonical parabola queries. This is because the adap-
tive point location algorithm traverses over the boundary of the located face
to verify the sufficient conditions on the boundary and intersection polygons.
We may be able to improve the algorithm by coloring faces in the polygon
arrangement after a point location query has been performed. If a query
point is inside such a face, we will not need to check its boundary and inter-
section polygons. Of course, this improvement also requires maintenance of
the coloring, when the arrangement changes.

It should be noted that the choice of input representation influenced the
results of these experiments. Namely, since the input was represented as
control polygons, an additional computation was needed to transform it to
the canonical parabola representation. This created expression trees in the
leda_reals that were larger than the ones we would have gotten had we used
a different representation (e.g., representing the input as the coefficients of
the parabola and the source and target points). However, in applications of
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parametric algebraic curves this is the natural representation.

We have shown that our scheme compares favorably to an implementation
using leda_reals even for the restricted case of canonical parabolas. This
demonstrates the strength of our implementation.



Chapter 6

Another Application: Boolean
Operations

We have tested the software packages described in this thesis on a number of
programs and applications. In this chapter we present an example of such an
application that emphasizes the advantages of our design and demonstrates
its use. We show how our arrangement package can be used to perform
boolean operations (such as intersection) on closed curves (such as polygons).
We demonstrate how the flexibility of the design can be applied, and how
robustness is maintained. The function that performs these operations is a
good example of code that uses our package'.

Given a set of N polygons in the plane we wish to find the regions that
are the intersection of all polygons in the set. The way we do this is to label
each face in the subdivision induced by the polygons with a covering number.
The covering number represents the number of original polygons that cover
the face. The faces that have covering number N constitute the intersection.
The first step of this process is therefore to find the subdivision induced by
the polygons, i.e., compute the polygon arrangement. Then we proceed to
label each face in the arrangement with its covering number.

Consider the simple case where no edge overlaps occur in the arrangement.
Given a face f with covering number ¢y, a neighboring face f’ (i.e., a face
sharing an edge with f) will either have a covering number ¢y + 1 or ¢; — 1.
If in crossing the shared edge from f to f’ we “go out” of a polygon, then the

!The code, and  graphic programs using it can be found in
http://www.math.tau.ac.il/ “hanniel/ARRGO00/.
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covering number is decreased, if we “go into” a polygon then the covering
number is increased. This presents a simple recursive labeling scheme: for
each neighboring face f' if the neighboring face is not yet labeled, label it
with ¢, + 1 or ¢; — 1, and recursively perform the operation on f’. We begin
the recursion with the unbounded face that has, by definition, a zero covering
number.

To implement this function we add a counter attribute to the faces of
the arrangement. This counter corresponds to the covering number. We
initialize it with —1 which will represent “unlabeled” in our function (thus
we can distinguish between labeled and non-labeled faces in our function).
The definitions for this special arrangement are:

struct Face_with_counter : public Arr_2_face_base {
Face_with_counter() : Arr_2_face_base(), counter(-1) {3}
int counter;

};

//a DCEL with the Face_with_counter

typedef Pm_dcel<Arr_2_vertex_base<Point>,
Arr_2_halfedge_base<Base_node >,
Face_with_counter
> Dcel;

typedef Arrangement_2<Dcel,Traits,Base_node > Arr_2;

We then implement the recursive function covering DFS in the following
manner:
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1 void covering DFS(Face_handle f) {

2 Ccb_halfedge_circulator start,circ;

3

4 if (f->does_outer_ccb_exist()) {

5 start = circ = f->outer_ccb();

6 do {

7 if (circ->twin()->face()->counter == -1) {
8 int diff = face_diff(circ);

9 circ—>twin()->face()->counter = (f->counter + diff);
10 covering DFS(circ->twin()->face());

11 }

12 } while (++circ != start);

13 }

14

15 Holes_iterator hit = f->holes_begin();
16 for (; hit!=f->holes_end(); ++hit) {

17 start = circ = (*hit);

18 do {

19 if (circ—->twin()->face()->counter == -1) {

20 int diff = face_diff(circ);

21 circ->twin()->face()->counter = (f->counter + diff);
22 covering_DFS(circ->twin()->face());

23 }

24 } while (++circ != start);

25 }

26 }

Lines 4-13 perform the recursive function for neighboring faces that share
an edge from the outer boundary of the face (if it exists — for the outer face
it does not exist), and lines 15-25 do the same for the inner boundaries. If
the neighboring face? is unlabeled (lines 7 and 19) then its counter should be
updated. diff (lines 8 and 20) is defined to be either 1 or —1 by the function
face diff, and the neighbors counter is updated accordingly. Lines 10 and
22 call the function recursively.

2The sequence circ->twin()->face() gives us the neighboring face, on the “other
side” of the halfedge circ.
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The face_diff function defines whether we are passing from a bounded
side of the polygon to an unbounded side. In order to perform it we assume
that all the polygons were inserted in counterclockwise order, this can be
easily verified when inserting the polygons into the arrangement (and the
polygon can be reversed if necessary). Assuming this, we are inside a polygon
if the curve we are crossing (the curve on the edge) has the same orientation
as the halfedge we are crossing (i.e., the halfedge that belongs to the face
we are in). This is checked by comparing the source and target vertices of
the halfedge with the source and target points of the subcurve underlying
it. It should be noted that this works because we store the subcurves in
the hierarchy tree in the original orientation that they were inserted into
the arrangement, otherwise this test could not have been performed. The
face_diff function is as follows:

int face_diff( Ccb_halfedge_const_circulator circ) {
Traits t;
if (circ->source()->point() ==
t.curve_source(circ->edge_node()->curve()) )
return -1; //we’re inside, going outside
else
return 1;

The above function is sufficient for the cases where there are no edge
overlaps. However, in the case where some of the polygons boundaries can
overlap we may have a difference that is greater than 1 less than -1 or even
zero (for example two polygons that intersect only at a segment). In order to
account for these degenerate cases a more sophisticated face_diff function
should be implemented. The following function goes over all the overlapping
curves on the halfedge that is crossed, performs the test described above for
each curve, and accumulates the difference accordingly.
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Figure 6.1: An intersection of two polygons computed using the Boolean Op-
erations application. The boundary of the intersection is in bold line. Note the
overlapping segment at the bottom of the figure.

