
TEL-AVIV UNIVERSITY
RAYMOND AND BEVERLY SACKLER

FACULTY OF EXACT SCIENCES
SCHOOL OF COMPUTER SCIENCE

Efficient Point Location

in General Planar Subdivisions

using Landmarks

Thesis submitted in partial fulfillment of the requirements for the M.Sc.

degree in the School of Computer Science, Tel-Aviv University

by

Idit Haran

The research work for this thesis has been carried out at

Tel-Aviv University

under the supervision of Prof. Dan Halperin

April 2006

Acknowledgments

I would like to thank my supervisor Prof. Dan Halperin for his guidance and great help
during this research.

I thank Zeev Rudnick for useful discussions and helpful comments concerning number theory.

I thank all the fellow students in the Robotics and Vision lab for their assistance and support.
Each and every one of them helped me in his way.

I also thank my parents, and my parents-in-law for taking care of my children so that I could
take the time to work.

Finally, I would like to thank my husband On for his great support and understanding, and
my children, Uri and Inbal, for their existence in general, and for their ability to remind me
of what is really important in life.

This work has been supported by the IST Programme of the EU as a Shared-corst RTD (FET
Open) Project under Contract No IST-006413 (ACS - Algorithms for Complex Shapes).

Abstract

We study the performance in practice of various point-location algorithms implemented
in Cgal (the Computational Geometry Algorithms Library), including a newly devised
Landmarks algorithm. Among the other algorithms studied are: a näıve approach, a “walk
along a line” strategy and a trapezoidal- decomposition based search structure. The cur-
rent implementation addresses general arrangements of arbitrary planar curves, including
arrangements of non-linear segments (e.g., conic arcs) and allows for degenerate input (for
example, more than two curves intersecting in a single point, or overlapping curves). All
calculations use exact number types and thus result in the correct point location. In our
Landmarks algorithm (a.k.a. Jump & Walk), special points, “landmarks”, are chosen in a
preprocessing stage, their place in the arrangement is found, and they are inserted into a
data-structure that enables efficient nearest-neighbor search. Given a query point, the near-
est landmark is located and a “walk” strategy is applied from the landmark to the query
point. We report on extensive experiments with arrangements composed of line segments
or conic arcs. The results indicate that the Landmarks approach is the most efficient when
the overall (amortized) cost of a query is taken into account, combining both preprocessing
and query time. The simplicity of the algorithm enables an almost straightforward imple-
mentation and rather easy maintenance. The generic programming implementation allows
versatility both in the selected type of landmarks, and in the choice of the nearest-neighbor
search structure. The end result is a highly effective point-location algorithm for most prac-
tical purposes.

A paper summarizing the main ideas and results of this thesis [25] has been recently
presented in the eighth workshop on algorithm engineering and experiments (ALENEX06).
A full version of this paper was invited for a special issue of JEA (ACM Journal of Experi-
mental Algorithmics), dedicated to papers from ALENEX06.

Contents

1 Introduction 7

2 Preliminaries 9

2.1 CGAL . 9

2.2 2D Arrangements in Cgal . 9

2.3 Kd-trees . 11

2.3.1 ANN . 12

3 Related Work 13

3.1 Solving the Point Location Problem . 13

3.2 Point Location in Cgal . 15

4 Point Location with Landmarks 19

4.1 Choosing the Landmarks . 20

4.2 Nearest Neighbor Search Structure . 22

4.3 Walking from the Landmark to the Query Point 24

5 Implementation Details 27

5.1 The Main Arrangement Class . 27

5.1.1 The Arrangement-Traits Concepts . 28

5.2 The Notification Mechanism . 30

5.3 Point-Location Queries . 31

5.4 The class Arr landmarks point location . 32

5.4.1 The Generator . 32

5.4.2 The Nearest Neighbor Class . 34

5.4.3 Implementing the Walk . 35

5

6 CONTENTS

6 Experimental Results 37

6.1 The Benchmark . 37

6.2 Results . 38

6.2.1 Comparing Point-Location Strategies 38

6.2.2 Analysis of the Landmarks Strategy 40

6.3 Comparison with Point-Location Algorithms in Triangulations 43

7 Conclusions and Future Work 45

A The Importance of Being Rational 47

Chapter 1

Introduction

Given a set C of n planar curves, the arrangementA(C) is the subdivision of the plane induced
by the curves in C into maximally connected cells. The cells can be 0-dimensional (vertices),
1-dimensional (edges) or 2-dimensional (faces). The planar map of A(C) is the embedding
of the arrangement as a planar graph, such that each arrangement vertex corresponds to
a planar point, and each edge corresponds to a planar subcurve of one of the curves in
C. Arrangements and planar maps are ubiquitous in computational geometry, and have
numerous applications [1, 24]. Figure 1.1 shows two different types of arrangements, one
induced by line segments and the other by conic arcs.1

The planar point-location problem is one of the most fundamental problems applied to
arrangements: Preprocess an arrangement into a data structure so that, given any query
point q, the cell of the arrangement containing q can be efficiently retrieved.

The planar point location problem may be solved näıvely by traversing all the edges and
vertices in the arrangement and finding the geometric entity that is exactly on, or directly
above, the query point. The time it takes to perform the query using this approach is
proportional to the number of edges n, both in the average and worst-case scenarios.

In case the arrangement remains unmodified once it is constructed, it may be useful to
invest considerable amount of time in preprocessing in order to achieve real-time performance
of point-location queries. However, if new curves are inserted into the arrangement (or
removed from it), an auxiliary point-location data-structure that can be efficiently updated
must be employed, perhaps at the expense of the query answering speed.

The point-location problem was extensively studied. Some algorithms that were devel-
oped for solving the problem achieve worst-case query time O(log n) and data structure of
size O(n), while other approaches aim at good average query time in practice.

In this work we study the algorithms known for planar point location, and compare differ-
ent implementations of these algorithms. We show that no existing strategy simultaneously
addresses all the issues of preprocessing complexity, memory usage and query time.

1A conic curve is an algebraic planar curve of degree 2. A conic arc is a bounded segment of such a
curve.

7

8 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Random arrangements of line segments (a) and of conic arcs (b).

We propose a new point location method, called Landmarks. In this algorithm, special
points, which we call “landmarks”, are chosen in a preprocessing stage, their place in the
arrangement is found, and they are inserted into a hierarchical data-structure enabling fast
nearest-neighbor search. Given a query point, the nearest landmark is located, and a “walk”
strategy is applied, starting at the landmark and advancing towards the query point.

We have implemented our algorithm in Cgal, the Computational Geometry Algorithms
Library. The simplicity of the algorithm and the use of generic programming enable an
elegant implementation, which allows versatility both in the selected type of landmarks, and
in the choice of the nearest-neighbor search structure.

Extensive experiments using the Landmarks algorithm were conducted on arrangements
of varying size and density, composed of either line segments or conic arcs. Our implemen-
tation was compared against various point-location algorithms in Cgal, including a näıve
approach, a “walk along a line” strategy, and a trapezoidal-decomposition based search
structure. The results indicate that the Landmarks approach is the most efficient when the
overall (amortized) cost of a query is taken into account, combining both preprocessing and
query time.

Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2 we introduce the terminology
and notation used in the work. In Chapter 3 we review related work on other point loca-
tion strategies, and the implementations of point-location algorithms in Cgal. Chapter 4
describes the Landmarks algorithm in details. Implementation details are given in Chap-
ter 5. Chapter 6 presents a thorough point-location benchmark conducted on arrangements
of varying size and density, composed of either line segments or conic arcs, with an emphasis
on studying the behavior of the Landmarks algorithm. Concluding remarks are given in
Chapter 7. Appendix A provides further details regarding algebraic issues that arose while
implementing the Landmarks algorithm on conic arc arrangements.

Chapter 2

Preliminaries

2.1 CGAL

Cgal, the Computational Geometry Algorithms Library1 is the product of a collaborative ef-
fort of several sites in Europe and Israel, aiming to provide a generic and robust, yet efficient,
implementation of widely used geometric data structures and algorithms. It is a software
library written in C++ according to the generic programming paradigm [6]. Robustness of
the algorithms is achieved by both handling all degenerate cases, and by using exact number
types (see [37] and [42] for surveys on robustness issues in computational geometry). Cgal’s
arrangement package was the first generic software implementation designed for constructing
arrangements of arbitrary planar curves and supporting operations and queries on such ar-
rangements [20, 21]. The arrangement class-template is parameterized by a traits class that
encapsulates the geometry of the family of curves it handles. Robustness is guaranteed, as
long as the traits classes use exact number types for the computations they perform. Among
the number-type libraries that are used are Gmp2 for rational numbers, and Core3 [26] and
Leda4 [30] for algebraic numbers.

2.2 2D Arrangements in Cgal

Given a set C of planar curves, the arrangement A(C) is the subdivision of the plane induced
by the curves in C into zero-dimensional, one-dimensional and two-dimensional cells, called
vertices, edges and faces respectively. The curves in C can intersect each other (a single
curve may also be self-intersecting or may be comprised of several disconnected branches)
and are not necessarily x-monotone.5 A collection C ′′ is constructed of x-monotone subcurves

1The Cgal project homepage: http://www.cgal.org/.
2Gnu’s multi-precision library: http://www.swox.com/gmp/
3http://www.cs.nyu.edu/exact/core pages/.
4http://www.algorithmic-solutions.com/enleda.htm
5A continuous planar curve C is x-monotone if every vertical line intersects it at most once. For example,

a non-vertical line segment is always x-monotone and so is the graph of any continuous function y = f(x).
For convenience, vertical line segments are treated as weakly x-monotone, as there exists a single vertical
line that overlaps them.

9

10 CHAPTER 2. PRELIMINARIES

f4

u1

u2

v1

e′
e

eprev

v2

enext

f1

f2
f3

f0

Figure 2.1: An arrangement of interior-disjoint line segments with some of the Dcel records that
represent it. The unbounded face f0 has a single connected component that forms a hole inside
it, and this hole is comprised if several faces. The half-edge e is directed from its source vertex
v1 to its target vertex v2. This edge, together with its twin e′, corresponds to a line segment that
connects the points associated with v1 and v2 and separates the face f1 from f2. The predecessor
eprev and successor enext of e are part of the chain that forms the outer boundary of the face f2.
The face f1 has a more complicated structure as it contains two holes in its interior: One hole
consists of two adjacent faces f3 and f4, while the other hole is comprised of two edges. f1 also
contains two isolated vertices u1 and u2 in its interior.

that are pairwise disjoint in their interiors in two steps as follows. First, each curve in C is
decomposed into maximal x-monotone subcurves (and possibly isolated points), obtaining
the collection C ′. Note that an x-monotone curve cannot be self-intersecting. Then, each
curve in C ′ is decomposed into maximal connected subcurves not intersecting any other
curve (or point) in C ′. The arrangement induced by the collection C ′′ can be conveniently
embedded as a planar graph, whose vertices are associated with curve endpoints or with
isolated points, and whose edges are associated with subcurves. (Evidently, A(C) = A(C ′′).)
This graph can be represented using a doubly-connected edge list data-structure (Dcel for
short), which consists of containers of vertices, edges and faces and maintains the incidence
relations among these objects.

The main idea behind the Dcel data-structure is to represent each edge using a pair
of directed halfedges, one going from the xy-lexicographically smaller (left) endpoint of the
curve toward its xy-lexicographically larger (right) endpoint, and the other, known as its
twin halfedge, going in the opposite direction. As each halfedge is directed, we say it has
a source vertex and a target vertex. Halfedges are used to separate faces, and to connect
vertices.

If a vertex v is the target of a halfedge e, we say that v and e are incident to each other.

2.3. KD-TREES 11

The halfedges incident to a vertex v form a circular list oriented in a clockwise order around
this vertex.

Each halfedge e stores a pointer to its incident face, which is the face lying to its left.
Moreover, every halfedge is followed by another halfedge sharing the same incident face, such
that the target vertex of the halfedge is the same as the source vertex of the next halfedge.
The halfedges are therefore connected in circular lists, and form chains, such that all edges
of a chain are incident to the same face and wind along its boundary. We call such a chain
a connected component of the boundary (or CCB for short).

The unique CCB of halfedges winding in a counterclockwise orientation along a face
boundary is referred to as the outer CCB of the face. Exactly one unbounded face exists in
every arrangement, as the arrangement package supports only bounded curves at this point.
The unbounded face does not have an outer boundary. Any other connected component of
the boundary of the face is called a hole (or inner CCB), and can be represented as a circular
chain of halfedges winding in a clockwise orientation around it. Note that a hole does not
necessarily correspond to a single face, as it may have no area, or alternatively it may consist
of several faces. Every face can have several holes contained in its interior (or no holes at
all). In addition, every face may contain isolated vertices in its interior. See Figure 2.1 for
an illustration of the various Dcel features. For more details on the Dcel data structure
see [12, Chapter 2].

2.3 Kd-trees

In the nearest neighbor problem a set P of data points in d-dimensional space is given. These
points are preprocessed into a data structure, so that given any query point q, the nearest
(or more generally k-nearest) points of P to q can be reported efficiently.

Answering nearest neighbor queries efficiently, especially in higher dimensions, seems to
be a very difficult problem. It is always possible to answer any query by a simple brute-force
process of computing the distances between the query point and each of the data points, but
this may be too slow for many applications that require that a large number of queries be
answered on the same data set. Instead the approach is to preprocess a set of data points
into a data structure with which nearest neighbor queries can then be answered efficiently.

One common data structure that has been proposed for solving this problem is the Kd-
tree [8, 22]. The Kd-tree data structure is based on a recursive subdivision of the space into
disjoint hyper-rectangular regions called cells. Each node of the tree is associated with a
region B, called the box, and the set of data points that lie within this box. The construction
of the tree can be described as follows: The root node of the tree is associated with a bounding
box that contains all the data points. For each node in the tree, if the number of data points
associated with this node is greater than a small quantity, called the bucket size, the node’s
box is split into two boxes by an axis-orthogonal hyper-plane that intersects this box. (There
are different methods to select this splitting hyperplane; for example, using the median point,
splitting in the middle of the box, etc.) These two boxes are the cells associated with the
two children of this node. The data points lying in the original box are split between these

12 CHAPTER 2. PRELIMINARIES

Figure 2.2: An example of a 2-dimensional Kd-tree.

two children, depending on the side of the splitting hyperplane in which they lie. Points
lying on the hyperplane itself may be associated with either child (according to the dictates
of the splitting rule). When the number of points that are associated with the current box
falls below the bucket size, the resulting node is declared a leaf node, and these points are
stored with the node. Figure 2.2 shows an example of a 2-dimensional Kd-tree with bucket
size 1.

The Kd-tree can be built in O(n log n) time, and it uses linear space. If the input points
are well distributed in space, it is known to answer nearest-neighbor queries in logarithmic
time [7].

2.3.1 ANN

ANN is a library written in the C++ programming language to support both exact and
Approximate Nearest Neighbor searching in spaces of various dimensions.6 It was imple-
mented by David M. Mount of the University of Maryland and Sunil Arya of the Hong Kong
University of Science and Technology. ANN (pronounced like the name “Ann”) stands for
the Approximate Nearest Neighbor library. ANN is also a testbed containing programs and
procedures for generating data sets, collecting and analyzing statistics on the performance
of nearest neighbor algorithms and data structures, and visualizing the geometric structure
of these data structures.

One difficulty with exact nearest neighbor searching is that for virtually all methods
other than brute-force search, the running time or space grows exponentially as a function of
dimension. Consequently these methods are often not significantly better than brute-force
search, except in fairly small dimensions. However, it has been shown by Arya and Mount [4]
and Arya et al. [5] that if the user is willing to tolerate a small amount of error in the search
(returning a point that may not be the nearest neighbor, but is not significantly further
away from the query point than the true nearest neighbor) then it is possible to achieve a
significant improvement in running time.

6See the Ann library homepage: http://www.cs.umd.edu/∼mount/ANN/

Chapter 3

Related Work

3.1 Solving the Point Location Problem

The point-location problem has been studied for many years. Given an arrangement of
planar curves, that consists of n edges (that do not intersect in their interior), and a query
point q, the problem is to find the cell of the arrangement containing q. Several approaches
for solving the point-location problem are known with worst-case query time O(log n) and
data structure of size O(n) [40]. One approach is based on the vertical decomposition of
the arrangement. By drawing a vertical line through every vertex of the arrangement, we
obtain vertical slabs in which point location is almost one-dimensional. Two binary searches
suffice to answer a query: one on x-coordinates for the slabs containing q, and one on the
edges that cross the slab. The query time is O(log n), but the space may be quadratic if
all edges are stored with the slabs that they cross [18]. Since the location structures for
adjacent slabs are similar, one can sweep from left to right to construct balanced binary
search trees on edges for all slabs [35, 39]. To obtain linear storage space, Sarnack and
Tarjan [36] used persistent search trees. In each node, a modification box is store. This box
can hold a constant number of modifications to the node, each modification is stamped by a
time stamp that indicates the relevant x-coordinate values of this node. Whenever we access
a node, we check the modification box, and compare its time stamp against the access time.
If the modification box is empty, or the access time is before the modification time, then we
ignore the modification box and just deal with the normal part of the node. Otherwise, we
use the value in the modification box, overriding the value in the node. (For example, if the
modification box has a new left pointer, then we use it instead of the normal left pointer,
but we still use the normal right pointer.)

Edahiro et al. [19] used the slabs ideas and developed a point-location algorithm that is
based on a grid. The plane is divided into cells of equal size called buckets using horizontal
and vertical partition lines. These partition lines are determined by several parameters of
the arrangement. In each bucket the local point location is performed using the näıve slabs
algorithm described above. The slabs partition of each bucket is not calculated in advance.
Instead, it is created on the fly during query time.

13

14 CHAPTER 3. RELATED WORK

Another approach with an expected query time of O(log n) uses trapezoid graph as its
search structure. A trapezoid graph is a directed, acyclic graph Dag in which each nonleaf
node v is associated with a pseudo-trapezoid, Tv, whose parallel sides are vertical and whose
top and bottom are either a single subdivision edge or are at infinity. Mulmuley [32] and
Seidel [38] suggested to build this graph as the history graph of the random incremental
construction (RIC) of an arrangement of segments. The RIC algorithm gives an expected
optimal point location scheme: O(log n) expected query time, O(n log n) expected preprocess
time, and O(n) expected space, when the expectation is taken over random choices made by
the construction algorithm.

Point location in triangulations was extensively studied: Kirkpatrick [27] developed a
method for point location in triangulation which takes O(log n) query time, using a data
structure of size O(n). The method creates a hierarchy of subdivisions in which all faces
are triangles. In every triangulation, one can find (in linear time) an independent set of
low-degree vertices whose size is a constant fraction of all vertices. To build the upper level
in the hierarchy, these vertices are removed and the remaining area left from their removal
is triangulated (if necessary). Repeating this process a logarithmic number of times gives a
constant-size triangulation. To locate the triangle containing a query point q, we start by
finding the triangle in the coarsest triangulation. Then, knowing the hole that this triangle
came from, we replace the missing vertex, and check the incident triangles to locate q in the
previous, finer triangulation.

Devillers et al. [15] proposed a Walk along a line algorithm for point location in trian-
gulations, which does not require the generation of additional data structures, and offers
O(
√

n) query time on the average, if the vertices are distributed uniformly at random, and
O(n) query time in the worst case. The walk may begin at an arbitrary vertex v of the
triangulation, and advance towards the query point q, using four walk strategies: (1) A
straight walk, which traverse all triangles that are intersected by a line segment connecting
the vertex v and q. (2) The orthogonal walk, that visits all triangles along an isometric
path moving from the vertex v to q by changing one coordinate at a time. (3) The visibility
walk: advance from one triangle to another through the first edge of the triangle e if the
line supporting e separates the vertex v from q (if not, check the second edge of the triangle,
and so on). (4) A stochastic walk is obtained by replacing the access to the first edge of
a triangle in the visibility walk by a random edge. Due to the simplicity of the structure
(triangles), all walk strategies consist of low-cost primitive operations.

Devillers later proposed a walk strategy based on a Delaunay hierarchy [13], which uses a
hierarchy of triangulations. The triangulation at the lowest level is the original triangulation
where operations and point location are to be performed. Each succeeding level consists
of a data structure that stores a triangulation of a small random sample of the vertices
of the triangulation at the preceding level. Point location is done through a top down
nearest neighbor query. The nearest neighbor query is first performed näıvely in the top
level triangulation. Then, at each following level, the nearest neighbor at that level is found
through a linear walk performed from the nearest neighbor found at the preceding level.
Because the number of vertices in each triangulation is only a small fraction of the number
of vertices of the preceding triangulation, the data structure remains small and achieves fast

3.2. POINT LOCATION IN CGAL 15

point location queries on real data. This structure behaves best when it is built for Delaunay
triangulations.

Other algorithms that were developed only for Delaunay triangulations, often referred to
as Jump & Walk algorithms, were proposed by Mücke et al. [31] and by Devroye et al. [17].
The Jump & Walk proceeds as follows: Given a triangulation of n sites, pick k ∈ [1, n] random
sites in the data, select ζ, the one closest to the query point q, and traverse the triangulation
from ζ to q, exploiting the adjacency relationship between the successive triangles crossed
by segment ζq. The expected running time of this method is O(k +

√
n/k), which reaches

its optimum O(n1/3) when k is Θ(n1/3). Devroye et al. [16] later improved this method to an
algorithm called BinSearch & Walk. They keep n1/4 points with known locations, and use
a weighted-balanced binary search tree, based on the lexicographic order of the points, to
find the nearest point to start the walk to the query. They also developed a method called
2-d Search & Walk, that uses a balanced 2-d tree in which the partition alternates directions
between x and y, and member sets in the partition are rectangles (similar to a Kd-tree).
The latter method achieves O(log n) expected time to locate a random query point in the
Delaunay triangulation of n sites uniformly and independently distributed in the plane.

Arya et al. [3] showed that a simple modification of the RIC algorithm to include weights
gives expected query times satisfying entropy bounds. Suppose that we have a planar sub-
division with regions of constant complexity, such as trapezoids or triangles, and that we
know the probability pi of a query falling in the ith region. The entropy H is defined to be∑

i−pi − log2 pi. For a constant K, assign to a subdivision edge that is incident on regions
with total probability P the weight dKPne, and perform a randomized incremental con-
struction. The use of integral weights ensures that ratios of weights are bounded by O(n),
which is important to achieve query time bounded by O(H). Entropy-preserving cuttings
can be used to give a method whose query time of H +o(H) approaches the optimal entropy
bound [2], at the cost of increased space and programming complexity.