//generalized face_diff function, to acount for overlaps.
int face_diff (Ccb_halfedge_const_circulator circ) {
Traits t;
int diff = 0;
Arr_2::0verlap_circulator oc = circ->overlap_edges();
do {

if (circ->source()->point() == t.curve_source(oc->curve())
diff--; //we’re inside, going outside

else
diff++;

} while (++oc !'= circ->overlap_edges());

return diff;

Figure 6.1 shows the intersection of two polygons that was created using
the function covering DFS®. It calls the function with the arrangement of

3Tt was generated by the Polygon_intersect program that can be found in
http://www.math.tau.ac.il/ “hanniel/ARRGO00/.

)
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Figure 6.2: A union of a set of circles. The boundary of the union is in bold
line.

the two polygons, and then traverses the faces of the arrangement coloring
the faces that are covered by the two polygons. Notice that the polygons in
Figure 6.1 have an overlapping segment, this is handled by the application
in the way described above.

The function covering DFS is not restricted to intersections. The same
function can be used, for example, for computing the boundary of the union
of polygons: instead of coloring the boundary of the faces with N-covering,
we color those with non-zero covering. Furthermore, the function can be
used for any “well behaved” closed curve that has an appropriate traits class,
and follows the convention that it is oriented with its bounded side to the
left. Figure 6.2 shows the union of a set of circles that was created in this
way?. Finding the intersection of polygons with holes in them can also be
performed by inserting the “hole” polygons into the arrangement ordered
clockwise instead of counter clockwise. The covering DFS function, without
any modifications, will then decrease the counter when going “into” a hole.

This application demonstrates some of the strengths of our implemen-
tation. Using our package the application was easily programmed, dealing
with degeneracies in a robust manner. Moreover, our traits-based design

‘It was generated by the Circleunion program that can be found in
http://www.math.tau.ac.il/ “hanniel/ARRGO00/.
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enables the application to be used for a variety of closed curves and curve
implementations, as we have done for polygons and circles.
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Chapter 7

Conclusions

We presented a robust, generic and flexible software package for 2D arrange-
ments of general curves. Special care was taken to ensure robustness and
to deal with degeneracies. We introduced the curve hierarchy tree struc-
ture and a software design which implements it, that adds functionality to
the arrangement enabling users to decompose the curves of the arrangement
without loss of information. Generic programming techniques were used for
dealing with robustness issues and to make the package general (enabling
different curves) and extensible.

We also presented an application based on the arrangement package for
adaptive point location in arrangements of piecewise convex parametric al-
gebraic curves. The idea of the application is to perform the queries on the
bounding polygons of the curves. If the bounding polygons do not enable
us to solve the queries, subdivisions are performed on the polygons, giving a
finer approximation of the original curves. We have implemented this appli-
cation for quadratic Bézier curves, and presented some experimental results.

A generic planar map overlay implementation is currently being developed
on top of our arrangement package. In this implementation references to the
original maps will be kept enabling, for example, a hierarchy of overlays.
Such functionality cannot be achieved in more limited overlay applications
such as the one described in Chapter 6. Another package that has recently
been implemented based on our arrangement package is for snap rounding
arrangements of segments [24]. The new package coarsens a given arrange-
ment of segments so that it could be maintained with standard computer
arithmetic (e.g., machine integer).

The idea of a curve hierarchy structure has also been adopted for CGAL’s

7
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triangulation package [6]. The triangulation developers have extended the
constrained triangulation to deal with possibly intersecting constraints. They
are also currently working on conforming triangulations — constrained trian-
gulations in which additional vertices are added on the constraints such that
each constraint is cut into subconstraints which are edges in the Delaunay
triangulation of the set of vertices. In both cases the input constraint is split
into subconstraints adding new vertices. In order to be able to go back from
the edges of the resulting triangulation to the original input constraints they
use a (limited) variant of the curve hierarchy introduced in this work.

The work described in this thesis is a framework that can be extended
and further improved. Work on improving and speeding-up the arrange-
ment package is currently underway in two main directions: improving the
internal algorithms (e.g., the algorithms for inserting new curves into the
arrangement) and implementing new traits classes (e.g., traits classes that
make use of filtering schemes, and for additional types of curves). In the near
future an implementation of a traits class for conic section arcs is planned.

The adaptive point location application will also benefit from the im-
provements described above. It can also be improved in other ways. The
initialization of the intersection graph is currently done using a naive algo-
rithm that compares all pairs of bounding polygons, less naive algorithms
can be implemented. The non-efficient initialization step is the main reason
we have made our algorithm static. Adding a new bounding polygon bp to
the arrangement requires an update of the whole intersection graph, check-
ing each bounding polygon whether it intersects bp. If the intersection graph
is maintained efficiently then the adaptive algorithm can be made dynamic,
namely allow insertions and deletions of curves.

The adaptive point location application can also be applied to other para-
metric curves such as splines and NURBS. Non-convex parametric curves can
also be used with our application, by cutting them into convex subcurves.
Doing so is not always a trivial task and might require the use of exact alge-
braic arithmetic. However, the computation required for the task is usually
less complicated than finding the intersection of two curves. Implementing
traits classes for these curves is also left for future work.
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