As the point-location problem is of practical importance, many works (some mentioned
above) include an extensive experiments in their study, beside the theoretic analysis. Dev-
illers et al. [15] have tested the different “walk” algorithms in triangulations, and showed
that the best “walking” strategy among straight, orthogonal, visibility or stochastic walk
may depend on the triangulation at hand. Devroye et al. [16] have tested their Jump &
Walk algorithm using different “jump” alternatives, and showed that the most efficient op-
tion would be to use a balanced 2-d tree to get to the nearest starting point.

3.2 Point Location in Cgal

Point location constitutes a significant part of the arrangement package in Cgal, as it is
a basic query applied to arrangements during their construction. Various point-location
algorithms (also referred to as point-location strategies) have been implemented as part of
the Cgal’s arrangement package. The best point-location strategy is dependent on the
arrangement’s size, topology and the frequency of modifications. In the new design of the
arrangement package (see Chapter 5 below) the different point-location strategies can be

16 CHAPTER 3. RELATED WORK

used simultaneously on the same arrangement, which enables flexibility in their use. For
example, one can use a specific algorithm for constructing the arrangement, and another
algorithm while the arrangement is unmodified and many queries are issued on it. The
point-location strategies implemented in Cgal are:

1. The Näıve strategy that traverses all vertices and edges of the arrangement, and locates
the nearest edge or vertex that is situated exactly on, or immediately above, the
query point. It maintains no data structures, beyond the basic representation of the
arrangement, and does not require any preprocessing stage. The Näıve algorithm takes
O(n) time, where n is the number of edges in the arrangement, both in the worst case
and in the average case.

2. The Walk algorithm traces (in reverse order) a vertical ray r emanating from the query
point to infinity; it traverses the zone1 of r in the arrangement. This vertical walk is
simpler than a walk along an arbitrary direction (that will be explained in details below,
as part of the Landmarks algorithm), as it requires simpler predicates (“above/below”
comparisons). Simple predicates are desirable in exact computing especially when non-
linear curves are used. Like the Näıve strategy, the Walk strategy maintains no extra
data structures, and does not require any preprocessing stage. The Walk strategy has
a faster query time than the Näıve algorithm in the average case, although it may also
take O(n) time in the worst case. Figure 3.1 shows an example of the Walk algorithm.

q

Figure 3.1: An example of walking along a vertical ray

3. A Triangulation strategy. This strategy was implemented only for line-segment ar-
rangements. It consists of a preprocessing stage where each arrangement face is subdi-
vided using Constrained Delaunay Triangulation (Cdt). A Cdt is a triangulation with
constrained edges, which tries to be “as much Delaunay as possible”. As constrained
edges are not necessarily Delaunay edges, the triangles of a Cdt do not necessarily
fulfill the empty circle property but they fulfill a weaker constrained empty circle prop-
erty. To state this property, it is convenient to think of constrained edges as blocking
the view. Then, a triangulation is constrained Delaunay if and only if the circum-
scribing circle of any facet encloses no vertex visible from the interior of the facet. In
this triangulation, point location is implemented using a triangulation hierarchy [13],

1The zone of a curve is the collection of all the cells in the arrangement that the curve intersects.

3.2. POINT LOCATION IN CGAL 17

which uses (as explained above) a hierarchy of triangulations, and performs a hierar-
chical search from the highest level in the hierarchy to the lowest. At each level of
the hierarchical search, a walk is performed to find the triangle in the next lower level
that contains q, until the triangle in the lowest level is found. The algorithm uses the
triangulation package of Cgal [9].

4. The RIC (Random Incremental Construction) algorithm is an implementation of the
dynamic algorithm introduced by Mulmuley [32] and Seidel [38]. The implementation
consists of two structures: (i) a trapezoidal map and (ii) a search structure — the history
Dag (Directed Acyclic Graph). The trapezoidal map is created by subdividing each
arrangement face into pseudo-trapezoidal cells each of constant complexity. Each such
cell is bounded above and below by curves and from the sides by vertical attachments.
The search structure and the trapezoidal map are interlinked: A cell in the trapezoidal
map has a pointer to the leaf of the Dag corresponding to it, and a leaf node of the
Dag has a pointer to the corresponding cell in the trapezoidal map. The algorithm
is incremental: it adds the segments one at a time, in a random order, and after each
addition it updates the search structure and the trapezoidal map. The expected time
for constructing the search structure is O(n log n), and the expected query time is
O(log n) (where n is the number of non-intersecting edges in the arrangement). For
detailed explanation of the algorithm see [12, chapter 6].

Figure 3.2 shows an example of a trapezoidal map and the search structure associated
with it.

Figure 3.2: An example of a trapezoidal map and the search structure (Dag) associated with
it. Each leaf of the tree represents the final trapezoid where the point is located. An inner node
represents a segment or an end-point of a segment. During query time, these node are used to
guide the search. A node marked Si represents the question: “Is the query point q above the
segment Si?”. The nodes marked Qi or Pi represent the question: “Is the query point q on the
left side of Qi (or Pi, respectively)?”. Now, given a query point q, start at the root of the tree.
At each node, if the answer to the relevant question is “yes”, continue the search from the left
son of this node. Otherwise, continue from the right son. The search is over when a leaf node is
reached.

18 CHAPTER 3. RELATED WORK

Chapter 4

Point Location with Landmarks

The motivation behind the development of the new Landmarks algorithm, was to address
both issues of preprocessing complexity and query time at once, something that none of the
existing strategies do well in practice. The Näıve and the Walk algorithms have, in general,
bad query time, which precludes their use in large arrangements. The RIC algorithm answers
queries very fast, but it uses relatively large amount of memory and requires a complex
preprocessing stage. In the case of dynamic arrangements, where curves are constantly
being inserted to or removed from the arrangement, this is a major drawback. Moreover,
in real-life applications the curves are typically inserted to the arrangement in non-random
order. This reduces the performance of the RIC algorithm, as it relies on random order of
insertion, unless special procedures are followed [14].

The basic idea behind the Landmarks algorithm is to choose and locate points (land-
marks) within the arrangement, and store them in a data structure that supports nearest-
neighbor search. During query time, the landmark closest to the query point is found using
the nearest-neighbor search and a short “walk along a line” is performed from the landmark
towards the query point. The key incentive behind the Landmarks algorithm is to reduce
the number of costly algebraic predicates involved in the Walk or the RIC algorithms at
the expense of increased number of the relatively inexpensive coordinate comparisons (in
nearest-neighbor search).

The algorithm is composed of three independent components, each of which can be
optimized or replaced with a different component (of the same functionality):

1. Choosing the landmarks that faithfully represent the arrangement, and locating them
in the arrangement.

2. Constructing a data structure that supports nearest-neighbor search (such as Kd-
trees), and using this structure to find the nearest landmark given a query point.

3. Applying a “walk along a line” procedure, moving from the landmark towards the
query point.

The following sections elaborate on these components.

19

20 CHAPTER 4. POINT LOCATION WITH LANDMARKS

4.1 Choosing the Landmarks

When choosing the landmarks we aim to minimize the expected length of the “walk” inside
the arrangement towards a query point. The search for a good set of landmarks has two
aspects:

1. Choosing the number of landmarks.

2. Choosing the distribution of the landmarks throughout the arrangement.

It is clear that as the number of landmarks grows, the walk stage becomes faster. However,
this results in longer preprocessing time, and larger memory space. We found out that, in
certain cases, the nearest-neighbor search consumes a significant portion of the overall query
time (when “overshooting” with the number of landmarks — see Section 6.2.2 below.)

What constitutes a good set of landmarks depends on the specific structure of the ar-
rangement at hand. In order to assess the quality of the landmarks, we defined a metric
representing the complexity of the walk stage: The arrangement distance (AD) between two
points is the number of faces in which the straight line segment that connects these points
passes. If two points reside in the same face of the arrangement, the arrangement distance
is defined to be zero. The arrangement distance may differ substantially from the Euclidean
distance, as two points, which are spatially close, can be separated in an arrangement by
many small faces. Figure 4.1 shows the arrangement distance from the closest vertex v of
the arrangement to a query point q: in 4.1(a) AD=0, and in 4.1(b) AD=4.

The landmarks may be chosen with respect to the (0,1 or 2-dimensional) cells of the
arrangement. One can use the vertices of the arrangement, points along the edges (e.g., the
edges midpoints), or interior points in the faces as landmarks. In order to choose representa-
tive points inside the faces, it may be useful to preprocess the arrangement faces, which are
possibly non-convex, for example using vertical decomposition or triangulation.1 Such pre-
processing will result in simple faces (pseudo trapezoids and triangles respectively) for which
interior points can be easily determined. Landmarks may also be chosen independently of
the arrangement geometry. One option is to spread the landmarks randomly throughout
a rectangle bounding the arrangement. Another is to use a uniform grid, or to use other

1Triangulation is relevant only in case of arrangements of line segments.

v

q

v

q

(a) (b)

Figure 4.1: The arrangement distance from the closest vertex v to the query point q: (a) AD=0
and (b) AD=4.

4.1. CHOOSING THE LANDMARKS 21

structured point sets, such as Halton sequences or Hammersley points [29, 34]. Each choice
has its advantages and disadvantages and improved performance may be achieved using
combinations of different types of landmarks choices.

In the current implementation the landmarks type is given as a template parameter,
called generator, to the Landmarks algorithm, and can be easily replaced. This generator
is responsible for creating the sets of landmark points and updating them if necessary. The
following types of landmark generators were implemented:

• LM(vert) – All the arrangement vertices are used as landmarks. The benefit of using
the vertices of the arrangement as landmarks, is that their location in the arrangement
is known, and they represent the arrangement well (dense areas contain more vertices).
The drawback is that walking from a vertex requires a preparatory step in which we
examine all incident faces around the vertex to decide on the startup face (see more
details in Section 4.3 below).

• LM(mide) – The midpoints of all the arrangement edges are chosen. This generator
was implemented only for line-segment arrangements. The benefit of using the middle
of the edges as landmarks, similarly to the LM(grid), is that their location in the
arrangement is known (on the edges), and they also represent the arrangement well.
However, walking from the midpoints of the edges also requires a small preparatory
step to choose between the two faces incident to the edge.

• LM(rand) – Random points are selected. These points are randomly sampled from a
uniform distribution inside the arrangement bounding rectangle. The bounding rect-
angle is defined by the minimal and maximal x and y coordinates of elements (edges,
vertices) in the arrangement. The number of random points is given as a parameter
to the generator, and is set to be the number of vertices by default. After choosing
the points, we have to locate them in the arrangement. To this end, we use the newly
implemented batched point location in Cgal, which uses the sweep algorithm for con-
structing the arrangement, while adding the landmark points as special events in the
sweep. When reaching such a special event during the sweep, we search the y-structure
to find the edge that is just above the point.

• LM(grid) – The landmarks are chosen on a uniform grid. As in the previous generator,
the number of landmarks n is given as a parameter to the generator, and is set to be
the number of vertices by default. The landmarks are chosen on a d√n e × d√n e
grid that covers the bounding rectangle of the arrangement. The location of the grid
points in the arrangement is done in the same manner as was described for the random
points. The benefit of using grid points as landmarks is that the closest grid point to
a given query point can be found in constant time (no need for a search structure).

• LM(halton) – Halton sequence points are used. Similar to the random and the grid
points, the number of landmarks is given as a parameter to the generator, and is set to
be the number of vertices by default. The location of the points in the arrangement is
also found in the same manner of the random points. The Halton points landmarks are
first calculated on the unit square [0, 1] × [0, 1] and then scaled to the arrangement’s

22 CHAPTER 4. POINT LOCATION WITH LANDMARKS

bounding rectangle. The Halton sequence in the unit square is calculated as follows [28,
Chapter 5]: We choose two prime integers (for two-dimensional points: p1 = 2, p2 = 3).
To construct the ith sample, consider the base-p representation for i, which takes
the form i = a0 + pa1 + p2a2 + p3a3 + · · · . The following point in the interval [0,1] is
obtained by reversing the order of the bits and moving the decimal point:

r(i, p) =
a0

p
+

a1

p2
+

a2

p3
+

a3

p4
+ · · · (4.1)

Starting from i = 0, the ith sample (point) in the Halton sequence is (r(i, p1), r(i, p2)).
For example, assume the base p to be 2. For I = 1, 2, 3, ..., we take each number I,
write it in base 2, and reverse the digits, including the decimal sign, and convert back
to base 10:
1 = 1.0 ⇒ 0.1 = 1/2
2 = 10.0 ⇒ 0.01 = 1/4
3 = 11.0 ⇒ 0.11 = 3/4
4 = 100.0 ⇒ 0.001 = 1/8
5 = 101.0 ⇒ 0.101 = 5/8
6 = 110.0 ⇒ 0.011 = 3/8
7 = 111.0 ⇒ 0.111 = 7/8

and so on.
Now to get a “good” sequence of Halton points in the plane, we compute the x coor-
dinates using base 2, and the y coordinates using base 3.

When random points, grid points or Halton points are used, it is in most cases clear in
which face a landmark is located (as opposed to the case of vertices or edge midpoints).
Thus, no preparatory step is required at the beginning of the walk stage.

Figure 4.2 shows the same random arrangement with different types of landmarks points.
The number of landmarks in LM(vert), LM(rand), LM(grid) and LM(halton) is equal to the
number of vertices in the arrangement. The number of landmarks in LM(mide) is equal to
the number of edges in the arrangement.

We have implemented five types of landmarks sets. The design of the landmarks class (see
Section 5.4) enables to extend the types of landmarks and create other types of landmarks,
optionally by combining several of the above types (for example, using random points and
vertices together).

4.2 Nearest Neighbor Search Structure

Following the choice and location of the landmarks, we have to store them in a data structure
that supports nearest-neighbor queries. We note that a search structure should allow for fast
preprocessing and query. A search structure that supports approximate nearest-neighbor
search can also fit our needs, since the landmarks are used as starting points for the walk,
and the final accurate result of the point location is computed in the walk stage.

4.2. NEAREST NEIGHBOR SEARCH STRUCTURE 23

LM(vert) LM(mide)

LM(rand) LM(grid)

LM(halton)

Figure 4.2: An arrangement of random line segments, with different landmarks. The number of
landmarks in LM(vert), LM(rand), LM(grid) and LM(halton) is equal to the number of vertices
in the arrangement. The number of landmarks in LM(mide) is equal to the number of edges in
the arrangement.

24 CHAPTER 4. POINT LOCATION WITH LANDMARKS

Exact nearest neighbor search results can be obtained by constructing a Voronoi diagram
of the landmarks. However, locating the query point in the Voronoi diagram is again a point-
location problem. Thus, using Voronoi diagrams as our search structure takes us back to
the problem we are trying to solve. Instead, we look for a simple data structure that will
answer nearest-neighbor queries quickly, even if only approximately.

The nearest-neighbor search structure is a template parameter to the Landmarks algo-
rithm. This modularity enables us to test several nearest-neighbor structures. One imple-
mentation uses the Cgal’s spatial searching package, which is based on Kd-trees. The input
points provided to this structure (landmarks, query points) are approximations of the origi-
nal points (rounded to double), which leads to extremely fast search. Again, we emphasize
that the end result is always exact.

Another implementation uses the Ann package [5], which supports data structures and
algorithms for both exact and approximate nearest neighbor searching. This library im-
plements a number of different data structures, based on Kd-trees and box-decomposition
trees, and employs a couple of different search strategies.

In the special case of LM(grid), no search structure is needed, and the closest landmark
can be found in O(1) time.

4.3 Walking from the Landmark to the Query Point

This walk algorithm developed as part of this work differs from other walk algorithms that
were tailored for triangulations (especially Delaunay triangulations), as it is geared towards
general arrangements that may contain faces of arbitrary topology, with unbounded com-
plexity, and a variety of degeneracies. It also differs from the Walk algorithm implemented
in Cgal as the walk direction here is arbitrary, rather than vertical.

The “walk” stage is summarized in the diagram in Figure 4.3.

The walk starts by determining the startup face. The startup face is the face f that
is most likely to contain the query point q. As explained in the previous section, certain
types of landmarks (vertices, mid-edges) are not associated with a single startup face. If the
landmark is located inside a face, than this is the startup face. If the landmark is located
on an edge, then we need to choose between the two incident faces to this edge. And last,
if the landmark is located on a vertex, we need to check all incident faces to the vertex in
order to find the face in q’s direction.

After the startup face f was found, a test whether the query point q lies inside f is
applied. This operation requires passing over all the edges on the face boundary, but this
passage is quick, since we only count the number of f ’s edges above q. If this number is
odd, then q is inside f , and the query is terminated. During this pass over the edges on the
boundary of f , we also test whether q is on an edge or a vertex on the boundary, and if that
is the case, return this element as the result of the query.

However, if this number is even, then the actual “walk” part begins. A virtual line

4.3. WALKING FROM THE LANDMARK TO THE QUERY POINT 25

Walk

no

yes

next face

located

Find nearest
landmark `

Decide on

Is

in face?
query point

startup face

Query point

Cross to

Figure 4.3: The “walk” part of the query algorithm.

segment s is then drawn from the landmark (whose location in the arrangement is known)
to the query point q. Then, we find the first edge e on the boundary of f that intersects
s. Exploiting the arrangement data structure that enables O(1) time access to a face from
a neighboring face through a separating edge, we cross to the face on the other side of e.
Figure 4.4 shows an example of crossing from a face f where the landmark ` is located,
through the edge e, to the face fnew where the query point q is located.

As explained above, crossing to the next face requires finding the edge e on the boundary
of f that intersects s. It is important to notice that there is no need to find the exact
intersection point between e and s, as this may be an expensive operation. Instead, it is
sufficient to perform a simpler operation. The idea is to consider the x-range that contains
both the curves s and e, and compare the vertical order of these curves on the left and right

fnew

q

e

sf
`

Figure 4.4: An example of walking from the landmark ` to the query point q. In this example `
is located in the face f , which is then set as the startup face. Since q is not inside f , we cross
to fnew through the edge e, which is the edge of f ’s boundary that intersects the segment s
connecting ` to q.

26 CHAPTER 4. POINT LOCATION WITH LANDMARKS

x-range

q

`

e

s s

x-range

q

e
`

s
q`

x-range

e

(a) (b) (c)

Figure 4.5: Walk algorithms, crossing to the next face. In all cases the vertical order of the
curves is compared on the left and right boundaries of the marked x-range. (a) s and e swap
their y-order, therefore we should use e to cross to the next face. (b) s and e share a common
left endpoint, but e is above s immediately to the right of this point, and below s at the left
boundaries of the marked x-range, so e is used for crossing (c) The y-order does not change, as
s and e have an even number (two) of intersections. Therefore, e is not used for crossing.

boundaries of this range. If the vertical order changes, it implies that the curves intersect;
see, e.g., Figure 4.5(a).

In case several edges on f ’s boundary intersects s, probably the best edge to cross would
have been the one that is the closest to q. However, we cannot decide what is the closest
edge to q, since we do not compute the exact intersection point between e and s. Hence, we
cross using the first edge that was found, and mark this edge as used. This edge will not be
crossed again during this walk, which assures that the walk process ends.

Care should be exercised when dealing with special cases, such as when s and e share a
common endpoint, as shown in Figure 4.5(b). In this case we need to compare the curves
slightly to the right of this endpoint (the endpoint of e is the landmark `).

Another case that is relevant to non-linear curves, shown in Figure 4.5(c), is when e and
s intersect an even number of times (two in the figure), and thus no crossing is needed. In
this case, comparing the vertical order of these curves on the left and right boundaries of the
common x-range will not find an intersection. This is the desired behavior of the predicate
in this case, as we do not want to use this edge for crossing.

Chapter 5

Implementation Details

In this chapter we present the implementation details of the landmarks point-location al-
gorithm. Being a part of the arrangement package in Cgal, we start by explaining about
the implementation of the arrangement class (Section 5.1). We then explain the notification
mechanism (Section 5.2) supported by the arrangement and used by the landmarks point
location. We also give details about the design of the point-location strategies in general (Sec-
tion 5.3), and the implementation of the class Arr landmarks point location (Section 5.4)
in particular.

5.1 The Main Arrangement Class

The Arrangement 2<Traits,Dcel>1 class-template represents the planar embedding of a set
of weakly x-monotone2 planar curves that are pairwise disjoint in their interiors. It provides
the necessary capabilities for maintaining the planar graph, while associating geometric
data with the vertices, edges, and faces of the graph. The arrangement is represented using
a doubly-connected edge list (Dcel), a data structure that enables efficient maintenance of
two-dimensional subdivisions (see Section 2.2 for detailed explanation about the Dcel).

The Arrangement 2<Traits,Dcel> class-template should be instantiated with two classes
as follows:

• A traits class, which provides the geometric functionality, and is tailored to handle a
specific family of curves. It encapsulates implementation details, such as the number
type used, the coordinate representation, and the geometric or algebraic computation
methods; see Section 5.1.1 for further details.

• A Dcel class, which represents the underlying topological data structure, and defaults
to Arr default dcel<Traits>. It associates a point with each Dcel vertex and an x-
monotone curve with each halfedge pair, where the geometric types of the point and

1Cgal prescribes the suffix 2 for all data structures of planar objects as a convention.
2A continuous planar curve C is x-monotone if every vertical line intersects it at most once. Vertical

segments are defined to be weakly x-monotone and can also be handled by the arrangement class.

27

28 CHAPTER 5. IMPLEMENTATION DETAILS

the x-monotone curve are defined by the traits class. However, users may extend the
default Dcel implementation, and attach additional data to the Dcel records, or
even supply their own Dcel class written from scratch.

The two template parameters enable the separation between the topological and ge-
ometric aspects of the planar subdivision. This separation is advantageous, as it allows
users with limited expertise in computational geometry to employ the package with their
own representation of any special family of curves. They must however supply the relevant
traits-class methods, which mainly involve algebraic computation. The separation is en-
abled by the modular design and conveniently implemented within the generic-programming
paradigm [6].

The interface of Arrangement 2 consists of various methods that enable the traversal of
arrangement objects. For example, the class supplies iterators over its vertices, halfedges,
or faces. These iterator types are Vertex iterator, Halfedge iterator, and Face iterator

respectively, and they are convertible to the handle types Vertex handle, Halfedge handle,
and Face handle, respectively. The handle classes serve as pointers to the arrangement
features, which in turn supply methods for local traversal. For example, it is possible to
visit all halfedges incident to a specific vertex using its Vertex handle, or to iterate over all
halfedges along the boundary of a face using its Face handle.

An important guideline in the design is to decouple the arrangement representation from
the various algorithms that operate on it. Thus, non-trivial algorithms that involve geometric
operations are implemented as free (global) functions. For example, the package offers free
insert() functions that insert general curves into the arrangement. For further details
regarding the new design of the arrangement class information see [41].

5.1.1 The Arrangement-Traits Concepts

As mentioned in the previous section, the Arrangement 2 class-template is parameterized with
a geometric traits class that defines the abstract interface between the arrangement data-
structure and the geometric primitives it uses. The name “traits” was given by Myers [33]
for a concept, a model of which supports certain predefined methods that have a common
denominator. In our case, a geometric traits class defines the family of curves handled.
Moreover, details such as the number type used to represent coordinate values, the type of
coordinate system used (i.e., Cartesian or homogeneous), the algebraic methods used, and
auxiliary data stored with the geometric objects, if present, are all determined by the traits
class and are encapsulated within it.

The traits concept is factored into a hierarchy of refined concepts. The refinement hi-
erarchy is generated according to the identified minimal requirements imposed by different
algorithms that operate on arrangements, thus alleviating the production of traits classes,
and increasing the usability of the algorithms.

Every model of the traits concept must define two types of objects, namely Point 2

and X monotone curve 2. The latter represents a planar x-monotone curve, and the former
is the type of the endpoints of the curves, representing a point in the plane. The basic

5.1. THE MAIN ARRANGEMENT CLASS 29

concept ArrangementBasicTraits 2 lists the minimal set of predicates on objects of these two
types sufficient to enable the operations provided by the Arrangement 2 class-template itself,
namely a basic insertion of x-monotone curves that are interior disjoint from any vertex and
edge in the arrangement. The predicates in this concept are:

1. Compare two points by their x-coordinates only, or lexicographically, by their x and
then by their y-coordinates.

2. Return the lexicographically smaller (left), or the lexicographically larger (right), end-
point of a given x-monotone curve.

3. Determine whether a weakly x-monotone curve is a vertical segment.

4. Given an x-monotone curve C and a point p = (x0, y0) such that x0 is in the x-range
of C (namely x0 lies between the x-coordinates of C’s endpoints), determine whether
p is above, below, or lies on C.

5. Given two x-monotone curves C1 and C2 that share a common left endpoint p, deter-
mine the relative position of the two curves immediately to the right of p. The traits
class can also provide a symmetric comparison method, namely to the left of a common
right endpoint.

The set of predicates listed above is sufficient for answering point-location queries by
various point-location strategies. However, using our Landmarks strategy requires that the
arrangement is instantiated with a traits class that models the ArrangementLandmarksTraits 2
concept, which adds a few requirements to the basic ArrangementBasicTraits 2 concept. A
model of this concept must define a fixed precision number type (typically double) and
support the additional operations:

• Given a point p, approximate the x and y-coordinates of p using the given fixed preci-
sion number type.
We use this operation for approximate computations — there are certain operations
in the search for the location of the point that need not be exact and we can perform
them faster than other operations. Such operations are finding the nearest landmarks
to a given query point.

• Given two points p1 and p2, construct an x-monotone curve connecting p1 and p2.
This curve is used for walking from the landmark ` to the query point q. It is usually
a line segment, although this is not a requirement.

There are other traits in the hierarchy that refine the traits classes above, such as Ar-
rangementXMonotoneTraits 2 and ArrangementTraits 2, that support the incremental and ag-
gregate insertion operation of x-monotone curve or general curves, respectively.

The arrangement package in Cgal contains several traits classes that can handle line
segments, polylines (continuous piecewise-linear curves), conic arc, and arcs of rational func-
tions. Most of these traits support all operations listed above.

30 CHAPTER 5. IMPLEMENTATION DETAILS

5.2 The Notification Mechanism

For some applications it is essential to know exactly what happens inside a specific
arrangement-instance. For example, when a new curve is inserted into an arrangement, it
might be desired to keep track of the faces that are split due to this insertion operation. Other
important examples are the point-location strategies that require auxiliary data-structures,
which must be notified on various local changes in the arrangement, in order to keep their
data structures up-to-date. The arrangement package offers a mechanism that uses observers
[23], which can be attached to an arrangement instance and receive notifications about the
changes this arrangement goes through.

The Arr observer<Arrangement> class-template is parameterized with an arrangement
type. It stores a pointer to an arrangement object, and is capable of receiving notifi-
cations just before a structural change occurs in the arrangement and immediately after
such a change takes place. Hence, each notification is comprised of a pair of “before” and
“after” functions (e.g., before split face() and after split face()). The Arr observer

<Arrangement> class-template serves as a base class for other observer classes and defines a
set of virtual notification functions, giving them all a default empty implementation. The
interface of the base class is designed to capture all possible changes that arrangements can
undergo, with a minimal number of functions.

The set of functions can be subdivided into three categories as follows:

1. Notifiers of changes that affect the entire topological structure. Such changes occur
when the arrangement is cleared or when it is assigned with the contents of another
arrangement.

2. Notifiers of a local change to the topological structure. Among these changes are the
creation of a new vertex or an edge, the splitting of an edge or a face, the formation
of a new hole inside a face, the removal of an edge, etc.

3. Notifiers of a global change initiated by a free (global) function, and called by the free
function (e.g., incremental or aggregate insert). This category consists of a single pair
of notifiers, neither of them is called by methods of the Arrangement 2 class-template
itself. It is required that no point-location queries (or any other queries for that
matter) are issued between the calls to the “before” and “after” functions of the global
change. This constraint can improve the efficiency of the maintenance of auxiliary data
structures for the relevant point-location strategies, which have to update their data
structures according to the changes the arrangement undergoes (see the next section
for more details). Since no point-location queries are issued between the invocation of
before global change() and after global change(), it is not necessary to perform an
update each time a local topological change occurs, and it is possible to postpone the
updates until the global operation is completed.

Each arrangement object stores a list of pointers to Arr observer objects, and whenever
one of the structural changes listed in the first two categories above is about to take place,

5.3. POINT-LOCATION QUERIES 31

the arrangement object performs a forward traversal of this list and invokes the appropriate
function of each observer. After the change has taken place the observer list is traversed in
a backward manner (from tail to head) and the appropriate notification function is invoked
for each observer. This allows the nesting of observer objects. In addition, a free function
may choose to trigger a similar notification, which falls under the third category above.

5.3 Point-Location Queries

As we separate the arrangement representation from algorithms that operate on it, the
Arrangement 2 class does not support point-location queries directly. Instead, the package
provides a set of classes that are capable of answering such queries, all being models of
the concept ArrangementPointLocation. Each class employs a different algorithm or strategy
for answering queries. A model of this concept must define the locate() function that
accepts an input query point and returns an object representing the arrangement cell that
contains this point (a polymorphic CGAL::Object instance that can either be a Face handle,
a Halfedge handle, or a Vertex handle).

The following models for the concept ArrangementPointLocation are included in the ar-
rangement package. Each employs a different point-location strategy, as explained in details
in Section 3.2.

• Arr naive point location locates the query point näıvely, by exhaustively scanning all
arrangement cells.

• Arr walk along a line point location simulates a reverse traversal along an imagi-
nary vertical ray emanating from the query point toward infinity. It starts from the
unbounded face of the arrangement and moves downward towards the query point until
it locates the arrangement cell containing it.

• Arr Triangulation point location triangulates each face of the arrangement using
constrained Delaunay triangulation. During query time the locate is performed using
a triangulation hierarchy.

• Arr trapezoid ric point location implements the RIC algorithm, which is based on
the vertical decomposition of the arrangement into pseudo-trapezoids.

• Arr landmarks point location implements our Landmarks algorithm. See more details
below.

Each of the following point location classes: the Landmarks, the trapezoidal-ric, and the
triangulation defines a nested observer class that inherits from Arr observer, and is used
to receive notifications whenever the arrangement is modified. The usage of the notifica-
tion mechanism makes it possible to associate several point-location objects with the same
arrangement simultaneously.

32 CHAPTER 5. IMPLEMENTATION DETAILS

Figure 5.1: The classes and concepts involved in the implementation of the Landmarks point
location. A rectangle with a solid frame designates a class, and a rectangle with a dashed frame
designates a concept. A plain arrow designates a reference to an instance of a class or of a
concept, solid lines directed through a triangle mark an inheritance and directed dashed lines
designate “is a model of” relation. A rhombus-shaped tail indicates that the source class stores
a container of objects of the target type.

5.4 The class Arr landmarks point location

The class Arr landmarks point location<Arrangement,Generator> is the main class of the
landmarks point-location strategy. It has a member function Object locate(Point 2 q) that
implements the landmarks point-location algorithm. It is templated by two parameters: the
Arrangement, which is a common parameter for all point-location strategies, which represents
the arrangement, and a Generator. Figure 5.1 shows the coorelation between all the classes
and concepts that are involved in the Landmarks algorithm.

5.4.1 The Generator

The Generator class represents the type of landmarks that are used. It is responsible for
creating the set of landmarks along with their locations in the arrangement, storing them in

5.4. THE CLASS ARR LANDMARKS POINT LOCATION 33

a nearest neighbor search structure and finding the closest landmark to a query point. The
generator class should support the following operations:

• Create the landmarks set, and save the landmarks in a nearest neighbor search struc-
ture.

• Clear the landmarks set and the search structure.

• Given a query point q, return the closest landmark point to q and the object which is
the location of the landmark in the arrangement.

As mentioned, five types of Landmarks generators were implemented, with respect to the
kind of landmarks they generate:

Arr landmarks vertices generator — The landmarks are all the arrangement
vertices.

Arr middle edges landmarks generator — The landmarks are the midpoints
of all the arrangement edges.

Arr random landmarks generator — Random points are selected.

Arr grid landmark generator — The landmarks are chosen on a
uniform grid.

Arr halton landmarks generator — Halton sequence points are used.

All generators inherit from the class Arr observer in order to use the notification mech-
anism in the arrangement class, so that whenever the arrangement changes, the generator
updates its set of landmarks and their location in the arrangement. For local changes, such
as when an edge is inserted, the generator implements only the functions that are called
after the arrangement is updated with the change. For global changes, we implement both
the function that is called before the change and after the change. The first one clears the
arrangement and turns on a flag notifying not to make any updates in the data structure
until the global change is finished. The second function, which is called after the global
change is finished, rebuilds the set of landmarks and turns off the flag.

In most cases all the “after” functions rebuild the landmark set and the search structure
for each change in the arrangement. The need to rebuild after all the changes is due to
two reasons: First, all the current implementations of Kd-trees (that we are aware of)
do not support dynamic insertions and deletions, and therefore need to be rebuilt after
any change. Second, in order to know what landmarks were effected by a certain change
in the arrangement, so that we can relocate only the effected landmarks, there should be
“backward” pointers from each cell of the arrangement to the landmarks that are effected by
it. This is a relatively complicated data-structure that was not implemented in the current
work.

34 CHAPTER 5. IMPLEMENTATION DETAILS

The only generator that partially supports dynamic insertions is the Arr landmarks

vertices generator. The reason that it is possible only for this generator (and not for
the other generators) is that when a landmark is located on a vertex, its location does not
change when new curves are inserted into the arrangement. This is in contrast to land-
marks that are located inside a face, where the face may be split by the insertion of a new
curve. Therefore, when curves are added to the arrangement, and new vertices are created,
the search structure is not rebuilt. Instead, it saves a counter on the number of vertices
that were changed, and only when this number exceeds the square-root of the number of
landmarks, the search structure is rebuilt. The Arr landmarks vertices generator does not
supports deletion of vertices, since we have no “backward” pointers from a vertex to the
corresponding landmark. Therefore, when a vertex is deleted from the arrangement, the
search structure is always rebuilt.

5.4.2 The Nearest Neighbor Class

The Generator class-template is parameterized with a nearest neighbor class that wraps
the nearest neighbor search structure. This allows for each generator to hold a different
nearest neighbor search structure, to change the search structure easily, or to create several
generators of the same type with different nearest neighbor strategies. The nearest neighbor
search structure should define an NN Point 2 class that represents the coordinates of a point
in a fixed precision number type, and the arrangement object where this point is located.
The NN Point 2 should have a constructor from a regular Point 2 object, that might be
represented with unlimited precision. The nearest neighbor search structure should support
the following operations:

• Given a set of points, create their nearest neighbor search structure.

• Clean the nearest neighbor search structure.

• Given a query Point 2 q, find the closest NN Point 2 to q.

We have implemented two types of nearest neighbor classes:

• A nearest neighbor class that wraps Cgal’s Kd-trees, which is a part of the Spa-
tial Searching package. This Kd-tree is an implementation of a standard Kd-tree as
explained in Section 2.3.

• A nearest neighbor class that wraps the Ann package (see Section 2.3.1 for further
details).

The Arr grid landmark generator is not templated by a nearest neighbor search struc-
ture. Instead, it stores the landmarks in a vector representing a d√n e × d√n e grid, and
finds the closest landmark simply by rounding the coordinates of a given query point to the
grid lines.

5.4. THE CLASS ARR LANDMARKS POINT LOCATION 35

5.4.3 Implementing the Walk

As explained in Section 4.3, the main part of the location algorithm is walking from the
closest landmark ` to the query point q. A vital test in this part is to check whether the
segment s, connecting ` and q, intersect with an edge e on the boundary of the startup face
f . In this section we elaborate on this test, and show that the test can be computed using
only the predicates that are supported by the arrangement traits. We also show how we use
the Dcel structure and the edge e that was found for crossing to the next face.

An edge e on the boundary of f that intersect s must fulfill two requirements:

1. e shares a common x-range with s.

2. The y-order of e and s changes between the left- and right-hand sides of the common
x-range.

The verification of the first requirement is straightforward. To test the second requirement,
we need to determine the y-order between two curves on both sides of the common x-range.
Let us consider the comparison on the left-hand side of the common x-range (the comparison
on the right-hand side is done in the same manner).

In the general case, when the curves do not share a common (left) endpoint, we take
the rightmost point p between the two left endpoints of the curves, and compare p to the
curve that p is not its endpoint. This comparison is done using the forth predicate in the
traits class, which determines whether a given point is above, below or on a given curve.
(see Section 5.1.1.) In the special case where s and e share a common endpoint (this may
happen frequently when the landmark is a vertex), we determine the relative position of the
two curves immediately to the right of this endpoint. The fifth predicate in the traits class
enables this last test.

The first edge e on the boundary of f that meets the requirements listed above, is used
for crossing to the next face.3 The crossing is done by taking the twin halfedge e′ of e, and
the next face f ′ is the face that is to the left of e′. e and e′ are then marked as flipped, and
cannot be used again for flipping in the current walk. This restriction guarantees that the
walk part will end.

3As explained in Section 4.3, although it may be better to use the edge that is the closest to the query
point q, we have no way to check which edge is the closest, since we do not compute the exact intersection
points of each edge on the boundary and s (as this is an expensive operation).

36 CHAPTER 5. IMPLEMENTATION DETAILS

Chapter 6

Experimental Results

6.1 The Benchmark

In this section we describe the benchmark we used to study the behavior of various point-
location algorithms and specifically the newly proposed Landmarks algorithm.

The benchmark was conducted using four types of arrangements: random segments,
random conics, robotics, and Norway. Each arrangement of the first type was constructed
by line segments that were generated by connecting pairs of points whose coordinates x, y
are each chosen uniformly at random in the range [0, 1000]. We generated arrangements of
various sizes, up to arrangements consisting of more than 1,350,000 edges.

The second type of arrangements, random conics, are composed of 20% random line
segments, 40% circles and 40% canonical ellipses. The circles centers were chosen uniformly
at random in the range [0, 1000]× [0, 1000] and their radii were chosen uniformly at random
in the range [0, 250]. The ellipses were chosen in a similar manner, with their axes lengths
chosen independently at random in the range [0, 250].

The third type, robotics, is a line-segment arrangement that was constructed by comput-
ing the Minkowski sum1 of a star-shaped robot and a set of obstacles. This arrangement
consists of 25,533 edges. The last type, Norway, is also a line-segment arrangement, that was
constructed by computing the Minkowski sum of the border of Norway and a flower-shaped
polygon with 23 edges. The resulting arrangement consists of 42,786 edges.

For each arrangement we selected 1000 random query points in the arrangement’s bound-
ing rectangle, to be located in the arrangement. For the comparison between the various
algorithms, we measured the preprocessing time, the average query time, and the memory
usage of the algorithms. All algorithms were executed on the same set of arrangements and
same sets of query points.

Several point-location algorithms were studied. We tested the different variants of the
Landmarks algorithm: LM(vert), LM(rand), LM(grid), LM(halton) and LM(mide). The
number of landmarks used in the LM(vert), LM(rand), LM(grid), LM(halton) is equal to

1The Minkowski sum of sets A and B is the set {a + b | a ∈ A, b ∈ B}

37

38 CHAPTER 6. EXPERIMENTAL RESULTS

the number of vertices of the arrangement. The number of landmarks used in the LM(mide)
is equal to the number of edges of the arrangement. All Landmarks algorithms, besides
LM(grid), used Cgal’s Kd-trees as their nearest neighbor search structure.

We also used the benchmark to study the Näıve algorithm, the Walk (from infinity)
algorithm, the RIC algorithm, and the Triangulation algorithm (only for line segments).
The LM(mide) was not implemented on conic-arc arrangements, since finding the midpoint
of a conic arc connecting two vertices of the arrangement, which may have been constructed
by intersection of two conic curves, is not a trivial operation, and the middle point may
possibly be of high algebraic degree.

As stated above, all calculations use exact number types, and result in the exact point
location. The benchmark was conducted on a single 2.4GHz PC with 1GB of RAM, running
under Linux.

6.2 Results

6.2.1 Comparing Point-Location Strategies

Table 6.1 shows the average query time associated with point location in arrangements of
varying types and sizes using the different point-location algorithms. The number of edges
mentioned in these tables is the number of undirected edges of the arrangement. In the
Cgal implementation each edge is represented by two halfedges with opposite orientations.

Table 6.2 shows the preprocessing time for the same arrangements and same algorithms
as in Table 6.1. The actual preprocessing consist of two parts: Construction of the ar-
rangement (common to all algorithms), and construction of auxiliary data structures needed
for the point location, which are algorithm specific. As mentioned above, the Näıve and
the Walk strategies do not require any specific preprocessing stage besides constructing the
arrangement, and therefore do not appear in the table.

Table 6.3 shows the memory usage of the point-location strategies for the same arrange-
ments and same algorithms as in Tables 6.1 and 6.2. The memory used by the arrangement
data structure before using any point-location strategy is also presented in this table (Col-
umn 3). Columns 4–8 show the memory used by the different point-location algorithms. As
in the previous table, the Näıve and the Walk strategies do not appear in the table, since
they do not require any data-structure besides the basic arrangement representation.

The information presented in these tables shows that, unsurprisingly, the Näıve and the
Walk strategies, although they do not require any preprocessing stage and any memory
besides the basic arrangement representation, result with the longest query time in most
cases, especially in case of large arrangements.

The Triangulation algorithm has the worst preprocessing time, which is mainly due to
the time required for subdividing the faces of the arrangement using Constrained Delaunay
Triangulation (Cdt); this implies that resorting to Cdt is probably not the way to go for
point location in arrangements of segments. The query time of this algorithm is quite fast,

6.2. RESULTS 39

Arrang. #Edges Näıve Walk RIC Triang. LM LM LM
Type (vert) (rand) (grid)

2112 2.2 0.8 0.06 0.86 0.16 0.13 0.13
random 37046 36.7 3.6 0.09 1.17 0.20 0.16 0.15
segments 235446 241.4 9.7 0.12 1.96 0.38 0.35 0.18

955866 1636.1 15.0 0.23 1.83 1.27 1.45 0.18
1366364 2443.6 18.0 0.27 2.10 1.80 2.06 0.19

random 1001 1.4 0.2 0.05 N/A 0.31 0.08 0.07
conics 3418 5.6 0.5 0.07 N/A 0.32 0.07 0.06

13743 21.7 1.1 0.09 N/A 0.38 0.07 0.07
robotics 25533 37.6 1.3 0.08 0.39 0.12 0.11 0.07
Norway 42786 65.7 0.9 0.10 0.52 0.15 0.15 0.08

Table 6.1: Average time (in milliseconds) for one point-location query.

Arrang. #Edges Arrangement RIC Triang. LM LM LM
Type Construct. (vert) (rand) (grid)

2112 0.07 0.5 11.2 0.01 0.12 0.13
random 37046 1.26 29.7 360.2 0.05 2.97 2.95
segments 235446 8.90 115.0 3360.1 0.33 24.23 22.25

955866 60.51 616.5 21172.2 2.25 141.88 100.79
1366364 97.67 1302.3 33949.1 3.37 212.79 148.61

random 1001 8.24 2.20 N/A 0.01 0.17 0.22
conics 3418 29.22 6.09 N/A 0.03 0.61 0.80

13743 127.04 28.26 N/A 0.13 2.72 3.57
robotics 25533 2.63 8.29 34.67 0.06 1.69 0.35
Norway 42786 5.28 20.06 70.33 0.10 3.23 2.37

Table 6.2: Preprocessing time (in seconds).

since it uses the Delaunay hierarchy, although it is not as fast as the RIC or the Landmarks
algorithm.

The RIC algorithm results with fast query time, but it consumes the largest amount of
memory, and its preprocessing stage is very slow.

All the Landmarks algorithms have rather fast preprocessing time and fast query time.
The LM(vert) has by far the fastest preprocessing time, since the location of the landmarks is
known, and there is no need to locate them in the preprocessing stage. The LM(grid) has the
fastest query time for large-size arrangements induced by both line-segments and conic-arcs.
The size of the memory used by LM(vert) algorithm is the smallest of all algorithms.

The other two variants of landmarks that were examined but are not reported in the
tables are: (i) the LM(halton), which yields similar results to those of the LM(rand), and
(ii) the LM(mide) which yields similar results to those of the LM(vert), although since it
uses more landmarks, it has a little longer query and preprocessing stages, which makes it

40 CHAPTER 6. EXPERIMENTAL RESULTS

Arrang. #Edges Arrangement RIC Triang. LM LM LM
Type Size (vert) (rand) (grid)

2112 0.8 1.3 0.3 0.2 0.5 0.5
random 37046 9.5 21.5 7.7 2.6 8.1 6.8
segments 235446 57.3 136.5 46.4 17.0 51.9 44.4

955866 231.3 555.0 206.1 55.8 208.5 178.1
1366364 333.8 793.2 268.9 86.8 307.0 258.9

random 1001 3.1 2.6 N/A 0.1 0.6 1.0
conics 3418 10.2 9.0 N/A 0.3 2.1 2.6

13743 40.6 3.7 N/A 1.4 8.4 11.3
robotics 25533 7.2 14.9 3.7 1.3 3.9 3.1
Norway 42786 12.2 24.4 5.9 1.9 6.2 4.7

Table 6.3: Memory usage (in MBytes) by the point location data structure.

less efficient for these types of arrangements.

Figure 6.1 presents the combined cost of a query (amortizing also the preprocessing
time over all queries) on the last random-segments arrangement shown in the tables, which
consists of more than 1,350,000 edges. The x-axis indicates the number of queries m. The
y-axis indicates the average amortized cost-per-query, cost(m), which is calculated in the
following manner:

cost(m) =
preprocessing time

m
+ average query time. (6.1)

We can see that when m is small, the cost is a function of the preprocessing time of the
algorithm. Clearly, when m → ∞, cost(m) becomes the query time. For the Näıve and
the Walk algorithms that do not require preprocessing, cost(m) = query time = constant.
Looking at the lower envelope of these graphs we can see that for m < 100 the Walk algorithm
is the most efficient. For 100 < m < 100, 000 the LM(vert) algorithm is the most efficient,
and for m > 100, 000 the LM(grid) algorithm gives the best performance. As we can see, for
each number of queries, there exists a Landmarks algorithm, which is better than the RIC
algorithm.

6.2.2 Analysis of the Landmarks Strategy

As mentioned above, there are various parameters that effect the performance of the Land-
marks algorithm, such as the number of landmarks, their distribution over the arrangement,
and the structure used for the nearest-neighbor search. We checked the effect of varying the
number of landmarks on the performance of the algorithm, using several random arrange-
ments.

Table 6.4 shows typical results, obtained for the last random-segments arrangement of our
benchmark. The landmarks used for these tests were random points sampled uniformly in
the bounding rectangle of the arrangement. As expected, increasing the number of random

6.2. RESULTS 41

10
0

10
2

10
4

10
6

10
8

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Queries

C
os

t p
er

 Q
ue

ry

#E
d

g
es

 =
 1

,3
66

,3
64

Naive
Walk
RIC
LM(vert)
LM(grid)

Figure 6.1: The average combined (amortized) cost per query in a large arrangement, with
1,366,384 edges.

landmarks increases the preprocessing time of the algorithm. However, the query time
decreases only until a certain minimum around 100,000 landmarks, and it is much larger for
1,000,000 landmarks. The last column in the table shows the percentage of queries, where
the chosen startup landmark was in the same face as the query point. As expected, this
number increases with the number of landmarks.

An in-depth analysis of the duration of the Landmarks algorithm reveals that the major
time-consuming operations vary with the size of the arrangement (and consequently, the
number of landmarks used), and with the Landmarks type used. Figure 6.2 shows the
duration percentages of the various steps of the query operation, in the LM(vert), LM(rand)
and LM(grid) algorithms. As can be seen in the LM(vert) and LM(rand) diagrams, the
nearest-neighbor search part increases when more landmarks are present, and becomes the

Number of Preprocessing Query % Queries
Landmarks Time [sec] Time [msec] with AD=0

100 61.7 4.93 3.4
1000 59.0 1.60 7.6

10000 60.8 0.58 19.2
100000 74.3 0.48 42.3

1000000 207.2 3.02 71.9

Table 6.4: LM(rand) algorithm performance for a fixed arrangement and a varying number of
random landmarks.

42 CHAPTER 6. EXPERIMENTAL RESULTS

LM(vert)

 2112 37046 235446 615760 955866 1366364
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

av
g.

 ti
m

e
fo

r
on

e
po

in
t−

lo
ca

tio
n

qu
er

y
(m

ill
is

ec
on

ds
)

number of edges

Find nearest landmark
Decide on startup face
Is point in face?
Cross to next face

LM(rand)

 2112 37046 235446 615760 955866 1366364
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

av
g.

 ti
m

e
fo

r
on

e
po

in
t−

lo
ca

tio
n

qu
er

y
(m

ill
is

ec
on

ds
)

number of edges

Find nearest landmark
Is point in face?
Cross to next face

LM(grid)

 2112 37046 235446 615760 955866 1366364
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

av
g.

 ti
m

e
fo

r
on

e
po

in
t−

lo
ca

tio
n

qu
er

y
(m

ill
is

ec
on

ds
)

number of edges

Find nearest landmark
Is point in face?
Cross to next face

Figure 6.2: The average breakdown of the time required by the main steps of the Landmarks
algorithms in a single point-location query, for arrangements of varying size.

6.3. COMPARISON WITH POINT-LOCATION ALGORITHMS IN TRIANGULATIONS 43

most time-consuming part in large arrangements. In the LM(grid) algorithm, this step is
negligible.

A significant step that is common to all Landmarks algorithms, checking whether the
query point is in the current face, also consumes a significant part of the query time. This
part consumes a major fraction of the LM(grid) algorithm runtime.

An additional operation shown in the LM(vert) diagram is finding the startup face in a
specified direction. This step is relevant only in the LM(vert) and the LM(mide) algorithms.
The last operation, crossing to the next face, is relatively short in LM(vert), as in most
cases (more than 90%) the query point is found to be inside the startup face. This step is a
little longer in LM(grid) and LM(rand) than in LM(vert), since only about 70% of the query
points are found to be in the same face as the landmark point.

6.3 Comparison with Point-Location Algorithms in Tri-

angulations

Many applications that use triangulations in their implementation, and in particular Delau-
nay triangulations and their dual data-structures Voronoi diagrams, also require intensive
use of point-location queries. A lot of work (see Chapter 3) have been done in order to speed
up the point location in these structures. We have tested the performance of our Landmarks
strategy on triangulations, and compared it with the location time achieved by the triangu-
lation package in Cgal. The strategy used with the triangulation package is the one that
uses the Delaunay hierarchy (as explained in Chapter 3).

In the first test, we chose a set of random points and created the triangulation of these
points. We converted the triangulation into an arrangement, so that each triangle is a
face in the arrangement. We then created a new set of 1000 random query points, located
them in the triangulation using the Delaunay hierarchy, and in the arrangement using our
Landmarks strategy. Table 6.5 shows the results of this test. We can see that the location
using LM(grid) is much faster than the location in the triangulation. As mentioned, this
strategy is the most efficient here since the nearest landmark (grid) point can be found in
constant time. The other Landmarks strategies perform sometimes better and sometimes
worse than using the point location in the triangulation package. The LM(vert) is relatively
efficient in this case, since it probably represent the triangulation well, while LM(rand) and
LM(halton) may require a longer “walk” part from the landmark to the query point. The
LM(mide) contains more landmarks (equal to the number of the edges) and thus result with
a longer nearest neighbor search.

In the second test, we chose random segments and created the Constrained Delaunay
Triangulation (Cdt) of these segments. We then chose, as before, 1000 random query points
and located them in the arrangement using the Landmarks algorithm and in the triangulation
using the Delaunay hierarchy. Table 6.6 shows the results of this test. We can see that all
the Landmarks strategies perform better than the Cdt package.

In the third test, we selected random points and built the Voronoi diagram of these points

44 CHAPTER 6. EXPERIMENTAL RESULTS

#Random Triangulation LM LM LM LM LM
Points Package (vert) (rand) (grid) (halton) (mide)

1000 0.278 0.073 0.117 0.106 0.110 0.067
100000 0.458 0.198 0.269 0.083 0.257 0.449
350000 0.597 0.577 0.752 0.078 0.710 1.580

Table 6.5: Average time (in milliseconds) for one point-location query in the Delaunay triangu-
lation or the corresponding arrangement of random points.

#Random Cdt LM LM LM LM LM
Segments Package (vert) (rand) (grid) (halton) (mide)

400 1.065 0.167 0.191 0.142 0.169 0.184
600 1.135 0.199 0.225 0.138 0.211 0.282
800 1.364 0.251 0.282 0.143 0.255 0.418

1000 1.358 0.319 0.348 0.146 0.332 0.625

Table 6.6: Average time (in milliseconds) for one point-location query in the Constrained Delau-
nay Triangulation or the corresponding arrangement of random segments.

#Random Queries Voronoi LM LM LM LM LM
Site Points Diagram (vert) (rand) (grid) (halton) (mide)

2000 the sites 0.812 0.159 4.17 10.30 6.51 0.132
2000 random 1.722 0.174 4.20 10.06 6.50 0.147
4000 the sites 1.766 0.160 3.58 16.54 7.89 0.132
4000 random 1.716 0.185 9.03 17.09 7.86 0.153

Table 6.7: Average time (in milliseconds) for one point-location query in the Voronoi diagram or
the corresponding arrangement of random points.

using the new Cgal package, which is an adaptor over the Delaunay triangulations. We
converted the Voronoi diagram into an arrangement. For each diagram (and corresponding
arrangement), we used two sets of query points (with the same number of points). The
first set contains the sites that were used for building the Voronoi diagram. The points in
the second set are random points that were selected uniformly at random inside the same
bounding rectangle from which the original sites were selected.

Table 6.7 shows the location time in the Voronoi diagram and in the arrangement using
the Landmarks strategies. The results indicate that the LM(vert) and LM(mide) perform
much better than the point-location in the Voronoi diagram. The other Landmarks strategies
perform poorly on these arrangements. Looking closely at the Voronoi diagram, we observe
that the Voronoi diagram’s bounding rectangle is very large and most cells of the arrangement
are located in a small area compared to the bounding rectangle (since there are few vertices
very far from the others). Therefore, the landmarks that are not based on the arrangement’s
entities (i.e. LM(rand), LM(grid) and LM(halton)) do not represent the arrangement well,
and the walk from these landmarks to the query points (that are located in the dense area
of the arrangement) takes a lot of time, since it requires crossing many faces.

Chapter 7

Conclusions and Future Work

We have proposed a new Landmarks algorithm for exact point location in general planar
arrangements, and have integrated the implementation of our algorithm into Cgal. We use
generic programming, which allows for the adjustment and extension for any type of planar
arrangements. We tested the performance of the algorithm on arrangements constructed
of different types of curves, i.e., line segments and conic arcs, and compared it with other
point-location algorithms.

The main conclusion from our experiments is that the Landmarks algorithm is the best
strategy considering the cost per query, which takes into account both (amortized) prepro-
cessing time and query time. Moreover, the memory space required by the algorithm is
small compared to other algorithms that use auxiliary data structure for point location. The
algorithm is easy to implement, maintain, and adjust for different needs using different types
of landmarks and search structures.

There are still many ways to improve the algorithm. In the following paragraphs we
elaborate on some of them.

Dynamization. In the current implementation of the Landmarks algorithm, every time a
new curves is added to or deleted from the arrangement, the data structure containing the
landmarks is rebuilt (with a small exception in the LM(vert) strategy; see Section 5.4.1).
The main reason for the need to rebuild is the fact that the nearest neighbor data structures
that we use does not support insertions and deletions in the current implementations that
we use (namely Cgal and Ann). In order to make the Landmarks algorithm dynamic, one
will have to develop a dynamic nearest neighbor search structure that will support insertion
and deletion of points.

Another extension that should be made in order to make the algorithm fully dynamic is
to extend the arrangement data structure, or to maintain extra information. Given a certain
change in the arrangement, the structure should be able to return the set of landmarks that
were effected by this change. For example, when a new curve is added to the arrangement
and a face is split because of this change, we would like to know which landmarks were inside
this face, so that we can find their new locations.

45

46 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Finding the Optimal Number of Landmarks. We have seen (Table 6.4) that the
number of landmarks used by the Landmarks algorithm effects the location time. Obviously,
the larger the number of landmarks, the probability that the query point will be in the
same cell as the landmark is higher. However, when the number of landmarks is large the
time it takes to find the closest landmark to a query point becomes significant (except for
LM(grid)), as seen in Figure 6.2. Thus, it may be instructive to look for the optimal number
of landmarks versus the arrangement type and size.

Theoretic Analysis. It may be interesting to give a theoretical complexity analysis of the
Landmarks algorithm. For example, to estimate the average time it should take to locate a
query point in an arrangement of random segments. For this purpose one may first analyze
the probability that the closest landmark lies in the same cell of the arrangement as the
query point (or more generally, what is the average arrangement distance1 from the closest
landmark to the query point).

Additional Types of Landmark. In our work we have tested five types of landmarks:
vertices, middle point of edges, random, Halton and grid points. However, many other types
of landmarks can be used. For example, one can subdivide the faces of the arrangement
into simple cells, such as triangles or trapezoids, and set a landmark in each of these cells.
Another option may be to set the landmarks on very long edges. Landmarks can also be
used on edges instead of vertices, when the vertex’s coordinates have high algebraic degree
(see Appendix A for more details).

Other options for the types of landmarks include combining different types of landmarks.
It may be interesting to investigate the influence of combining, for example, landmarks that
depend on the arrangement topology, such as vertices, with landmarks that are independent
of the arrangement geometry, such as random points.

Improving Performance on Arrangements with Large Faces. The main drawback
of the landmarks strategy is that when the arrangement contains very large faces, and we
want to decide if the query point is inside a face, we have to go over all the edges of the face’s
boundary. In case a face f is very large, it may be useful to maintain an extra structure for
ray shooting inside f . Such a structure should answer queries of the form: Given a query
point q and a direction d, find the first edge on f ’s boundary that the ray emerging from q
in direction d hits. Using such a structure inside large face can decrease the time for testing
whether a query point is inside the face, and if not, the edge that it hits on the boundary
of f can be used for crossing to the next face during the walk algorithm. Of course, we will
have to pay in increasing preprocessing time and storage space.

1The definition of Arrangement Distance (AD) is given in Section 4.1

Appendix A

The Importance of Being Rational

Exact computation for non-linear curves requires calculations with irrational numbers, even
if the input is given in rational coefficients. For example, the intersection point of two circles
with a rational radius and rational coordinates of the center point may not be rational. In
the general case, the intersection point of two conic arcs may be an algebraic number1 of
degree 4. In such cases, choosing this intersection point v as a landmark may considerably
slow down the algorithm. In this appendix we elaborate on this problem, present the chord
method giving a rational approximation for an irrational point on a circle, and show how
this can be used in our algorithm.

When we started to implement the Landmarks algorithm, we first used the vertices of the
arrangement as the only landmarks, as their location in the arrangement is known. We have
implemented the walk stage from a vertex v to a query point q by finding an intersection
point of an edge on the boundary of the current face with the segment s connecting v and
q. This operation took much longer when the vertex v had high algebraic degree. In order
to speed up the algorithm, we tried to avoid such operations (see Section 5.4.3 for detailed
explanation of the method we are currently using).

v
v′

q

Figure A.1: Approximating the vertex v with v′.

One way we have considered in order to avoid such operations, was to find a point v′

close to v that is still on the curve, but has lower algebraic degree (see Figure A.1). In this
appendix we demonstrate the idea for circles, and compute a point v′ on the circle with
rational coordinates. We do this using the Chord Method [10]: Given a unit-circle equation:

1An algebraic number is any number that is a root of a non-zero polynomial with integer or rational
coefficients. The degree of an algebraic number is the degree of this polynomial.

47

48 APPENDIX A. THE IMPORTANCE OF BEING RATIONAL

x2 + y2 = 1, the problem is to find a rational point v′ close to the given point v on the circle.
The solution relies on the fact that every line passing through the point (−1, 0), and crosses
the unit circle in another (distinct) point, can be written as: y = t(x + 1), where t is the
slope of the line. Now, we need to solve x2 + (t(x + 1))2 = 1. If t is rational, this equation

has two rational solutions: (-1,0), that we already know, and
(

1−t2

1+t2
, 2t

1+t2

)
; see Figure A.2.

Thus, in order to approximate an irrational point v = (x, y) on the circle centered at (x0, y0)
with radius r, we have to approximate t = y−y0

x−x0+r
to any desired accuracy, and then calculate

the rational point
(
x0 + r 1−t2

1+t2
, y0 + r 2t

1+t2

)
as shown above. The chord method can also be

applied to other conic curves that have at least one rational point on them.

(−1, 0)

(
1−t2

1+t2 , 2t
1+t2

)

θ
2 θ

y = t(x
+ 1)

x2 + y2 = 1

Figure A.2: The chord method on the unit circle.

In order to use this method in our algorithm, and since we typically deal with conics
that have rational (and in many cases integer) coefficients, the problem that remains is to
find one rational point on the conic. Apparently, this is not an easy question. Moreover,
not all conics with rational coefficients have rational points on them. One nice example of
a conic with no rational points is: x2 + y2 = 3. Cassels [11, Chapter 6] shows an algorithm
to check if a conic equation has a rational solution or not, and if there is, a method to find
such a point. This algorithm works in O(F 2), where F is the sum of the absolute values of
the coefficients of the conic equation.

In cases there is no rational point on the curve, the question is how to find a good rational
approximation to the vertex, that is still in one of the faces incident to the vertex. What we
actually need is a good small2 rational approximation to the number that will be close up
to ε to the original number. ε should be such that when we move ε away from the vertex v
we only get into a face incident to v and not cross any other curve. Another way to solve
the problem for curves that contain no rational points is to find another point on the curve
that is not an intersection point, and thus has only algebraic degree 2.

In cases where a rational point is known, such as circles with rational center point and
rational radius, this method can be applied. We leave this question for further study.

2A “small” rational number is such that both its enumerator and denominator can be represented with
a small number of bits.

Bibliography

[1] P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geometry, pages 49–119. Elsevier
Science Publishers B.V. North-Holland, Amsterdam, 2000.

[2] S. Arya, T. Malamatos, and D. M. Mount. Entropy-preserving cutting and space-
efficient planar point location. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms,
pages 256–261, 2001.

[3] S. Arya, T. Malamatos, and D. M. Mount. A simple entropy-based algorithm for planar
point location. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages 262–268,
2001.

[4] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions.
In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 271–280, 1993.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions. Journal of the ACM,
45:891–923, 1998.

[6] M. H. Austern. Generic Programming and the STL. Addison-Wesley, 1999.

[7] J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-
mun. ACM, 18(9):509–517, Sept. 1975.

[8] J. L. Bentley. Kd-trees for semidynamic point sets. In Proc. 6th Annu. ACM Sympos.
Comput. Geom., pages 187–197, 1990.

[9] J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec. Triangulations in
CGAL. Comput. Geom. Theory Appl., 22(1–3):5–19.

[10] J. Canny, B. Donald, and E. K. Ressler. A rational rotation method for robust geometric
algorithms. In Proc. 8th Annu. ACM Sympos. Comput. Geome., pages 251–260, 1992.

[11] J. W. S. Cassels. Rational Quadratic Forms. Academic Press, 1978.

[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Ge-
ometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition,
2000.

49

50 BIBLIOGRAPHY

[13] O. Devillers. The Delaunay hierarchy. Internat. J. Found. Comput. Sci., 13:163–180,
2002.

[14] O. Devillers and P. Guigue. The shuffling buffer. Internat. J. Comput. Geom. Appl.,
11:555–572, 2001.

[15] O. Devillers, S. Pion, and M. Teillaud. Walking in a triangulation. Internat. J. Found.
Comput. Sci., 13:181–199, 2002.

[16] L. Devroye, C. Lemaire, and J.-M. Moreau. Fast Delaunay point-location with search
structures. In Proc. 11th Canad. Conf. Comput. Geom., pages 136–141, 1999.

[17] L. Devroye, E. P. Mücke, and B. Zhu. A note on point location in Delaunay triangula-
tions of random points. Algorithmica, 22:477–482, 1998.

[18] D. P. Dobkin and R. J. Lipton. Multidimensional searching problems. SIAM J. Comput.,
5(2):181–186, 1976.

[19] M. Edahiro, I. Kokubo, and T. Asano. A new point-location algorithm and its practical
efficiency — comparison with existing algorithms. ACM Trans. Graph., 3:86–109, 1984.

[20] E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, and E. Ezra. The design and imple-
mentation of planar maps in CGAL. ACM Journal of Experimental Algorithmics, 5,
2000. Special Issue, selected papers of the Workshop on Algorithm Engineering (WAE).

[21] E. Fogel, R. Wein, and D. Halperin. Code flexibility and program efficiency by gener-
icity: Improving cgal’s arrangements. In Proc. 12th Annual European Symposium on
Algorithms (ESA), volume 3221 of LNCS, pages 664–676. Springer-Verlag, 2004.

[22] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226, 1977.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[24] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Hand-
book of Discrete and Computational Geometry, chapter 24, pages 529–562. Chapman
& Hall/CRC, 2nd edition, 2004.

[25] I. Haran and D. Halperin. An experimental study of point location in general planar
arrangements. In Proc. ALENEX/ANALCO, 2006.

[26] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for robust numeric
and geometric computation. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages
351–359, 1999.

[27] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12(1):28–
35, 1983.

BIBLIOGRAPHY 51

[28] S. M. LaValle. Planning Algorithms. Cambridge University Press (also available at
http://msl.cs.uiuc.edu/planning/), 2006.

[29] J. Matoušek. Geometric Discrepancy — An Illustrated Guide. Springer, 1999.

[30] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric Com-
puting. Cambridge University Press, Cambridge, UK, 2000.

[31] E. P. Mücke, I. Saias, and B. Zhu. Fast randomized point location without preprocessing
in two- and three-dimensional Delaunay triangulations. In Proc. 12th Annu. ACM
Sympos. Comput. Geom., pages 274–283, 1996.

[32] K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-4):253–
280, 1990.

[33] N. Myers. A new and useful template technique: “Traits”. In S. B. Lippman, editor,
C++ Gems, volume 5 of SIGS Reference Library, pages 451–458. 1997.

[34] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, vol-
ume 63 of Regional Conference Series in Applied Mathematics. CBMS-NSF, 1992.

[35] F. P. Preparata. A new approach to planar point location. SIAM J. Comput., 10(3):473–
482, 1981.

[36] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Com-
mun. ACM, 29(7):669–679, July 1986.

[37] S. Schirra. Robustness and precision issues in geometric computation. Research
Report MPI-I-98-1-004, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany, January 1998.

[38] R. Seidel. A simple and fast incremental randomized algorithm for computing trape-
zoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl.,
1(1):51–64, 1991.

[39] M. I. Shamos. Geometric complexity. In Proc. 7th ACM Sympos. Theory of Computing,
pages 224–233, 1975.

[40] J. Snoeyink. Point location. In J. E. Goodman and J. O’Rourke, editors, Hand-
book of Discrete and Computational Geometry, chapter 34, pages 529–562. Chapman
& Hall/CRC, 2nd edition, 2004.

[41] R. Wein, E. Fogel, B. Zukerman, and D. Halperin. Advanced programming techniques
applied to CGAL’s arrangement package. In Proc. Library-Centric Software Design
Workshop (LCSD’05).

[42] C. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, edi-
tors, Handbook of Discrete and Computational Geometry, chapter 41, pages 927–952.
Chapman & Hall/CRC, 2nd edition, 2004.

